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Abstract: Fractional and high-order PDEs have become prominent in theory and in the modeling of
many phenomena. In this article, we study the temporal fractal nature for fourth-order time-fractional
stochastic partial integro-differential equations (TFSPIDEs) and their gradients, which are driven in
one-to-three dimensional spaces by space–time white noise. By using the underlying explicit kernels,
we prove the exact global temporal continuity moduli and temporal laws of the iterated logarithm
for the TFSPIDEs and their gradients, as well as prove that the sets of temporal fast points (where
the remarkable oscillation of the TFSPIDEs and their gradients happen infinitely often) are random
fractals. In addition, we evaluate their Hausdorff dimensions and their hitting probabilities. It has been
confirmed that these points of the TFSPIDEs and their gradients, in time, are most likely one everywhere,
and are dense with the power of the continuum. Moreover, their hitting probabilities are determined
by the target set B’s packing dimension dimp(B). On the one hand, this work reinforces the temporal
moduli of the continuity and temporal LILs obtained in relevant literature, which were achieved by
obtaining the exact values of their normalized constants; on the other hand, this work obtains the size of
the set of fast points, as well as a potential theory of TFSPIDEs and their gradients.

Keywords: TFSPIDEs; Brownian-time processes; space–time white noise; temporal fractal nature;
hitting probabilities; Hölder regularity

1. Introduction

Fractional and higher-order evolution equations have been used as (stochastic) mod-
els in mathematical finance, fluid dynamics, turbulence, and mathematical physics by
numerous authors in recent years (see, e.g., [1–3]). Time-fractional stochastic partial integro-
differential equations (TFSPIDEs) are related to diffusion or slow diffusion in materials
with memory. (For connected deterministic PDEs, see [4–6]; for connected stochastic PDEs,
see [7,8]; and, for the associated stochastic integral equations (SIEs), see [9–11].)

Expanded upon by [11], Brownian-time processes (BTP) provide the foundation for
the deterministic version of the TFSPIDEs. The precise dimensions and hitting probabilities
for the sets of fast points, in time, for these important class of stochastic equations are
obtained in this article as follows: C

∂
β
t Uβ

=
1
2

∆Uβ + I1−β
t

(∂d+1W
∂t∂x

)
, (t, x) ∈ R̊+ ×Rd;

Uβ(0, x) = u0(x), x ∈ Rd,
(1)

where ∂d+1W/∂t∂x is the space–time white noise corresponding to the real-valued Brow-
nian sheet W on R+ × Rd (d = 1, 2, 3); ∆ is the d-dimensional Laplacian operator; the
time-fractional derivative of order β, C

∂
β
t
, is the Caputo fractional operator

C
∂

β
t f (t)

:=


1

Γ(1− β)

∫ t

0

f ′(τ)
(t− τ)β

dτ, if 0 < β < 1;

d
dt

f (t), if β = 1,
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and the time-fractional integral of order α; Iα
t , is the Riemann-Liouville fractional integral

Iα
t f :=

1
Γ(α)

∫ t

0

f (τ)
(t− τ)1−α

dτ, for t > 0 and α > 0,

and I0
t = I is the identity operator. Here, it was assumed that the initial data u0 are

deterministic and the Borel measurable, and that there exists a constant 0 < γ ≤ 1 such that

u0 ∈ C2k+1−2,γ
b (Rd;R), for 2k−1 < β−1 ≤ 2k, k ∈ N, (2)

where Cα,γ
b (Rd;R) is the set of α-continuously differentiable functions on Rd, whose α-

derivative is locally Hölder continuous with the exponent γ.
It is clear that the formal (and non-rigorous) equation is Equation (1). In this article,

we work with its rigorous formulation, which is the mild form kernel SIE. Refs. [10–12]
presented and addressed this SIE for the first time. We include them in Section 2 below,
along with some other pertinent information.

Refs. [10,12] obtained the existence, uniqueness, sharp dimension-dependent Lp, and
the Hölder regularity of the linear and non-linear noise versions of (1). The exact uniform
and local continuity moduli for the TFSPIDEs in the time variable t and space variable x
were separately obtained in [13]. Specifically, it was shown, in [13], that the fourth-order
TFSPIDEs and their gradients have exact, spatio-temporal, dimension-dependent, uniform,
and local continuity moduli. In addition to obtaining temporal central limit theorems
for modifications of the quadratic variation of the solution to Equation (1) in time, it was
also investigated in [14] that the solution to Equation (1) in time has infinite quadratic
variation and is not a semimartingale. Ref. [15] obtained the precise, dimension-dependent,
non-differentiability moduli for the TFSPIDEs and their gradients in the time variable t.

Here, we would like to mention the global temporal continuity moduli and the local
temporal continuity moduli at a prescribed time t0 ≥ 0, as well as the laws of iterated
logarithm (LILs) for Uβ(·, x) and ∂xUβ(·, x), which were obtained in [13]. These phenomena
showed the existence of normalized constants for the global temporal continuity moduli
and temporal LILs. But their exact values remain unknown. In this paper, we give the exact
values of these normalized constants by obtaining precise estimations of the second-order
increment moments. For any d ∈ N+, we define Kβ,d and Kβ,0 by

Kβ,d =
4

(2π)d

∫
R

1− cos u
u2−(dβ)/2

du
∫
Rd

1

4 + 4|y|2 cos( βπ
2 ) + |y|4

dy, (3)

and

Kβ,0 =
2
π

∫
R

1− cos u
u2−3β/2 du

∫
R

y2

4 + 4y2 cos( βπ
2 ) + y4

dy. (4)

In this article, we obtain the following exact global temporal continuity moduli and tem-
poral LILs for the TFSPIDE Uβ(t, x) and the gradient process ∂xUβ(t, x). Equations (5) and (7)
below are other forms of the global temporal continuity moduli of the TFSPIDEs and their
gradients, which are slightly different from those obtained in [13].

Theorem 1. (Temporal continuity moduli) Let β ∈ (0, 1/2], x ∈ Rd (d = 1, 2, 3), and u0 ≡ 0 in
(1) be fixed.

(a) (Global temporal continuity modulus and temporal LIL for the TFSPIDEs) for every
compact interval Itime ⊂ R+,

P
{

lim
h→0+

sup
s,t∈Itime,|t−s|<h

φ−1
β,d,h|Uβ(t, x)−Uβ(s, x)| = 1

}
= 1, (5)
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where φβ,d,h = h
2−dβ

4

√
2Kβ,d log(1/h), and for every fixed t ≥ 0

P
{

lim sup
h→0+

sup
s,t∈Itime,|t−s|<h

φ̂−1
β,d,h|Uβ(t, x)−Uβ(s, x)| = 1

}
= 1, (6)

where φ̂β,d,h = h
2−dβ

4

√
2Kβ,d log log(1/h). Here, Kβ,d is given in (3).

(b) (Global temporal continuity modulus and temporal LIL for the TFSPIDE gradients.) Let
d = 1. For every compact interval Itime ⊂ R+,

P
{

lim
h→0+

sup
s,t∈Itime,|t−s|<h

ϕ−1
β,h|∂xUβ(t, x)− ∂xUβ(s, x)| = 1

}
= 1, (7)

where ϕβ,h = h
2−3β

4

√
2Kβ,0 log(1/h), and, for every fixed t ∈ R+,

P
{

lim sup
h→0+

sup
s,t∈Itime,|t−s|<h

ϕ̂−1
β,h|∂xUβ(t, x)− ∂xUβ(s, x)| = 1

}
= 1, (8)

where ϕ̂β,h = h
2−3β

4

√
2Kβ,0 log log(1/h). Here, Kβ,0 is given in (4).

Remark 1. We can infer the following from the aforementioned theorem:

• Equations (5) and (7) are other forms of the global temporal continuity moduli of the TFSPIDEs
and the TFSPIDE gradients, respectively, which are slightly different from those obtained

in [13]. Equation (5) with k(β,d)
8 |t− s|

2−dβ
4
√

2 log(1/|t− s|) taking the place of φβ,d,h, and

Equation (7) with k12|t− s|
2−3β

4
√

log(1/|t− s|) taking the place of ϕβ,h were established

in [13], where k(β,d)
8 > 0 and k12 > 0 were understood as dimension-dependent constants,

i.e., independent of x (whose exact values were unknown). Here, in Equations (5) and (7), we
give the exact constants for the global temporal continuity moduli of the TFSPIDEs and the
TFSPIDE gradients. Moreover, by using Lemma 5 below, we can obtain k(β,d)

8 =
√

2Kβ,d and

k12 =
√

2Kβ,0, as was obtained in [13]. In this sense, the results of this paper reinforce those
in [13].

