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Abstract: This article investigates quasi-synchronization for a class of fractional-order delayed neural
networks. By utilizing the properties of the Laplace transform, the Caputo derivative, and the Mittag–
Leffler function, a new fractional-order differential inequality is introduced. Furthermore, an adaptive
controller is designed, resulting in the derivation of an effective criterion to ensure the aforementioned
synchronization. Finally, a numerical illustration is provided to demonstrate the validity of the
presented theoretical findings.
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1. Introduction

With the rapid advancement of numerical algorithms, there has been significant inter-
est in fractional calculus, which is an extension of classical integration and differentiation
to arbitrary orders. Fractional-order systems offer distinct advantages over integer-order
systems in capturing the memory and hereditary characteristics of numerous materials.
For instance, they provide a more accurate description of the relationship between voltage
and current in capacitors by utilizing the fractional properties of capacitor dielectrics [1,2].
Indeed, various real-world processes can be effectively described as fractional-order sys-
tems, including diffusion theory [3,4], electromagnetic theory [5], colored noise [6], hap-
piness model [7], and dielectric relaxation [8]. The study of fractional-order systems is of
paramount importance, offering valuable insights for both theoretical understanding and
practical applications.

In recent decades, scholars have extensively studied neural networks due to their
broad utility across various domains, including combinational optimization, automatic
control, and signal processing [9–14]. The limited switching speed of amplifiers gives
rise to time delays, which lead to oscillation, instability, and bifurcation [15,16]. Conse-
quently, extensive research has been carried out to investigate the dynamic properties of
neural networks incorporating time delays, focusing on aspects such as bifurcation [17],
stability [18], and dissipativity [19]. The continuous-time integer-order Hopfield neural
network [20] was introduced by Hopfield in 1984 and has garnered significant attention
from scientists. In recent years, researchers have recognized the potential of fractional
calculus in neural network studies and have extended the order of neural networks from
integer-order to fractional-order. In fact, fractional calculus equips neurons with a fun-
damental and versatile computational capability, which plays a crucial role in enabling
efficient information processing and anticipation of stimuli [21]. The integration of frac-
tional calculus with neural networks reveals their true behavior, providing valuable insights
into qualitative analysis and synchronization control. This integration has led numerous
researchers to construct fractional models within neural networks, resulting in a wealth of
findings in the field of fractional-order neural networks. These findings encompass the exis-
tence and uniqueness of nontrivial solutions, Mittag–Leffler stability, and synchronization
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control [22–26]. Anastassiou [27] highlighted the crucial role played by fractional-order
recurrent neural networks in parameter estimation, noting their superior accuracy rates in
approximations. Consequently, integrating fractional calculus into delayed neural networks
and establishing fractional-order delayed neural networks represent a more precise and
substantial approach. This approach enhances performance for optimization and complex
computations, surpassing the capabilities of conventional integer-order neural networks.

The synchronization analysis of neural networks has been widely explored in the
domains of neural networks and complex networks, leading to interesting findings in infor-
mation science, signal processing, and secure communication [24,28–30]. Various forms of
synchronization, including complete synchronization, exponential synchronization, and
Mittag–Leffler synchronization, have been widely studied by researchers [25,26,31–34]. In
the synchronization schemes mentioned above, it is typically assumed that the system error
eventually converges to zero. However, in practical applications, the electronic components
used in the construction of artificial neural networks often feature threshold voltages. When
these threshold voltages are triggered, they can cause changes in the connection weights,
resulting in unforeseen errors in the dynamical system. This, in turn, makes it challenging
for the error system to reach a state of complete equilibrium at zero [35]. To address this
issue, the concept of quasi-synchronization is employed, signifying that synchronization er-
rors may not necessarily approach zero. Instead, they gradually converge within a confined
range around zero as time progresses [36]. It is noteworthy that significant research on
the quasi-synchronization of delayed neural networks has emerged in recent years [36–39].
Adaptive control [24,30], which automatically adjusts its control parameters according to an
adaptive law, offers the distinct advantages of cost-effectiveness and ease of operation. Con-
sequently, it is imperative and of considerable significance to study quasi-synchronization
in fractional-order delayed neural networks utilizing adaptive control.

In [40], a finite-time synchronization criterion was established for fractional-order
delayed fuzzy cellular neural networks by the utilization of a fractional-order Gronwall in-
equality. It was observed that the estimated value function within this inequality exhibited
non-decreasing behavior over a finite time interval, potentially amplifying the disparity
between the estimated synchronization error and the actual error. To minimize this dif-
ference, another study [41] focused on adaptive finite-time synchronization of the same
neural networks. By designing an adaptive controller and proposing a new fractional-order
differential inequality, the estimated error bound was shown to exhibit a declining trend
over a finite time interval. These studies raise an intriguing question: can we determine a
decreasing estimated value function that accurately captures the synchronization error in
an infinite-time scenario? If such a function exists, how can we derive the corresponding
synchronization criterion? It is worth noting that this problem has not been extensively
investigated in the existing literature, indicating a need for further study and exploration in
this area. Motivated by the problem, this article presents a criterion for achieving infinite-
time synchronization of the considered fractional-order systems. The main results of this
article are as follows:

(i) A new fractional-order differential inequality has been developed on an unbounded
time interval. This inequality can be utilized to investigate the quasi-synchronization
of fractional-order complex networks or neural networks.

(ii) Utilizing the proposed inequality in combination with an adaptive controller, a novel
criterion for the quasi-synchronization of fractional-order delayed neural networks
has been derived.

(iii) The validity of the developed results is substantiated through a numerical analysis,
offering sufficient evidence in support of the obtained synchronization criterion.

Here is an outline of this article. In Section 2, some preliminaries and a model de-
scription are provided to lay the foundation for the subsequent analysis. In Section 3, the
key fractional-order differential inequality and a new approach to quasi-synchronization
are established. In Section 4, connections between mathematical treatment and numerical
simulation are outlined, establishing a theoretical foundation for subsequent numerical
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analysis. Section 5 presents a numerical result, highlighting the significance of the obtained
findings in a practical context.

Notations: Suppose that r is a real number, and m is a natural number. Then, Nr =
{r, r + 1, r + 2, · · · } and Nr+m

r = {r, r + 1, · · · , r + m}. Let L1([t0, t],R) denote the set
of measurable functions from [t0, t] to R, where R is the set of real numbers. For each

n-dimensional real vector ξ = (ξ1, ξ2, · · · , ξn)T ∈ Rn, let ‖ξ‖ =
n
∑

i=1
|ξi|.

2. Preliminaries and Model Formulation
2.1. Preliminaries

In this subsection, we review some fundamental knowledge that will be used later.

Definition 1 ([42]). Let α, β ∈ (0,+∞). A Mittag–Leffler function with two parameters, denoted
by Eα,β(t), is defined as

Eα,β(t) =
∞

∑
µ=0

tµ

Γ(µα + β)
, t ∈ R.

In particular, let β = 1. Then, its one-parameter form is

Eα(t) = Eα,1(t) =
∞

∑
µ=0

tµ

Γ(µα + 1)
.

Lemma 1 ([42–45]). Let α ∈ (0, 1) and ω ∈ (0,+∞). Then:

(i) Eα(−ω(t− t0)
α) is monotonically non-increasing for t ∈ [t0,+∞).

(ii) 0 < Eα(−ω(t− t0)
α) ≤ 1.

(iii) Eα,α(−ω(t− t0)
α) > 0.

Lemma 2 ([46]). The following equality holds for the Mittag–Leffler function Eα,α(·)∫ t

t0

(t− ζ)α−1Eα,α(−ω(t− ζ)α)dζ =
1
ω

(
1− Eα(−ω(t− t0)

α)

)
. (1)

We next recall from [47] (§ 3) the definition and some basic properties of the one-parameter
Laplace transform.

Definition 2 ([47]). Given a function f : [t0,+∞)→ R, its Laplace transform with parameter t0 is
defined by

Lt0{ f (t)}(s) =
∫ +∞

t0

f (t)e−s(t−t0)dt.

Lemma 3 ([47]). Given two piecewise continuous functions f and g on [t0,+∞) of exponential
order ε̆, the following equation holds:

Lt0{ f (t) ∗ g(t)}(s) = Lt0{ f (t)}(s) · Lt0{g(t)}(s),

whereRe(s) > ε̆ and the convolution is given by

f (t) ∗ g(t) =
∫ t

t0

f (ζ)g(t + t0 − ζ)dζ. (2)

Lemma 4 ([41,43]). Let Eα,β(κ(t− t0)
α) be the Mittag–Leffler function. Then,

Lt0{(t− t0)
β−1Eα,β(κ(t− t0)

α)}(s) = sα−β

sα − κ
,
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whereRe(s) > |κ| 1α .