• Equation (6) with k(β,d)
9 h

2−dβ
4
√

log log(1/h) taking the place of φ̂β,d,h, and Equation (8) with

k13h
2−3β

4
√

log log(1/h) taking the place of ϕ̂β,h were established in [13], where k(β,d)
9 > 0

and k13 > 0 were understood as dimension-dependent constants, i.e., independent of x (whose
exact values were unknown). Here, in Equations (6) and (8), we give the exact constants for
the temporal LILs of the TFSPIDEs and the TFSPIDE gradients. Moreover, by using Lemma 5
below, we can obtain k(β,d)

9 =
√

2Kβ,d and k13 =
√

2Kβ,0, as was obtained in [13]. In this
sense, the results of this paper reinforce those in [13].

• Equation (5) gives the magnitude of the global maximal oscillation of the TFSPIDE solution
Uβ(·, x) over the compact rectangle Itime, which is φβ,d,h. Equation (7) gives the magnitude of
the global maximal oscillation of the TFSPIDE gradient solution ∂xUβ(·, x) over the compact
rectangle Itime, which is ϕβ,h.

• Equation (6) gives the magnitude of the local oscillation of the TFSPIDE solution Uβ(·, x) at a
prescribed time t0 ≥ 0 is φ̂β,d,h. Equation (8) gives the magnitude of the local oscillation of the
TFSPIDE gradient solution ∂xUβ(·, x) at a prescribed time t0 ≥ 0 is ϕ̂β,h.

• It is interesting to compare Equations (5) and (6). The latter one states that, at some given
point, the LIL of Uβ(·, x) for any fixed x is not more than φ̂β,d,h. On the other hand, the former
tells us that the global continuity modulus of Uβ(·, x) can be much larger, namely φβ,d,h.
Similarly, by Equations (7) and (8), the LIL of ∂xUβ(·, x) for every fixed x is less than ϕ̂β,h.
On the other hand, the continuity modulus of ∂xUβ(·, x) can be much larger, namely ϕβ,h.
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• With Equation (6) and Fubini’s theorem, we have the random time set at

Sβ,d,x,+ :=
{

t ∈ [0, 1] : lim sup
h→0+

φ̂−1
β,d,h|Uβ(t + h, x)−Uβ(t, x)| > 1

}
,

which has a Lebesgue measurement of zero with a probability of one. Nevertheless, Sβ,d,x,+ is
not null. It is almost certain that the set of t that satisfies the stronger growth criterion (9)
below is dense everywhere with the power of the continuum. There are similar properties for
the TFSPIDE gradient ∂xUβ(·, x).

Fix x ∈ Rd. For every λ ∈ (0, 1], the set of temporal λ-fast points for the fourth-order
TFSPIDE are defined by

Sβ,d,x(λ) :=
{

t ∈ [0, 1] : lim sup
h→0+

φβ,d,h|Uβ(t + h, x)−Uβ(t, x)| ≥ λ
}

, (9)

where φβ,d,h is given in (5). For every χ ∈ (0, 1], the set of the temporal χ-fast points for the
fourth-order TFSPIDE gradients are defined by

Sβ,x(χ) :=
{

t ∈ [0, 1] : lim sup
h→0+

ϕβ,h|∂xUβ(t + h, x)− ∂xUβ(t, x)| ≥ χ
}

, (10)

where ϕβ,h is given in (7).
The Sβ,d,x(λ) are the sets of t, where the temporal LIL of TFSPIDEs fail, and the Sβ,x(χ)

are the sets of t, where the temporal LIL of TFSPIDE gradients fail. This kind of set is
usually called the fast point set or exceptional time set. It is interesting to obtain information
about the sizes of Sβ,d,x(λ) and Sβ,x(χ). We usually do this by considering their Hausdorff
measures. This problem was first introduced in Orey and Taylor [16] on the fast set for
Brownian motion. After this famous paper, there were several papers that studied this
problem for general Gaussian processes. Among other things, the fractal nature of the fast
set of empirical processes with independent increments was studied in [17]. The fractal
nature of the fast point set of Lp-valued Gaussian processes was studied in [18]. The limsup
fractal nature of the fast point sets of Gaussian processes was studied in [19]. The solutions
and gradient solutions for TFSPIDEs are spatio-temporal Gaussian random fields. It is,
therefore, natural to study this type of fractal nature (in the sense of [16,19]). This paper is
devoted to establishing the fractal nature and hitting probabilities for the sets of temporal
fast points for TFSPIDE Uβ(t, x) and the gradient process ∂xUβ(t, x).

Recall (see, e.g., [20,21]) that the Hausdorff dimension dim B of a subset B of [0, 1] is
defined by

dim(B) = inf{α > 0 : µg(B) = 0 for g(s) = sα}.

The Hausdorff g-measure of a subset B of a real line for any continuous increasing function
g : [0, 1]→ [0,+∞] with g(0) = 0 is defined as follows:

µg(B) = lim
δ→0

[
inf

B⊆∪Ci
d(Ci)<δ

∑ g(d(Ci))
]
, (11)

where the infimum in (11) extends over all countable covers of B by sets Ci of diameter
d(Ci) < δ. Keep in mind that, while µg(B) simplifies to an Lebesgue outer measure if
g(s) = s, using a distinct g creates a hierarchy of measures. By being familiar with the class
of measure functions g for which µg(B) = 0, one may determine the metric features of
B. The purpose of this article is to show the following two theorems. In the first one, we
show that Sβ,d,x(λ) and Sβ,x(χ) are random fractals, and we also evaluate their Hausdorff
dimensions. In the second one, we show that hitting probabilities are determined by the
the target set B’s packing dimension dimP(B) rather than its Hausdorff dimension dim(B).
For a definition of packing dimension, see [22].
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Theorem 2. (Fractal nature for the sets of the temporal fast points.) Let β ∈ (0, 1/2], x ∈ Rd

(d = 1, 2, 3) and u0 ≡ 0 in (1) be fixed.
(a) Suppose d ∈ {1, 2, 3}. For every λ ∈ [0, 1] with a probability of one, we have

dim(Sβ,d,x(λ)) = 1− λ2. (12)

(b) Suppose d = 1. For every χ ∈ [0, 1] with a probability of one, we have

dim(Sβ,x(χ)) = 1− χ2. (13)

The following theorem demonstrates that the appropriate index through which to
determine whether sets overlap Sβ,d,x(λ) and Sβ,x(χ) is the packing dimension.

Theorem 3. (Hitting probabilities for the sets of temporal fast points.) Let β ∈ (0, 1/2], x ∈ Rd

(d = 1, 2, 3) and u0 ≡ 0 in (1) be fixed.
(a) Suppose d ∈ {1, 2, 3}. For every λ ∈ [0, 1] and every analytic set B ⊂ R+, we have

P{Sβ,d,x(λ) ∩ B 6= ∅} =
{

1, if dimP(B) > λ2,
0, if dimP(B) < λ2.

(14)

(b) Suppose d = 1. For every χ ∈ [0, 1] and every analytic set B ⊂ R+, we have

P{Sβ,x(χ) ∩ B 6= ∅} =
{

1, if dimP(B) > χ2,
0, if dimP(B) < χ2.

(15)

Remark 2. It is easy to see that Equations (14) and (15) are respectively equivalent for every
analytic set B ⊂ R+. As such, we have

P
{

sup
t∈B

lim sup
h→0+

φβ,d,h|Uβ(t + h, x)−Uβ(t, x)| = (dimP(B))1/2
}
= 1, (16)

and
P
{

sup
t∈B

lim sup
h→0+

ϕβ,h|∂xUβ(t + h, x)− ∂xUβ(t, x)| = (dimP(B))1/2
}
= 1. (17)

Thus, in the context of TFSPIDEs and their gradients, Equations (16) and (17) can be understood
as two probabilistic interpretations of the packing dimension of an analytic set B ⊂ R+.