Definition 3 ([42]). Let α ∈ (0,+∞) and u ∈ L1([t0, t],R). The α-order integral of u is given by

t0 D−α
t u(t) =

∫ t

t0

(t− ζ)α−1

Γ(α)
u(ζ)dζ.

Definition 4 ([42]). Let α ∈ (0, 1) and v ∈ C 1([t0, t],R). The α-order Caputo derivative of v is
given by

c
t0

Dα
t v(t) =

∫ t

t0

(t− ζ)−α

Γ(1− α)
v′(ζ)dζ.

Lemma 5 ([48]). Let α ∈ (0, 1) and w ∈ C 1([t0, t],R). Then,

t0 D−α
t

c
t0

Dα
t w(t) = w(t)− w(t0). (3)

Lemma 6 ([49]). Let α ∈ (0, 1) and v ∈ C 1([t0, t],R). Then,

c
t0

Dα
t |v(t)| ≤ sign(v(t))c

t0
Dα

t v(t)

holds almost everywhere.

Lemma 7 ([41]). Let w ∈ C 1([t0, t],R) and of exponential order ε̆. Then,

Lt0{c
t0

Dα
t w(t)}(s) = sαW(s)− sα−1w(t0),

where α ∈ (0, 1),Re(s) > ε̆, and W(s) = Lt0{w(t)}(s).

Lemma 8 ([50]). Let α ∈ (0, 1) and ω ∈ (0,+∞). Assume that h1 and h2 are two non-negative
differentiable functions, and satisfy

c
t0

Dα
t (h1(t) + h2(t)) ≤ −ωh1(t), t ≥ t0. (4)

For arbitrary positive constant λ, there exists a non-negative constant T satisfying

T ≥
(

λΓ(α+1)
ω(h1(t0)+h2(t0)+λ)

) 1
α

such that

h1(t) ≤
(

h1(t0) + h2(t0) + λ

)
Eα(−ω(t− t0)

α), t ∈ [t0, t0 + T]. (5)

Lemma 9 ([41]). Let α ∈ (0, 1), ω ∈ (0,+∞), and κ ∈ (−∞, 0]. Suppose that two non-negative
differentiable functions h1 and h2 satisfy

c
t0

Dα
t (h1(t) + h2(t)) ≤ −ωh1(t) + κ, t ≥ t0. (6)

Then, for arbitrary positive constant λ, there exists a non-negative constant T such that

h1(t) ≤
(

h1(t0) + h2(t0) + λ

)
Eα(−ω(t− t0)

α) +
κ

ω

(
1− Eα(−ω(t− t0)

α)

)
, (7)

where t ∈ [t0, T] and T are the solutions of the equation

Eα(−ω(t− t0)
α)− h1(t0) + h2(t0)

h1(t0) + h2(t0) + λ
= 0.
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Lemma 10 ([13]). Let α ∈ (0, 1), ω ∈ (0,+∞), and κ ∈ (0,+∞). Suppose that h1 and h2 are
two non-negative differentiable functions satisfying

c
t0

Dα
t (h1(t) + h2(t)) ≤ −ωh1(t) + κ, t ≥ t0.

Then,

h1(t) ≤
(

h1(t0) + h2(t0)−
κ

ω

)
Eα(−ω(t− t0)

α) +
κ

ω
, t ≥ t0 +

(
Γ(α)

ω

) 1
1−α

.

Lemma 11 ([51]). Let α ∈ (0, 1], h ∈ C 1([t0, t],R), g ∈ C ([t0, t],R), and γ be a fixed constant. If

c
t0

Dα
t h(t) ≤ γh(t) + g(t), t ≥ t0, (8)

then for any t ≥ t0,

h(t) ≤ h(t0)Eα(γ(t− t0)
α) +

∫ t

t0

(t− s)α−1Eα,α(γ(t− s)α)g(s)ds.

If we let g(t) ≡ c ∈ R, then

h(t) ≤ h(t0)Eα(γ(t− t0)
α)− c

γ

(
1− Eα(γ(t− t0)

α)

)
, t ≥ t0. (9)

2.2. Model Description

We revisit the fractional-order delayed neural network presented in [13], which is
commonly referred to as the driving system:

c
t0

Dα
t qi(t) = −ciqi(t) +

m
∑

j=1
wij f j(qj(t))

+
m
∑

j=1
wι

ij f j(qj(t− ι)) + Ii(t), t ≥ t0,

qi(s) = ϕi(s), i ∈ Nm
1 , s ∈ [t0 − ι, t0],

(10)

where 0 < α < 1, ci ∈ R, ι > 0 is a constant delay, qi(t) ∈ R is the state variable of
the ith neuron, Ii is the external input, and wij, wι

ij ∈ R represent the connection weight
and delayed connection weight, respectively; f j(qj(t)) and f j(qj(t− ι)) are the activation
functions without delay and with delay, respectively.

The corresponding response system is defined as
c
t0

Dα
t pi(t) = −ci pi(t) +

m
∑

j=1
wij f j(pj(t))

+
m
∑

j=1
wι

ij f j(pj(t− ι)) + Ii(t) + ui(t), t ≥ t0,

pi(s) = φi(s), i ∈ Nm
1 , s ∈ [t0 − ι, t0],

(11)

where pi(t) ∈ R is the state variable of the ith neuron of (11), and ui(t) is a control input.
Let ri(t) = pi(t) − qi(t) and r(t) = (r1(t), r2(t), · · · , rm(t))T. Then, we obtain the

following error system

c
t0

Dα
t ri(t) = −ciri(t) +

m

∑
j=1

wij

(
f j(pj(t))− f j(qj(t))

)
+

m

∑
j=1

wι
ij

(
f j(pj(t− ι))− f j(qj(t− ι))

)
+ ui(t), t ≥ t0, (12)
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where the adaptive controller is given by
ui(t) =

 −σi(t)ri(t)− ξ
ri(t)
|ri(t)|
|ri(t− ι)| − η

ri(t)
|ri(t)|

, |ri(t)| 6= 0,

0, |ri(t)| = 0,
c
t0

Dα
t σi(t) = ρi|ri(t)|, i ∈ Nm

1 ,

(13)

where ξ, η, ρi are tunable positive constants, and σi(t) is the time-varying feedback strength.

Definition 5 ([36]). System (10) is quasi-synchronized with system (11) if there exists a small
error bound ε > 0 and a compact set M = {r(t) ∈ Rn | ‖r(t)‖ ≤ ε} such that when t→ ∞, the
error signal r(t) converges into M.

Assumption 1 ([41]). For any r1, r2 ∈ R, and i ∈ Nm
1 , there exists a positive real number li satisfying

| fi(r1)− fi(r2)| ≤ li|r1 − r2|. (14)

3. Main Results

In [41], for the inequality c
t0

Dα
t (h1(t) + h2(t)) ≤ −ωh1(t) + κ, where α ∈ (0, 1),

ω ∈ (0,+∞), and κ ∈ (−∞, 0], the finite-time dynamic behaviors of h1(t) were established
to study the finite-time synchronization of fractional-order delayed systems. Naturally, one
may consider whether this inequality can also be used to investigate the case of infinite
time. The purpose of the following Theorem 1 is to address this problem.

Theorem 1. Let α ∈ (0, 1), ω ∈ (0,+∞), and κ ∈ (−∞, 0]. Suppose that h1 and h2 are two
non-negative differentiable functions satisfying h1(t0) + h2(t0) +

κ
ω > 0 and

c
t0

Dα
t (h1(t) + h2(t)) ≤ −ωh1(t) + κ, t ≥ t0. (15)

Then, we obtain

h1(t) ≤ h1(t0) + h2(t0) +
κ

ω

(
1− Eα(−ω(t− t0)

α)

)
, t ≥ t0. (16)

Proof. By (15), there exists a non-negative function h(t) satisfying

c
t0

Dα
t (h1(t) + h2(t)) + h(t) = −ωh1(t) + κ. (17)

Then, the following equation holds:

Lt0{c
t0

Dα
t (h1(t) + h2(t))}(s) + Lt0{h(t)}(s) = −ωLt0{h1(t)}(s) +

κ

s
.