Remark 3. We obtain the following probabilistic interpretations of the upper and lower Minkowski
dimensions of B, which are denoted by dimM (B) and dim

M
(B), respectively. This was achieved by

reversing the order of sup and lim sup in Equation (16); these definitions are provided in [22].

P
{

lim sup
h→0+

sup
t∈B

φβ,d,h|Uβ(t + h, x)−Uβ(t, x)| = (dimM (B))1/2
}
= 1, (18)

P
{

lim inf
h→0+

sup
t∈B

φβ,d,h|Uβ(t + h, x)−Uβ(t, x)| = (dim
M
(B))1/2

}
= 1. (19)

According to Equations (18) and (19), there are also probabilistic interpretations of the upper and
lower Minkowski dimensions of B.

An undefined positive, finite constant, c, will be used throughout this work; however,
it might not always be the same. ci,1, ci,2, . . . were found to be more particularly positive
and finite constants (independent of x), as shown in Section 1.

The remainder of the article is organized as follows. In Section 2, using the time-
fractional SPIDEs kernel SIE formulation, the rigorous TFSPIDE kernel SIE (mild) for-
mulation and temporal spectral density for TFSPIDEs and their gradients are discussed.
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Estimations on the second-order moments of temporal increments of the fourth-order
TFSPIDEs and their gradients are also obtained. In Section 3, we prove Theorem 1 and
thereby establish the exact temporal continuity moduli for the TFSPIDEs and their gradi-
ents; in addition, we prove Theorem 2 and thereby obtain Hausdorff dimensions of the
sets of temporal fast points for the TFSPIDEs and their gradients. Furthermore, we prove
Theorem 3 and thereby obtain the hitting probabilities of the sets of temporal fast points for
the TFSPIDEs and their gradients. In Section 4, the results are summarized and discussed.

2. Preliminaries
2.1. Rigorous Kernel SIE Formulations

We define the rigorous mild SIE formulations of the TFSPIDEs, as in [13], using the
density of an inverse stable Lévy time Brownian motion. According to [10–12], this density
is the time-fractional PDE’s solution as follows: C

∂
β
t Uβ

=
1
2

∆Uβ, (t, x) ∈ R+ ×Rd;

Uβ(0, x) = δ(x), x ∈ Rd,
(20)

where δ(x) is the Dirac function. This solution is the transition density of a d-dimensional
β-inverse-stable-Lévy-time Brownian motion (β-ISLTBM). It starts from x ∈ Rd, Bx

Aβ
:=

{Bx(Aβ(t)), t ≥ 0}, where the inverse stable Lévy motion Aβ of index β ∈ (0, 1/2] serves as
the time clock for an independent d-dimensional Brownian motion Bx (see [10,23]), which
is given by the following:

H(β,d)
t;x,y =

∫ +∞

0
HBMd

s;x,y H
Aβ

t;0,sds, (21)

where HBMd
s;x,y = −|x−y|2/2s

(2πs)d/2 and H
Aβ

t;0,s = tβ−1s−1−1/βgβ(ts−1/β). Here, the density of a stable

subordinator is denoted by gβ(u), and its Laplace transform is e−sβ
. When β = 1/2, the

density of the Brownian-time Brownian motion (BTBM) is represented by the kernel H(β,d)
t;x ,

as described in [9]; for β ∈ {1/2k; k ∈ N}, the density of the k-iterated BTBM is represented
by the kernel H(β,d)

t;x , as explained in [10,11].
Let b : R→ R be Borel measurable. The non-linear drift diffusion TFSPIDE is thus C

∂
β
t Uβ

=
1
2

∆Uβ + I1−β
t

[
b(Uβ) + a(Uβ)

∂d+1W
∂t∂x

]
, (t, x) ∈ R+ ×Rd;

Uβ(0, x) = u0(x), x ∈ Rd.
(22)

Then, the rigorous TFSPIDE kernel SIE formulation is the SIE (see Equation (1.11), and
Definition 1.1 in [12], as well as p. 530 in [9]), is as follows:

U(t, x) =
∫
Rd

H(β,d)
t;x,y u0(y)dy∫

Rd

∫ t

0
H(β,d)

t−s;x,y[b(U(s, y))dsdy + a(U(s, y))W(ds× dy)].
(23)

Naturally, this yields the mild formulation of (1.1), which is when a ≡ 1 and b ≡ 0 are set
in (22).

The spatial Fourier transform of the β-time-fractional (including the β = 1/2 BTBM
example) kernels from Lemma 2.1 in [13] is cited to conclude this section.

Lemma 1 (Transforms of a spatial Fourier type). Let 0 < β < 1 and H(β,d)
t;x,y be the β-time-

fractional kernel. The β-time-fractional kernel’s spatial Fourier transform is provided by

Ĥ(β,d)
t;x,ξ = (2π)−

d
2 Eβ

(
− |ξ|

2

2
tβ
)

, (24)
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where

Eβ(u) =
+∞

∑
k=0

uk

Γ(1 + βk)
, (25)

is the well-known function of Mittag–Leffler. The spatial Fourier transform in its symmetric form is
applied here as follows: f̂ (ξ) = (2π)−d/2

∫
Rd f (u) e−iξ·udu.

2.2. Estimations on the Variances of Temporal Increments of TFSPIDEs and Their Gradients

For the purposes of this subsection, let x ∈ Rd be an arbitrary, fixed variable. The
auxiliary Gaussian random field {Xβ(t, x), t ∈ R+, x ∈ Rd} is defined by the following:

Xβ(t, x) =
∫
Rd

∫
R

(
H(β,d)

(t−r)+ ;x,y −H(β,d)
(−r)+ ;x,y

)
W(dr× dy), (26)

where z+ = max{z, 0} for any z ∈ R. Then, the TFSPIDE solution Uβ has a decomposition
as Uβ(t, x) = Xβ(t, x)−Yβ(t, x), where

Yβ(t, x) =
∫
Rd

∫
R−

(
H(β,d)

(t−r)+ ;x,y −H(β,d)
(−r)+ ;x,y

)
W(dr× dy). (27)

This decomposition idea was first introduced in the second-order SPDE setting in [23]. It
has since been implemented in the second-order heat SPDE setting in [24,25].

Using the previously mentioned decomposition of Uβ, we first calculated the exact
variance for the temporal increments of the auxiliary process Xβ. Then, we transferred
these to our TFSPIDE solution Uβ in terms of Xβ and a smooth process of Yβ. The outcome
that followed was crucial.

Lemma 2. Let β ∈ (0, 1/2], x ∈ Rd (d = 1, 2, 3) and u0 ≡ 0 in (1) be fixed. Then, for any
s, t ∈ (0, T] such that t/s is sufficiently close to 1, we have

E[(Uβ(t, x)−Uβ(s, x))2] = (Kβ,d + o(1))|t− s|
2−dβ

2 , (28)

where Kβ,d is given in (3).

Proof. With Theorem 4.1 in [13], we have

E[|Xβ(t, x)− Xβ(s, x)|2] = 2
∫
R
(1− cos((t− s)τ)) fβ(τ)dτ, (29)

where
fβ(τ) = (2π)−d 1

|τ|2−((dβ))/2

∫
Rd

1

1 + |ξ|2 cos(πβ
2 ) + 1

4 |ξ|4
dξ.

With the change in variable τ 7→ u : u = (t− s)τ, (29) yields

E[|Xβ(t, x)− Xβ(s, x)|2] = Kβ,d|t− s|1−
dβ
2 . (30)

Let x ∈ Rd be fixed. For each 0 < s < t, we can obtain the following by using
Parseval’s identity to the integral in y:

E[|Yβ(t, x)−Yβ(s, x)|2] =
∫
Rd

∫
R

∣∣∣H(β,d)
t−r;x,yI{0>r} −H(β,d)

s−r;x,yI{0>r}

∣∣∣2drdy

=
∫
R

∫
Rd

∣∣∣Ĥ(β,d)
t−r;x,ξI{0>r} − Ĥ(β,d)

s−r;x,ξI{0>r}

∣∣∣2dξdr.
(31)

Note that

Ĥ(β,d)
t−r;x,ξ = (2π)−

d
2 Eβ

(
− |ξ|

2(t− r)β

2

)
. (32)
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Through the corollary on page 23 in [26], we have

∫
Rd

f
( d

∑
i=1

x2
i

)
dx1 · · · dxd =

πd/2

Γ(d/2)

∫ +∞

0
yd/2−1 f (y)dy, (33)

Through Equations (32) and (33), Equation (31) becomes

E[|Yβ(t, x)−Yβ(s, x)|2]

=
∫
Rd

∫
R

∣∣∣Eβ

(
− |ξ|

2

2 (t− r)β
)
I{0>r} − Eβ

(
− |ξ|

2

2 (s− r)β
)
I{0>r}

∣∣∣2
(2π)d drdξ

= (2π)−d πd/2

Γ(d/2)

∫ +∞

0
yd/2−1

∫ 0

−∞

∣∣∣Eβ

(
− y

2
(t− r)β

)
− Eβ

(
− y

2
(s− r)β

)∣∣∣2drdy.