Using Lemma 7, we obtain

sα

(
H1(s) + H2(s)

)
− sα−1

(
h1(t0) + h2(t0)

)
+ H(s) = −ωH1(s) +

κ

s
, (18)

where H1(s) = Lt0{h1(t)}(s), H2(s) = Lt0{h2(t)}(s) and H(s) = Lt0{h(t)}(s). Thus,

H1(s) =
sα−1

sα + ω

(
h1(t0) + h2(t0)

)
−
(

1− ω

sα + ω

)
H2(s)−

H(s)
sα + ω

+
s−1

sα + ω
κ. (19)

By the Equation (19) and Lemma 3, we have
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h1(t) = L−1
t0
{H1(s)} =

(
h1(t0) + h2(t0)

)
L−1

t0

{
sα−1

sα + ω

}
−L−1

t0
{H2(s)}+ L−1

t0

{
ω

sα + ω

}
∗ L−1

t0
{H2(s)}

− L−1
t0
{H(s)} ∗ L−1

t0

{
1

sα + ω

}
+ κL−1

t0

{
s−1

sα + ω

}
Lem.4
=

(
h1(t0) + h2(t0)

)
Eα(−ω(t− t0)

α)

− h2(t) +
(

ω(t− t0)
α−1Eα,α(−ω(t− t0)

α)

)
∗ h2(t)

− h(t) ∗
(
(t− t0)

α−1Eα,α(−ω(t− t0)
α)

)
+ κ(t− t0)

αEα,α+1(−ω(t− t0)
α)

Lem.2
=

(
h1(t0) + h2(t0)

)
Eα(−ω(t− t0)

α)

− h2(t) +
(

ω(t− t0)
α−1Eα,α(−ω(t− t0)

α)

)
∗ h2(t)︸ ︷︷ ︸

v1(t)

−h(t) ∗
(
(t− t0)

α−1Eα,α(−ω(t− t0)
α)

)
︸ ︷︷ ︸

v2(t)

+
κ

ω

(
1− Eα(−ω(t− t0)

α)

)
. (20)

Applying (3), we obtain

t0 D−α
t

c
t0

Dα
t (h1(t) + h2(t)) = (h1(t) + h2(t))− (h1(t0) + h2(t0)) ≤ 0.

Also by the non-negativity of the functions h1 and h2, the following inequalities hold:

0 ≤ h2(t) ≤ h1(t) + h2(t) ≤ h1(t0) + h2(t0). (21)

Based on the convolution given in (2), we obtain

v1(t) :=
(

ω(t− t0)
α−1Eα,α(−ω(t− t0)

α)

)
∗ h2(t)

=
∫ t

t0

(
ω(t− ζ)α−1Eα,α(−ω(t− ζ)α)

)
h2(ζ)dζ

(21)
≤
(

h1(t0) + h2(t0)

) ∫ t

t0

ω(t− ζ)α−1Eα,α(−ω(t− ζ)α)dζ

(1)
=

(
h1(t0) + h2(t0)

)(
1− Eα(−ω(t− t0)

α)

)
. (22)

By h(t) ≥ 0 and Eα,α(−ω(t− ζ)α) > 0 given in Lemma 1i,

v2(t) :=− h(t) ∗
(
(t− t0)

α−1Eα,α(−ω(t− t0)
α)

)
=−

∫ t

t0

h(ζ)(t− ζ)α−1Eα,α(−ω(t− ζ)α)dζ ≤ 0. (23)
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Furthermore, by (20), (22), (23), and the non-negativity of h2(t), we have

h1(t) ≤
(

h1(t0) + h2(t0)

)
Eα(−ω(t− t0)

α)

+

(
h1(t0) + h2(t0)

)(
1− Eα(−ω(t− t0)

α)

)
+

κ

ω

(
1− Eα(−ω(t− t0)

α)

)
=h1(t0) + h2(t0) +

κ

ω

(
1− Eα(−ω(t− t0)

α)

)
, t ≥ t0.

Remark 1. Theorem 1 will play a pivotal role in deriving the quasi-synchronization criteria
for systems, specifically in the context of various types of fractional-order complex networks or
neural networks. It serves as a fundamental tool that enables the analysis of quasi-synchronization
phenomena within these interconnected systems.

Remark 2. The inequality c
t0

Dα
t (h1(t) + h2(t)) ≤ −ωh1(t) + κ is employed in both Lemma 10

and Theorem 1 to explore the asymptotic synchronization of fractional-order neural networks.
In Lemma 10, the sign of c

t0
Dα

t (h1(t) + h2(t)) is indefinite, whereas in Theorem 1, the sign is
non-positive.

Remark 3. Let ĥ1(t) := h1(t0) + h2(t0) +
κ
ω

(
1− Eα(−ω(t − t0)

α)
)

for t ≥ t0. Then, the

inequality (16) in Theorem 1 becomes h1(t) ≤ ĥ1(t). By Lemma 1, ĥ1(t) is monotonically non-
increasing for t ≥ t0, ĥ1(t0) = h1(t0) + h2(t0) > 0, and lim

t→∞
ĥ1(t) = h1(t0) + h2(t0) +

κ
ω > 0.

Thus, we obtain ĥ1(t) > 0 for t ≥ t0, which guarantees that the obtained inequality (16) makes sense.

Remark 4. Even though Theorem 1 and Lemma 9 utilize the same Caputo-derivative inequality,
they provide the function estimates on an infinite interval and a finite interval, respectively. In

addition, the inverse Laplace techniques of
(

1− ω
sα+ω

)
H2(s) employed for Theorem 1 and Lemma 9

are different. Notably, the Dirac delta function δ(·) is not used in Theorem 1, resulting in a
simplification of the proof process. Finally, the estimate inequality (16) in Theorem 1 can be used to
study quasi-synchronization of fractional-order systems in Theorem 2.

Remark 5. When κ = 0 in Theorem 1, the obtained inequality (16) will be reduced to

h1(t) ≤ h1(t0) + h2(t0), t ≥ t0, (24)

which can be also given by (21). In this case, the inequality (15) is reduced to the inequality (4) in
Lemma 8.

In addition, as another special case of Theorem 1, let h2(t) ≡ 0, and then we have

Corollary 1. Let α ∈ (0, 1), ω ∈ (0,+∞), and κ ∈ (−∞, 0]. Assume that h1 is a non-negative
differentiable function satisfying h1(t0) +

κ
ω > 0, and

c
t0

Dα
t h1(t) ≤ −ωh1(t) + κ, t ≥ t0. (25)

Then,
h1(t) ≤ h1(t0) +

κ

ω

(
1− Eα(−ω(t− t0)

α)
)

, t ≥ t0. (26)
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Remark 6. The inequality (25) in Corollary 1 can be obtained by the differential inequality (8) in
Lemma 11, where h(t) := h1(t), γ := −ω, and g(t) := κ. Then,

h1(t)
(9)
≤ h1(t0)Eα(−ω(t− t0)

α)− κ

−ω

(
1− Eα(−ω(t− t0)

α)
)

Lem. 1(i)
≤ h1(t0) +

κ

ω

(
1− Eα(−ω(t− t0)

α)
)

, t ≥ t0. (27)

Consequently, the inequality (27) is consistent with (26).

Theorem 2. Following Assumption 1 and applying the adaptive controller (13), system (10) is
quasi-synchronized with system (11) if

W1(t0) + W2(t0) +
κ

ω
> 0, (28)

where W1(t) =
m
∑

i=1
|ri(t)|, W2(t) =

m
∑

i=1

(σi(t)−σ∗)2

2ρi
, κ = −mη,

ω = min
1≤i≤m

{
ci −

m

∑
j=1
|wji|li + σ∗

}
, (29)

and σ∗, ξ are two real numbers satisfying

σ∗ > max
1≤i≤m

{
− ci +

m

∑
j=1
|wji|li

}
, (30)

ξ > max
1≤i≤m

{ m

∑
j=1
|wι

ji|li
}

. (31)

Proof. We construct a Lyapunov function W(t) := W1(t) + W2(t). Then,

c
t0

Dα
t W(t) = c

t0
Dα

t

( m

∑
i=1
|ri(t)|+

m

∑
i=1

(σi(t)− σ∗)2

2ρi

)
Lem.6
≤

m

∑
i=1

sign(ri(t))c
t0

Dα
t ri(t) +

m

∑
i=1

(σi(t)− σ∗)

ρi

c
t0

Dα
t σi(t)

(12)
=

(13)

m

∑
i=1

sign(ri(t))
{
− ciri(t) +

m

∑
j=1

wij

(
f j(pj(t))− f j(qj(t))