(34)

It follows from (7.7) in [27] that

Eβ(−x) =
sin(βπ)

π

∫ +∞

0
aβ(ζ)e−ζx1/β

dζ, (35)

where

aβ(ζ) =
ζβ

1 + 2ζβ cos(βπ) + ζ2β
.

Thus, Equation (34) yields

E[|Yβ(t, x)−Yβ(s, x)|2]

=
1

2dΓ(d/2)
sin2(βπ)

π2+d/2

∫ +∞

0
yd/2−1

∫ 0

−∞

∣∣∣ ∫ +∞

0
aβ(ζ)(e−ζ(

y
2 )

1/β(t−r) − e−ζ(
y
2 )

1/β(s−r))dζ
∣∣∣2drdy

≤ 1
2dΓ(d/2)

sin2(βπ)

π2+d/2

∫ +∞

0
yd/2−1

∫ 0

−∞

∣∣∣ ∫ +∞

0
aβ(ζ)e−ζ(

y
2 )

1/β(s−r)
∣∣∣e−ζ(

y
2 )

1/β(t−s) − 1
∣∣∣dζ
∣∣∣2drdy.

(36)

Since, for any u ≥ 0, |1− e−u| ≤ 2u, Equation (36) yields

E[|Yβ(t, x)−Yβ(s, x)|2]

≤ 1
2d+2/β−2Γ(d/2)

sin2(βπ)

πd/2 (t− s)2
∫ +∞

0
yd/2+2/β−1

∫ 0

−∞

∣∣∣ ∫ +∞

0
aβ(ζ)e−ζ(

y
2 )

1/β(s−r)dζ
∣∣∣2drdy.

(37)

By changing the variables r 7→ u : u = ( y
2 )

1/βr and y 7→ v : v = ( y
2 )

1/βs, (37) yields

E[|Yβ(t, x)−Yβ(s, x)|2]

≤ 2d/2+2β

(2π)d
πd/2

Γ(d/2)
sin2(βπ)

π2
(t− s)2

s(dβ)/2+1

∫ +∞

0
v(dβ)/2

∫ +∞

0

∣∣∣ ∫ +∞

0
ζaβ(ζ)e−ζve−ζudζ

∣∣∣2dudv

≤
c2,1

s(dβ)/2+1
(t− s)2,

(38)

since the integral above is finite for 0 < β ≤ 1/2. Furthermore, as Uβ and Yβ are indepen-
dent, we have

E[|Xβ(t, x)− Xβ(s, x)|2] = E[|Uβ(t, x)−Uβ(s, x)|2] +E[|Yβ(t, x)−Yβ(s, x)|2]. (39)

Note that s−((dβ)/2+1)(t− s)2 = (t− s)1−(dβ)/2(t/s− 1)1+(dβ)/2. Combining (30), (38) and
(39), we also obtain the following for any 0 < s < t:

|E[(Uβ(t, x)−Uβ(s, x))2]−Kβ,d(t− s)1−(dβ)/2| ≤ c2,2(t− s)1−(dβ)/2(t/s− 1)1+(dβ)/2. (40)

This yields (28) and completes the proof.

We also need the following estimation on the variances of temporal increments of the
TFSPIDE gradient process ∂xUβ(·, x).
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Lemma 3. Let β ∈ (0, 1/2], x ∈ Rd (d = 1, 2, 3) and u0 ≡ 0 in (1) be fixed. Then, for all
s, t ∈ (0, T], such that t/s is sufficiently close to 1, we have

E[(∂xUβ(t, x)− ∂xUβ(s, x))2] = (Kβ,0 + o(1))|t− s|
2−3β

2 , (41)

where Kβ,0 is given in (4).

Proof. Through (4.40) in [13], we have

E[|∂xXβ(t, x)− ∂xXβ(s, x)|2] = 2
∫
R
(1− cos((t− s)τ)) fβ(τ)dτ, (42)

where

fβ(τ) = (2π)−1|τ|−2+ 3β
2

∫
R

ξ2

1 + ξ2 cos(πβ
2 ) + 1

4 ξ4
dξ.

Via a change in the variables to the integral in τ, (42) yields

E[|∂xXβ(t, x)− ∂xXβ(s, x)|2] = Kβ,0|t− s|1−
3β
2 . (43)

Let x ∈ Rd be fixed. For each 0 < s < t, we obtain the following by using Parseval’s
identity to the integral in y:

E[|∂xYβ(t, x)− ∂xYβ(s, x)|2] =
∫
Rd

∫
R

∣∣∣∂xH
(β,1)
t−r;x,yI{0>r} − ∂xH

(β,1)
s−r;x,yI{0>r}

∣∣∣2drdy

=
∫
R

∫
Rd

ξ2
∣∣∣Ĥ(β,1)

t−r;x,ξI{0>r} − Ĥ(β,1)
s−r;x,ξI{0>r}

∣∣∣2dξdr.
(44)

Following the same route as the proof of (38), via (44), we have

E[|∂xYβ(t, x)− ∂xYβ(s, x)|2] ≤
c2,3

s3β/2+1 (t− s)2. (45)

Thus, with (43) and (45), similar to the proof of (40), we obtain (41). This completes
the proof.

3. Results
3.1. Temporal Moduli of Continuity

We prove Theorem 1 in this subsection, thus establishing the temporal moduli of
continuity for the TFSPIDEs, as well as their gradients, in the process. The following precise
large deviation estimates for the TFSPIDEs and their gradients are necessary for our results.

Lemma 4. Let β ∈ (0, 1/2], x ∈ Rd (d = 1, 2, 3) and u0 ≡ 0 in (1) be fixed.
(a) Suppose d ∈ {1, 2, 3}. Then, for any t, h ∈ R̊+, such that h/t is sufficiently close to 0,

we have
lim

u→+∞
u−2 logP

(
|Uβ(t + h, x)−Uβ(t, x)| ≥ uK1/2

β,d h
2−dβ

4

)
= −1

2
. (46)

(b) Suppose d = 1. Then, for any t, h ∈ R̊+, such that h/t is sufficiently close to 0, we have

lim
u→+∞

u−2 logP
(
|∂xUβ(t + h, x)− ∂xUβ(t, x)| ≥ uK1/2

β,0 h
2−3β

4

)
= −1

2
. (47)

Proof. We only show (46) because the proof of (47), which is similar to that of (46). Since
h/t is sufficiently close to 0, via Lemma 2, we have E[(Uβ(t + h, x)−Uβ(t, x))2] = (Kβ,d +

o(1))h1− dβ
2 . Thus, via a well-known estimation (cf., e.g., [28] (p. 23)), we have

1√
2π

( 1
x
− 1

x3

)
e−x2/2 ≤ 1−Φ(x) ≤ 1√

2πx
e−x2/2, ∀x > 0, (48)
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in which we obtain (46) immediately. The proof is thus completed.

We needed the following Fernique-type inequality for the TFSPIDEs and their gradi-
ents as it is required in the proof.