)
+

m

∑
j=1

wι
ij

(
f j(pj(t− ι))− f j(qj(t− ι))

)
− σi(t)ri(t)

− ξ
ri(t)
|ri(t)|

|ri(t− ι)| − η
ri(t)
|ri(t)|

}
+

m

∑
i=1

(σi(t)− σ∗)|ri(t)|

≤
m

∑
i=1

{
− ci|ri(t)|+

m

∑
j=1
|wij|lj|rj(t)|+

m

∑
j=1
|wι

ij|lj|rj(t− ι)|

− σi(t)|ri(t)| − ξ|ri(t− ι)| − η

}
+

m

∑
i=1

(σi(t)− σ∗)|ri(t)|

=
m

∑
i=1

(
− ci +

m

∑
j=1
|wji|li − σ∗

)
|ri(t)| −mη +

m

∑
i=1

(
− ξ +

m

∑
j=1
|wι

ji|li
)
|ri(t− ι)|.
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Also by (29)–(31), and κ = −mη, we have

c
t0

Dα
t W(t) = c

t0
Dα

t (W1(t) + W2(t)) ≤ −ωW1(t) + κ.

Furthermore, applying Theorem 1,

‖r(t)‖ = W1(t)
(16)
≤ W1(t0) + W2(t0) +

κ

ω

(
1− Eα(−ω(t− t0)

α)
)

.

Then, by (28) and lim
t→∞

Eµ(−ω(t− t0)
µ) = 0, there exists a small error bound

ε := W1(t0) + W2(t0) +
κ

ω
> 0

satisfying
‖r(t)‖ ≤ ε, t→ ∞,

which shows that system (10) is quasi-synchronized with system (11) with error bound
W1(t0) + W2(t0) +

κ
ω .

Remark 7. Quasi-synchronization techniques, as utilized in Theorem 2, find applications in various
domains. For instance, they can be employed in traffic networks to optimize traffic flow and alleviate
congestion. By achieving partial synchronization among traffic signals or regulating the behavior
of individual vehicles, overall traffic efficiency can be enhanced. Furthermore, these techniques
can also be utilized in financial networks to analyze and forecast market behaviors. By examining
synchronized patterns or deviations in the interconnections between financial entities, it becomes
feasible to identify systemic risks and make well-informed investment choices.

4. Connections between the Mathematical Treatment and the Numerical Simulation

In this section, we present a modified version of the Adams–Bashforth–Moulton
algorithm [52] specifically designed to solve fractional-order differential equations with
time delay. This modification serves as a theoretical basis for the subsequent numerical
simulation in Section 5.

Consider the following system:{c
t0

Dα
t h(t) = Ψ(t, h(t), h(t− ι)), t ∈ [t0, t0 + S], α ∈ (0, 1),

h(t) = z(t), t ∈ [t0 − ι, t0].
(32)

Fix a uniform grid as follows:{
t0 − Ñd, t0 − (Ñ − 1)d, · · · , t0 − d, t0, t0 + d, · · · , t0 + N̂d

}
,

where Ñ is a fixed integer, d = ι
Ñ

, and N̂ = [ S
d ] is also an integer. For each integer k

satisfying−Ñ ≤ k ≤ N̂, let tk = t0 + kd. Then, for−Ñ ≤ k ≤ 0, hd(tk) is the approximation
to z(tk). In addition, hd(tk − ι) = hd(t0 + kd− Ñd) = hd(tk−Ñ) holds for 0 ≤ k ≤ N̂.

Suppose that the approximation hd(tk) ≈ h(tk) holds for −Ñ ≤ k ≤ N̂. Then, by
Definition 3, (3) and (32), we have

h(tk+1) = z(t0) +
1

Γ(α)

∫ tk+1

t0

(tk+1 − ζ)α−1Ψ(ζ, h(ζ), h(ζ − ι))dζ.
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Furthermore, we utilize the product trapezoidal quadrature method and obtain the
corrector formula as follows:

hd(tk+1) = z(t0) +
dα

Γ(α+2)Ψ(tk+1, hd(tk+1), hd(tk+1 − ι))

+ dα

Γ(α+2)

k
∑

s=0
es,k+1Ψ(ts, hd(ts), hd(ts − ι))

= z(t0) +
dα

Γ(α+2)Ψ(tk+1, hd(tk+1), hd(tk+1−Ñ))

+ dα

Γ(α+2)

k
∑

s=0
es,k+1Ψ(ts, hd(ts), hd(ts−Ñ)),

(33)

where

es,k+1 =


kα+1 − (k− α)(k + 1)α, if s = 0,

(k− s + 2)α+1 + (k− s)α+1 − 2(k− s + 1)α+1, if 1 ≤ s ≤ k,

1, if s = k + 1.