Lemma 5. Let β ∈ (0, 1/2], x ∈ Rd (d = 1, 2, 3) and u0 ≡ 0 in (1) be fixed.
(a) Suppose d ∈ {1, 2, 3}. Then, for any ε > 0, there exist positive and finite constants, i.e.,

independent of x, and h0 = h0(ε) and c = c(ε) are such that, for any compact interval Itime ⊂ R+,
0 < h < h0 and u > 0, we have

P
(

sup
s,t∈Itime,|t−s|<h

|Uβ(t, x)−Uβ(s, x)| ≥ uK1/2
β,d h

2−dβ
4

)
≤ c

h
e−

u2
2+ε . (49)

(b) Suppose d = 1. Then, for any ε > 0, there exist positive and finite constants, i.e.,
independent of x, and h0 = h0(ε) and c = c(ε) are such that, for any compact interval Itime ⊂ R+,
0 < h < h0 and u > 0, we have

P
(

sup
s,t∈Itime,|t−s|<h

|∂xUβ(t, x)− ∂xUβ(s, x)| ≥ uK1/2
β,0 h

2−3β
4

)
≤ c

h
e−

u2
2+ε . (50)

Proof. By using (46) and (47), as well as by following the same route as the proof of
Proposition 3.3 in [29], we obtain (49) and (50), respectively. This completes the proof.

Now, we can complete the Proof of Theorem 1.

Proof of Theorem 1. By making use of (49) and (50), as well as by following the same route
as the proof of Theorems 1.4 and 1.7 in [13], we obtain (5)–(8). This completes the proof.

3.2. Hausdorff Dimensions for the Sets of Temporal Fast Points

We prove Theorem 2 in this subsection, thus obtaining Hausdorff dimensions for the
sets of temporal fast points of the TFSPIDEs, as well as their gradients, in the process.

Proof of Theorem 2. We only show Equation (11) because Equation (12) can be proved
similarly. Equation (11). Via Lemma 5 and the following, i.e., the same lines in the proof of
Theorem 2 of [16] (p. 180), we can show that, with a probability of one,

∀λ ∈ [0, 1], dim(Sβ,d,x(λ)) ≤ 1− λ2. (51)

That is, the upper bound of Equation (11) is validated.

We now turn to the proof of the opposite inequality. It suffices to show that, with a
probability of one,

∀λ ∈ [0, 1], dim(Sβ,d,x(λ)) ≥ 1− λ2. (52)

We follow Theorem 1.1 of [18]. Without a loss of generality, we can assume 0 < λ < 1.
For every fixed 0 < λ0 < λ < 1, we show that Sβ,d,x(λ) contains a Cantor-like subset of
dimension of at least η − 2ε, where 0 < ε < η/2 < 1 and η = 1− λ2

0. A sequence of
values for λ0 converging to λ, as well as ε converging to 0, was then used to determine
the outcome. The focus of the proof was on creating this Cantor-like subset, which was
essentially a generalized version of the reasoning presented in the proofs of [16,18].

We state the following lemma that is required in the proof (see [18]).

Lemma 6. Suppose g : [0, 1]→ [0,+∞) is a continuous function with g(0) = 0. Let F ⊂ [0, 1]
be such that F = ∩+∞

m=1Fm, where F1 ⊃ · · · ⊃ Fm · · · for m = 1, 2, . . . , and Fm = ∪Nm
k=1 Im,i with

{Im,i : 1 ≤ i ≤ Nm} being, for each m ≥ 1, a collection of disjoint closed subintervals of [0, 1].
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Then, if there exist two constants δ > 0 and C > 0, such that, for every interval I ⊂ [0, 1] with
|I| ≤ δ, there is a constant m(I), such that, for all m ≥ m(I), we have

Nm(I) =: #{Im,i ⊂ I; 1 ≤ i ≤ Nm} ≤ Cg(|I|)Nm, (53)

we have µg(F) > 0.

Let T be the collection of intervals [s, t] ⊂ [0, 1] such that

Uβ(t, x)−Uβ(s, x) ≥ λφ|t−s|.

The modulus of continuity (5) tells us that

|Uβ(t, x)−Uβ(s, x)| ≤
√

2φ|t−s|, (54)

for all s, t ∈ [0, 1] that have a |s − t| that is small enough. Thus, there is b > 0, which
depends only on λ and λ0 such that, for every small value, we have Itime = [s, t] ⊂ [0, 1],

Uβ(t, x)−Uβ(s, x) ≥ λ0φ|t−s|, (55)

which implies that [v, t] ∈ T for all v ∈ Itime(b) = [s, s + b(t− s)]. For convenience, we
assume that b is the reciprocal of an integer.

Suppose that rm is the reciprocal of an integer, rm+1 < brm, and brm/rm+1 is an integer
for m = 1, 2, . . . Let δ be a positive number such that δ < ε/16. For every m ≥ 1, define
νm = br−δ

m c, $m = b(r−1
m − 1)/νmc+ 1 and

tm,i = iνmrm, i = 0, 1, . . . , $m − 1,

Jm = {[tm,i, tm,i + rm]; i = 0, 1, . . . , $m − 1}.

For every m ≥ 1 and Itime = [tm,i, tm,i + rm] ∈ Jm, define

Λβ,d,x(m, Itime) = γ−1
rm (Uβ(tm,i + rm, x)−Uβ(tm,i, x)),

where γh = K1/2
β,d h

2−dβ
4 . Moreover, we define

Jm,+ = {Itime ∈ Fm; Λβ,x(m, Itime) > λ(2 log(1/rm))
1/2},

Jm,+(b) = {Itime(b) = [s, s + b(t− s)], Itime = [s, t] ∈ Jm,+},
ρm(Jtime) = #{Itime ∈ Jm,+, Itime ⊂ Jtime}, ρm = ρm([0, 1]),

$m(Jtime) = #{Itime ∈ Jm, Itime ⊂ Jtime}, $m = $m([0, 1]),

r1−η(m)
m = P(N(0, 1) > λ(2 log(1/rm))

1/2),

where 0 < η(m)→ η := 1− λ2
0 as m→ +∞.

From (4), we derive that, for any m large enough, Itime = [s, t] ∈ Jm,+ is implied (55).
Then, we have [v, t] ∈ T for any s ∈ Itime(b) ∈ Jm,+(b).

Lemma 7. Let β ∈ (0, 1/2], x ∈ Rd (d = 1, 2, 3) and u0 ≡ 0 in (1) be fixed. Then, there exists a
positive, independent of x, constant c = c(d) > 0, such that, for all Itime = [tm,i, tm,i + rm] ∈ Jm
and Jtime = [tm,j, tm,j + rm] ∈ Jm with Itime ∩ Jtime = ∅, as well as all m ≥ m0 with some
m0 > 0, we have

E[Λβ,d,x(m, Itime)Λβ,d,x(m, Jtime)] ≤ cν−1
m . (56)

Proof. For convenience, we assume that j > i > 0. For brevity, we define Zξ,x(·, ·) with the
increments of the process ξ(·, ·) as follows:

Zξ,x(s, t) = ξ(t, x)− ξ(s, x), t, s ∈ R+, x ∈ Rd.
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It follows from (28) that, for j > i > 0 and large m, we have

E[ZXβ ,x(iνm, iνm + 1)ZXβ ,x(jνm, jνm + 1)]

= E[(ZXβ ,x(jνm, iνm + 1))2]−E[(ZXβ ,x(jνm, iνm))
2]

−E[(ZXβ ,x(jνm + 1, iνm + 1))2] +E[(ZXβ ,x(jνm + 1, iνm))
2]

= Kβ,d(1 + o(1))[(j− i + 1)1− dβ
2 − 2(j− i)1− dβ

2 + (j− i− 1)1− dβ
2 ],

(57)

where Xβ(·, ·) is given in (26). Let f (x) = x1− dβ
2 for x > 0. Then, f ′′(x) < 0 for x > 0. Note

that f (j− i + 1)− f (j− i) = ν−1
m f ′(j− i + θ1) and f (j− i)− f (j− i− 1) = f ′(j− i− θ2),

where θ1, θ2 ∈ [0, 1]. This yields the following for j > i > 0:

(j− i + 1)1− dβ
2 − 2(j− i)1− dβ

2 + (j− i− 1)1− dβ
2

= f ′(j− i + θ1)− f ′(j− i− θ2)

= (θ1 + θ2) f ′′(j− i + θ3)

< 0,

where θ3 ∈ [−1, 1]. As such, together with (57), we have

E[ZXβ ,x(iνm, iνm + 1)ZXβ ,x(jνm, jνm + 1)] < 0. (58)

Similarly to (57),

E[ZYβ ,x(iνm, iνm + 1)ZYβ ,x(jνm, jνm + 1)]

= E[(ZYβ ,x(jνm, iνm + 1))2]−E[(ZYβ ,x(jνm, iνm))
2]

−E[(ZYβ ,x(jνm + 1, iνm + 1))2] +E[(ZYβ ,x(jνm + 1, iνm))
2],

(59)

where Yβ(·, ·) is given in (27). It follows from (36) that, for any t, s ∈ R+, we have

E[(ZYβ ,x(t, s))2]

=
1

2dΓ(d/2)
sin2(βπ)

π2+d/2

∫ +∞

0
yd/2−1

∫ 0

−∞

∣∣∣ ∫ +∞

0
aβ(ζ)Kβ;r,y(ζ, t, s)dζ

∣∣∣2drdy

=
1

2dΓ(d/2)
sin2(βπ)

π2+d/2

∫ +∞

0
yd/2−1

∫ 0

−∞

∫ +∞

0

∫ +∞

0
aβ(ζ1)aβ(ζ2)

×Kβ;r,y(ζ1, t, s)Kβ;r,y(ζ2, t, s)dζ1dζ2drdy,

(60)

where the following notation is used:

Kβ;r,y(ζ, t, s) = e−ζ(
y
2 )

1/β(s−r)
(

e−ζ(
y
2 )

1/β(t−s) − 1
)

.

By some element calculations, we can conclude that, for j > i > 0, we have

Kβ;r,y(ζ1, jνm, iνm + 1)Kβ;r,y(ζ2, jνm, iνm + 1)

−Kβ;r,y(ζ1, jνm, iνm)Kβ;r,y(ζ2, jνm, iνm)

−Kβ;r,y(ζ1, jνm + 1, iνm + 1)Kβ;r,y(ζ2, jνm + 1, iνm + 1)

+Kβ;r,y(ζ1, jνm + 1, iνm)Kβ;r,y(ζ2, jνm + 1, iνm)

(61)
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= er(ζ1+ζ2)(
y
2 )

1/β
(e−(ζ1+ζ2)(

y
2 )

1/β − 1)

× [e−(ζ1+ζ2)(
y
2 )

1/β(jνm−1)(1− e−ζ1(
y
2 )

1/β
)(1− e−ζ2(

y
2 )

1/β
)

+ e−((jνm−1)ζ1+iνmζ2)(
y
2 )

1/β
(1− e−ζ1(

y
2 )

1/β
)(e−ζ2(

y
2 )

1/β(j−i)νm − 1)

+ e−(iνmζ1+(jνm−1)ζ2)(
y
2 )

1/β
(1− e−ζ2(

y
2 )

1/β
)(e−ζ1(

y
2 )

1/β(j−i)νm − 1)]

+ er(ζ1+ζ2)(
y
2 )

1/β
{

e−(ζ1+ζ2)(
y
2 )

1/β(jνm−1)(1− e−ζ1(
y
2 )

1/β
)(1− e−ζ2(

y
2 )

1/β
)

− e−j(ζ1+ζ2)(
y
2 )

1/βνm(1− e−ζ1(
y
2 )

1/β
)(1− e−ζ2(

y
2 )

1/β
)

+ e−((jνm−1)ζ1+iνmζ2)(
y
2 )

1/β
(1− e−ζ1(

y
2 )

1/β
)

× [e−ζ2(
y
2 )

1/β(j−i)νm(1− e−(ζ1+ζ2)(
y
2 )

1/β
) + (e−ζ1(

y
2 )

1/β − 1)]

+ e−(iνmζ1+(jνm−1)ζ2)(
y
2 )

1/β
(1− e−ζ2(

y
2 )

1/β
)

× [e−ζ1(
y
2 )

1/β(j−i)νm(1− e−(ζ1+ζ2)(
y
2 )

1/β
) + (e−ζ2(

y
2 )

1/β − 1)]
}

.

Since for any u ≥ 0, |1− e−u| ≤ 2u, the absolute value of the above equation is less than
the following quantity, for any j > i > 0, we have

48er(ζ1+ζ2)(
y
2 )

1/β
e−(ζ1+ζ2)(

y
2 )

1/β(iνm−1). (62)

Integrating this first in r, we have
∫ 0
−∞ er(ζ1+ζ2)(

y
2 )

1/β
dr = 1

(ζ1+ζ2)(
y
2 )

1/β . Then, noting that

aβ(ζi) ≤ 1
2 cos(βπ)

for all ζi ∈ R+ and i = 1, 2, via the change in variables ζ1 7→ u1 : u1 =

( y
2 )

1/β(iνm − 1)ζ1 and ζ2 7→ u2 : u2 = ( y
2 )

1/β(iνm − 1)ζ2—as well as by integrating r, ζ1
and ζ2 in (62) separately—we can conclude this integration is less that c

νm(
y
2 )

1/β . Thus,

together with (59)–(62), we obtain

|E[ZYβ ,x(iνm, iνm + 1)ZYβ ,x(jνm, jνm + 1)]| ≤ cν−1
m . (63)

Since the Gaussian process {Uβ(t, x), t ≥ 0} is self-similar with the index (2− βd)/4
(see [13] (p. 1591)), we obtain

E[Λβ,d,x(m, Itime)Λβ,d,x(m, Jtime)] = E[ZUβ ,x(iνm, iνm + 1)ZUβ ,x(jνm, jνm + 1)]. (64)

Since Uβ(t, x) = Xβ(t, x) − Yβ(t, x), Uβ(t, x) and Yβ(t, x) are independent for (t, x) ∈
R̊+ ×Rd, Equation (64) becomes

E[Λβ,d,x(m, Itime)Λβ,d,x(m, Jtime)]

= E[ZXβ ,x(iνm, iνm + 1)ZXβ ,x(jνm, jνm + 1)]−E[ZYβ ,x(iνm, iνm + 1)ZYβ ,x(jνm, jνm + 1)].
(65)

With (58), (63) and (65), we obtain (56). The proof is thus completed.

We also need the following three lemmas.

Lemma 8. For any 0 < ζ ≤ 1/2, there exists an integer m0, such that

P(|ρm(Jtime)−E[ρm(Jtime)]| ≥ λE[ρm(Jtime)]) ≤ 2 exp(−ζ(λ− 2ζ)E[ρm(Jtime)]) + r5
m (66)

for all Jtime ⊆ [0, 1], m ≥ m0 and λ > 0.
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Proof. We follow Lemma 2.3 of [18]. For brevity, we denote Zm,i = ZUβ ,x(tm,i, tm,i + rm),
Ym,i = γ−1

rm Zm,i, $m = $m(Jtime), `m = (2 log(1/rm))1/2 and δm = ν−1
m . Note that

ρm(Jtime) =
$m(Jtime)

∑
i=1

I(γ−1
rm Zm,i > λ`m).

Let {ξm, Y′m,i, i = 1, . . . , $m} be independent mean zero Gaussian random variables with
E[ξ2

m] = δm and E[(Y′m,i)
2] = 1 − δm. Then, E[(ξm + Y′m,i)

2] = E[(Ym,i)
2] = 1 and

E[Ym,iYm,j] ≤ E[(ξm + Y′m,i)(ξm + Y′m,j)] = E[ξ2
m] = δm (i 6= j).

For any m large enough, define pm,0 = pm(λ), such that qm = ζ(λ + 1)E[ρm(Jtime)] =

ζ(λ + 1)$m pm,0, pm,1 = pm((λ − 3δ1/2
m )/(1 − δm)1/2) and pm,2 = pm((λ + 3δ1/2

m )/(1 −
δm)1/2), where

pm(z) = P(N(0, 1) > z`m), z > 0.

Let f (z) = ez if 0 ≤ z ≤ qm, and = eqm(z− qm + 1) if z ≥ qm, and let g(Ym,1, . . . , Ym,$m) =

f (ζρm(Jtime)). Then, g(Ym,1, . . . , Ym,$m) ≤ eζρm(Jtime) ∨ $meqm . Via the well-known compari-
son property (cf. Theorem 3.11 of [30] (p. 74)), we have

E[g(Ym,1, . . . , Ym,$m)] ≤ E[g(ξm + Y′m,1, . . . , ξm + Y′m,$m)].