Because the Equation (33) contains the unknown term hd(tk+1) on both sides and
involves the nonlinear function Ψ, it is not possible to find an explicit solution for hd(tk+1).
To address this issue, we introduce a preliminary approximation called a predictor, denoted
as hp

d(tk+1). We then modify (33) by substituting hp
d(tk+1) for hd(tk+1) on the right-hand

side, resulting in the following redefined equation:

hd(tk+1) =z(t0) +
dα

Γ(α + 2)
Ψ(tk+1, hp

d(tk+1), hd(tk+1−Ñ))

+
dα

Γ(α + 2)

k

∑
s=0

es,k+1Ψ(ts, hd(ts), hd(ts−Ñ)). (34)

In addition, in order to compute the predictor term, we apply the product rectangle
rule in (34). Then, we have

hp
d(tk+1) = z(t0) +

1
Γ(α)

k

∑
s=0

fs,k+1Ψ(ts, hd(ts), hd(ts − ι))

= z(t0) +
1

Γ(α)

k

∑
s=0

fs,k+1Ψ(ts, hd(ts), hd(ts−Ñ)),

where fs,k+1 = dα

α ((k + 1− s)α − (k− s)α).
In this method, the error can be expressed as

max
−Ñ≤k≤N̂

|h(tk)− hd(tk)| = O(dm),

where m = min{2, 1 + α}.

5. Numerical Simulation

To demonstrate the practical applicability of the key results, we provide a numerical
illustration as follows.

Example 1. Suppose that the parameters in the systems (10) and (11) are given: α = 0.8,

f j(x) = tanh(x), c1 = 0.3, c2 = 0.2, ι = 0.3, W = (wij)2×2 =

(
−1.4 0.3

0.9 − 1.5

)
, W ι =

(wι
ij)2×2 =

(
−2.6 − 0.2
−0.4 − 1.6

)
, I =

(
0
0

)
, ϕ(t) =

(
0.4
−0.3

)
, φ(t) =

(
−0.2
0.4

)
, σ(t0) =

(
1.9
2.8

)
.

It is evident that Assumption 1 holds for l1 = l2 = 1. Then, we let t0 = 0, σ∗ = 2.1,
ξ = 3.1, η = 0.075, ρi = 1, i = 1, 2 to demonstrate the correctness of Theorem 2. By performing
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straightforward calculations, we obtain ω = 0.1, κ = −0.15, W1(t0) = 1.3, W2(t0) = 0.2650,
and ε = W1(t0) + W2(t0) +

κ
ω = 0.065.

The time-varying feedback strengths σi(t) are depicted in Figure 1. The evolution of synchroniza-
tion error is presented in Figure 2. Furthermore, Figure 3 displays the magnitude of the synchronization
error, which serves as further validation for the effectiveness of Theorem 2.

0 10 20 30 40 50 60 70 80 90 100

t(s)

1.8

2

2.2

2.4

2.6

2.8

3
1
, 

2

1

2

Figure 1. The evolution of the feedback strength σ1 and σ2.
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Figure 2. Synchronization errors between the systems (10) and (11).
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Figure 3. The norm of synchronization error between the systems (10) and (11).

6. Conclusions

The quasi-synchronization for a class of fractional-order delayed neural networks has
been studied in this paper. To obtain the quasi-synchronization criterion, the properties of
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the Laplace transform, the Caputo derivative, and the Mittag–Leffler function have been
employed. In addition, a new fractional-order differential inequality has been constructed.
Finally, a numerical example has been provided to demonstrate the validity of the proposed
results. It is worth noting that when simulating continuous-time neural networks on
a computer, it is necessary to discretize them to generate corresponding discrete-time
networks. However, this discretization process may not fully preserve the dynamics
exhibited by the original continuous networks. Therefore, future research will focus on
discrete-time fractional order neural networks based on q-exponential and q-calculus.
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