Thus, we conclude that

P(ρm(Jtime)−E[ρm(Jtime)] ≥ λE[ρm(Jtime)])

= P( f (ζρm(Jtime)) ≥ f (qm)))

= P(g(Ym,1, . . . , Ym,$m) ≥ eqm))

≤ e−qmE[g(Ym,1, . . . , Ym,$m)]

≤ e−qmE[g(ξm + Y′m,1, . . . , ξm + Y′m,$m)]

≤ e−qm
{
E[eζ ∑

$m
i=1 I{ξm+Y′m,i>λ`m}I(ξm ≤ 3δ1/2

m `m)] + $meqmP(ξm > 3δ1/2
m `m)

}
≤ e−qmE[eζ ∑

$m
i=1 I{Y

′
m,i>(λ−3δ1/2

m )`m}] + $mP(ξm > 3δ1/2
m `m)}.

Via the fact that {Y′m,i, i = 1, . . . , $m} are independent, it is easy to see that

E[eζ ∑
$m
i=1 I{Y

′
m,i>(λ−3δ1/2

m )`m}]

= eζ$m pm,1(E[eζ(I{Y′m,i>(λ−3δ1/2
m )`m}−pm,1)])$m

≤ eζ$m pm,1(1 + pm,1(1− pm,1)ζ
2)$m

≤ eζ$m pm,1+ζ2$m pm,1(1−pm,1).

Then, we have

P(ρm(Jtime)−E[ρm(Jtime)] ≥ λE[ρm(Jtime)])

≤ e−ζ$m((λ+1)pm,0−(1+ζ)pm,1) + $mP(ξm > 3δ1/2
m `m).

(67)

It follows from (48) that pm,0 ∼ pm,1 as m → +∞. This implies that (1 + ζ)pm,1 ≤ (1 +
2ζ)pm,0. Thus, (67) becomes

P(ρm(Jtime)−E[ρm(Jtime)] ≥ λE[ρm(Jtime)])

≤ e−ζ$m(λ−2ζ)pm,0 + cr−1
m r9

m

≤ e−ζ$m(λ−2ζ)pm,0 + r5
m.

(68)
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Similarly to (68), by choosing qm = ζ((λ− 1)$m pm,0 + $m), we have

P(E[ρm(Jtime)]− ρm(Jtime) ≥ λE[ρm(Jtime)])

≤ e−ζ$m(λ−2ζ)pm,0 + r5
m.

(69)

Thus, together with (68), (66) is yielded. The proof is thus completed.

Lemma 9. Given ε > 0, δ > 0, with a probability of one, there exists an integer m0 such that

|ρm(Jtime)−E[ρm(Jtime)]| ≤ εE[ρm(Jtime)] (70)

for all Jtime ⊆ [0, 1], such that |Jtime| ≥ δ and all m ≥ m0(ε, δ).

Proof. It follows from (46) that pm,0 = rλ2(1+rm)
m , where rm → 0 as m → +∞. This,

together with Lemma 8 and the Borel–Cantelli argument, yields (70). The proof is thus com-
pleted.

Lemma 10. Given η′ < η = 1− λ2, there is an absolute constant c such that, with a probability
of one, there exists m1 such that

ρm(Jtime) ≤ c|Jtime|η
′
ρm([0, 1]), (71)

for all Jtime ⊆ [0, 1], m ≥ m1.

Proof. It follows from Lemma 9 that it is enough to show that

ρm(Jtime) ≤ c|Jtime|η
′E[ρm([0, 1])] ≤ c|Jtime|η

′
$mr1−η(m)

m (72)

for m ≥ m1. Note that |Jtime| < rm implies ρm(Jtime) = 0, rm ≤ |Jtime| < νmrm, which

implies ρm(Jtime) ≤ 1 and |Jtime|η
′
$mr1−η(m)

m ≥ crδ+η′−η(m)
m → +∞. Thus, we need only

to consider the case of |Jtime| ≥ νmrm. It is clearly sufficient to consider only the class
Dm of intervals [irm, jrm], where i, j are integers and 0 ≤ i < j ≤ (νmrm)−1. Note that
$m ∼ ν−1

m r−1
m ∼ rδ−1

m and $m(Jtime) = |Jtime|$m. We deduce from Lemma 8 that for any m
large enough, we have

P(ρm(Jtime) > c|Jtime|η
′
$mr1−η(m)

m , J ∈ Dm)

≤ r−2
m exp(−c|rm|η

′
$mr1−η(m)

m ) + r3
m

≤ r−2
m exp(−crδ+η′−η(m)

m ) + r3
m.

Since, δ + η′ − η(m)→ δ + η′ − η < 0, it follows that

+∞

∑
m=1

P(ρm(Jtime) > c|Jtime|η
′
$mr1−η(m)

m , J ∈ Dm) < +∞.

This implies that, with a probability of one, there is a m1 = m1(η
′) > 0 such that (72) holds.

The proof is thus completed.

Next, we shall show that the existence of a sequence of sets F1 ⊃ F2 ⊃ · · · are such that
they satisfy Lemma 2.1’s presumptions and that F = ∩+∞

m=1Fm ⊂ Sβ,d,x(λ). We can assume
that, for every stage of the construction that is completed in the same probability 1 set,
there are only a countable number of steps required and that each step can be completed
with a probability of 1. Select η′ = η − 1

4 ε and define m1 =: m1(η
′) such that m ≥ m1 and
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(71) hold. Assume that the sequence of positive numbers (εk) satisfies ∑ εk < +∞. In the
first step, when using Lemma 9, we determine an integer n1 ≥ m1 such that

|ρm −E[ρm]| < ε1E[ρm] (m ≥ n1).

And then we shall define an increasing sequence n1, n2, . . . inductively, as well as define
for k ≥ 1.

{Ik.i, 1 ≤ i ≤ Qk} = {Itime(b) ∈ Jnk ,+, Itime(b) ⊂ Fk−1},

F0 = [0, 1], Fk = ∪
Qk
i=1 Ik,i,

Qk(Jtime) = #{i, Ik,i ⊂ Jtime} for Jtime ⊂ [0, 1], Qk = Qk([0, 1]),

ς(k) = η(nk), τ(k) = 1− ς(k), Rk = |Ik,i| = brnk .

For each k ≥ 2, suppose that nk−1 has been defined; as such, we can define an nk large
enough to ensure the following:

nk ≥ m0(ε, R2τ(k−1)/ε
k−1 ), nk = m0(εk, Rk−1),

nk ≥ 2nk−1, rnk ≤ r2
nk−1

,

where m0(ε, δ) is the integer determined in Lemma 9 to invalidate (70) and

R1/(2ε)
k ≤ b2η

k−1

∏
i=1

Rτ(i)
i bς(i). (73)

Then, we have
|ρm(Jtime)−Eρm(Jtime)| ≤ εkE[ρm(Jtime)] (74)

for all ⊆ [0, 1], such that |Jtime| ≥ Rk−1 and all m ≥ nk.
By making use of (73), (74) and Lemmas 9 and 10, via following the same route as the

proof of (2.23) in [18], we can obtain

Qk+j(Jtime) ≤ c
( k

∏
i=1

νni

)
Rε

k |Jtime|η−2εQk+j (75)

for all Rk+1 < |Jtime| ≤ Rk, k ≥ 1, j ≥ 1.
Noting that

r2
nk
≤ r

1+ 1
2+···+

1
2k−1

nk ≤ rnk rnk−1 · · · rn1

and
k

∏
i=1

νni ≤
( k

∏
i=1

rni

)−δ
,

via (75), we can conclude that

Qk+j(Jtime) ≤ cbεrε−2δ
nk
|Jtime|η−2εQk+j

for all Rk+1 < |Jtime| ≤ Rk, k ≥ 1, j ≥ 1. Thus, it follows from Lemma 6, as well as from the
fact that rε−2δ

nk
→ 0 (k→ +∞), with a probability of one, we have

µsη−2ε(F) > 0. (76)

Hence, we have proved (52). The proof is thus completed.

3.3. Hitting Probabilities for the Sets of Temporal Fast Points

We prove Theorem 3 in this subsection, thereby obtaining hitting probabilities for the
sets of the temporal fast points of the TFSPIDEs, as well as their gradients, in the process.
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Proof of Theorem 3. We only show Equation (13) because Equation (14) can be proved
similarly. To prove Equation (13), via Remark 2, it is enough to show that, for every analytic
set B ⊂ R+, we have

P
{

sup
t∈B

lim sup
h→0+

φβ,d,h|Uβ(t + h, x)−Uβ(t, x)| = (dimP(B))1/2
}
= 1. (77)

By using (4) and Lemma 5, as well as by following the same route as the proof of the
upper bound of Theorem 2.1 in [19], we obtain

P
{

sup
t∈B

lim sup
h→0+

φβ,d,h|Uβ(t + h, x)−Uβ(t, x)| ≤ (dimP(B))1/2
}
= 1. (78)

We now turn to the proof of the opposite inequality. That is, it is enough to show that

P
{

sup
t∈B

lim sup
h→0+

φβ,d,h|Uβ(t + h, x)−Uβ(t, x)| ≥ (dimP(B))1/2
}
= 1. (79)

Fix v such that dimP(B) > v. For each integer n ≥ 1, which are denoted by Qn, the set of
all intervals of the form [m2−n, (m + 1)2−n], m ∈ Z+ are obtained. In words, Qn denotes
the totality of all intervals. For all Itime ∈ Qn, define πn(Itime) = m2−n to be the smallest
element in Itime. For Itime ∈ Qn, which is denote by ωn(Itime), the indicator function of the
event (Θβ,d,x(πn(Itime), 2−n(log n)−1) > v1/2) is obtained, where the following notation
is used:

Θβ,d,x(t, h) = φβ,d,h|Uβ(t + h, x)−Uβ(t, x)|. (80)

In other words, ωn(Itime) is a Bernoulli random variable whose values take 1 or 0 according
as to whether we have

Θβ,d,x(πn(Itime), 2−n(log n)−1) > v1/2.

Define via D := lim supn D(n) a discrete limsup random fractal, where

D(n) =
⋃

Itime∈Qn :ωn(Itime)=1

I0
time,

and where I0
time denotes the interior of Itime. We can claim that, whenever dimP(B) > v,

then
P(D ∩ B 6= ∅) = 1. (81)

We postpone the verification of (81) and prove (79) first, which thereby completes the proof.
Since dimP(B) > v, (81), implies that there exists t ∈ B such that there is Θβ,d,x(2−n[t2n],

2−n(log)−1) ≥ v for infinitely many instances of n, then, we have, in particular,

sup
t∈B

lim sup
n→+∞

Θβ,d,x(2
−n[t2n], 2−n(log)−1) ≥ v a.s.

Via (4), we can obtain

lim
n→+∞

sup
t∈Itime :Itime∈Qn

|Θβ,d,x(t, 2−n(log)−1)−Θβ,d,x(2
−n[t2n], 2−n(log)−1)| = 0 a.s.

Thus, if dimP(F) > v, then (79) holds; as such, (77) also holds.
(81) remains to be verified. Fix a small η > 0 such that dimP(B) > v + η. By [31],

there is a closed B∗ ⊂ B, such that, for all open sets F, (whenever B∗ ∩ F 6= ∅), then
dimM (B∗ ∩ F) > v + η (see [22] for the definition of an upper Minkowski dimension). It
is enough to show that D ∩ B∗ 6= ∅ when fixing an open set F such that F ∩ B∗ 6= ∅. We



Fractal Fract. 2023, 7, 815 18 of 20

can claim that, with a probability of one, D(n) ∩ F ∩ B∗ 6= ∅ is such for infinitely many n.
When defined via V(n) := ∪+∞

k=nD(k), n ≥ 1, the open sets are obtained. As such, this claim
implies that, with a probability of one, V(n) ∩ F ∩ B∗ 6= ∅ is such for all n. Furthermore,
via letting F run over a countable base for the open sets, we can obtain a V(n)∩ B∗ that is as
dense as in (the complete metric space) B∗. Via Baire’s category theorem (see [32]), we have
a B∗ ∩∩+∞

n=1V(n) that is dense in B∗ and, in particular, non-empty. Since D = ∩+∞
n=1V(n), we

can conclude that D ∩ B∗ 6= ∅, which, in turn, means that (81) holds and its results follow.
Fix an open set F by satisfying F ∩ B∗ 6= ∅. This is denoted by Nn, which are the total

number of intervals Itime ∈ Qn that satisfy Itime ∩ F∩ B∗ 6= ∅. Since dimM (F∩ B∗) > v + η,
via the definition of an upper Minkowski dimension, there exists v1 > v + η such that
Nn ≥ 2nv1 is the case for the infinitely many integers of n. Thus, #(ℵ) = +∞, where

ℵ :=
{

n ≥ 1 : Nn ≥ 2nv1

}
. (82)

As denote by Ωn := ∑ ωn(Itime), the total number of intervals Itime ∈ Qn is such
that Itime ∩ F ∩ B∗ ∩ D(n) 6= ∅, where the sum is taken over for all Itime ∈ Qn such that
Itime ∩ B∗ ∩ F 6= ∅;

Ωn = #{Itime ∈ Qn : Itime ∩ B∗ ∩ F 6= ∅, Θβ,d,x(πn(Itime), 2−n(log n)−1) > v1/2}.

In order to show that, with a probability of one, D(n) ∩ F ∩ B∗ 6= ∅ applies for the
infinitely many instances of n, it suffices to show that Ωn > 0 applies for the infinitely
many instances of n. That is, it is enough to show that

P(Ωn > 0 i.o.) = 1. (83)

It follows from Lemma 4 that pn = 2−n(v+an), where an → 0 is to n → +∞. Hence,
E[Ωn] = Nn pn ≥ 2n(v1−v−an). Thus, it follows from Lemma 9 that, with a probability of
one, Ωn ≥ c2n(v1−v−an) applies, which implies that P(Ωn = 0)→ 0 as is to n→ +∞. Via
Fatou’s lemma, one can obtain

P(Ωn > 0 i.o.) ≥ lim sup
n→+∞

P(Ωn > 0) = 1.

This yields (83). This thus completes the proof.

4. Conclusions

In this article, we established the exact, dimension-dependent temporal continuity
moduli for fourth-order TFSPIDEs and their gradients. This was achieved by determining
the precise values of the normalized constants, and these were supplemented by the
prior efforts of Allouba and Xiao on the spatio-temporal Hölder regularity of the fourth-
order TFSPIDEs and their gradients. We obtained Hausdorff dimensions and the hitting
probabilities of the sets of the temporal fast points for the fourth-order TFSPIDEs and their
gradients in a time variable t. It was confirmed that these points of the TFSPIDEs and their
gradients, in time, have a probability of one everywhere, and that they are dense with
the power of the continuum. In addition, their hitting probabilities were determined by
the target set B’s packing dimension dimp(B). On the one hand, this work has reinforced
the temporal continuity moduli and temporal LILs obtained in [13] by obtaining the exact
values of their normalized constants; on the other hand, this work has obtained the size of
the set of fast points, as well as the potential theory of TFSPIDEs and their gradients.
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28. Csörgő, M.; Révész, P. Strong Approxiamtions in Probability and Statistics; Academic Press: New York, NY, USA, 1981.
29. Meerschaert, M.M.; Wang, W.; Xiao, Y. Fernique type inequality and moduli of continuity for anisotropic Gaussian random fields.

Trans. Am. Math. Soc. 2013, 365, 1081–1107. [CrossRef] [PubMed]
30. Ledoux, M.; Talagrand, M. Probability in Banach Spaces; Springer: Berlin, Germany, 1991.
31. Joyce, H, Preiss, D. On the existence of subsets of finite positive packing measure. Mathematika 1995, 42, 15–24. [CrossRef]
32. Munkres, J.R. Topology: A First Course; Prentice-Hall Inc.: Englewood Cliffs, NJ, USA, 1975.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1155/2011/298628
http://dx.doi.org/10.1090/S0002-9947-2012-05678-9
http://www.ncbi.nlm.nih.gov/pubmed/24825922
http://dx.doi.org/10.1112/S002557930001130X

	Introduction 
	Preliminaries 
	Rigorous Kernel SIE Formulations
	Estimations on the Variances of Temporal Increments of TFSPIDEs and Their Gradients 

	Results 
	Temporal Moduli of Continuity
	Hausdorff Dimensions for the Sets of Temporal Fast Points
	Hitting Probabilities for the Sets of Temporal Fast Points

	Conclusions 
	References

