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Abstract: Uncertain systems are those wherein some variability is observed, meaning that different
observations of the system will produce different measurements. Studying such systems demands
the use of statistical methods over multiple measurements, which allows overcoming the uncertainty,
based on the premise that a single measurement is not representative of the system’s behavior. In
such cases, the current multifractal detrended fluctuation analysis (MFDFA) method cannot offer
confident conclusions. This work presents multi-signal MFDFA (MS-MFDFA), a novel methodology
for accurately characterizing uncertain systems using the MFDFA algorithm, which enables over-
coming the uncertainty of the system by simultaneously considering a large set of signals. As a case
study, we consider the problem of characterizing software (Sw) consumption. The difficulty of the
problem mainly comes from the complexity of the interactions between Sw and hardware (Hw),
as well as from the high uncertainty level of the consumption measurements, which are affected
by concurrent Sw services, the Hw, and external factors such as ambient temperature. We apply
MS-MFDFA to generate a signature of the Sw consumption profile, regardless of the execution time,
the consumption levels, and uncertainty. Multiple consumption signals (or time series) are built from
different Sw runs, obtaining a high frequency sampling of the instant input current for each of them
while running the Sw. A benchmark of eight Sw programs for analysis is also proposed. Moreover,
a fully functional application to automatically perform MS-MFDFA analysis has been made freely
available. The results showed that the proposed methodology is a suitable approximation for the
multifractal analysis of a large number of time series obtained from uncertain systems. Moreover,
analysis of the multifractal properties showed that this approach was able to differentiate between
the eight Sw programs studied, showing differences in the temporal scaling range where multifractal
behavior is found.

Keywords: multifractal analysis; uncertainty; energy consumption; software characterization; green
computing

1. Introduction

Fractal and multifractal analyses have been extensively applied in many different
fields. Specifically, multifractal detrended fluctuation analysis (MFDFA) [1] is a powerful
method for detecting long-range correlations and multifractal scaling properties in time
series. It has been widely analyzed [2,3] and employed with success in different fields,
such as financial markets [4], meteorology [5], traffic speed [6], biology [7], acoustics [8],
neuroimaging [9,10], and seismicity [11,12], among others. However, the application of
MFDFA for studying uncertain systems is not straightforward. The reason for this is that an
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uncertain system produces different measurements for each observation, and therefore one
single system measurement is not representative of its behavior. Therefore, the application
of MFDFA on a single time series obtained from an uncertain system cannot provide
meaningful results and, unlike what is commonly done in the literature (e.g., [13–16]),
a large number of signals must be considered in the analysis.

Manually applying MFDFA to such a large number of time series is a cumbersome task,
and extracting overall conclusions from all the individual multifractal analyses performed
can be highly complicated. Consequently, there is a clear need for a methodology that
allows simultaneously employing the MFDFA by considering multiple time series, to offer
a comprehensible overall characterization of the system. Such a methodology would be
highly suitable for characterizing uncertain systems.

In the framework of MFDFA, there are already different methods for jointly analyz-
ing multiple time series. For example, ref. [17] proposed multifractal detrended cross-
correlation analysis (MFDXA) for characterizing the long-range cross-correlations of two
time series coexisting simultaneously. Additionally, ref. [18] developed multivariate mul-
tifractal detrended fluctuation analysis (MV-MFDFA), a method that directly studies the
fractal dynamics of multichannel data in a complex system. Subsequently, ref. [19] extended
the previous algorithm to the multiscale case through multivariate multifractal detrended
fluctuation analysis (MMV-MFDFA), which is based on a moving fitting window that
allows defining generalized dependent Hurst surfaces. An application of the above method
can be found in [20]. However, the aforementioned methods are multivariate, due to their
application to several variables measured at the same time. In this work, we propose a
simple methodology called multi-signal multifractal detrended fluctuation analysis (or MS-
MFDFA for short), which applies to univariate scenarios, i.e., a single variable is measured
repeatedly at different moments in time. Therefore, multivariate MFDFA methods act on
different, deterministic and dependent signals composed of multiple components, while
MS-MFDFA acts on independent signals with uncertainty composed of a single component.
Moreover, due to the high number of signals to be processed, this process is automated.

As a case study, MS-MFDFA was applied in this work to characterize the consump-
tion of software (Sw) programs. This is the first time that an MFDFA analysis has been
performed on this kind of signal, to the best of our knowledge. The main idea behind the
green computing (GC) paradigm is reducing the energy consumption of Sw executions,
while maintaining the same functionalities and performance [21]. The aim is to reduce the
electricity demand of a device with computing capabilities, or alternatively to enlarge the
autonomy of battery-based ones. Such computing devices are everywhere around us; from
large servers in the Cloud, to the small equipment typically found in the Internet of things
or sensor networks, which are widespread technologies in Industry 4.0.

To date, there have been significant achievements in the design of sustainable hard-
ware (Hw), and most electronic devices include different technologies to reduce their
consumption. In contrast, very few advances have been made in terms of green Sw, despite
the fact that Sw drives the Hw and it ultimately determines its behavior [22]. Therefore,
the development of novel techniques towards the generation of green Sw is of utmost
importance, so that they can make efficient use of the underlying Hw [23].

In order to achieve energy-efficient Sw programs, accurate measurements of their
consumption performance are necessary [24]. However, this is not a trivial task, given that
there are high uncertainty levels [25], caused by other coexisting processes (e.g., those of the
operating system), eventualities of the Sw execution itself (cache misses, memory allocation,
or bottlenecks, among others), or the ambient temperature. Additionally, the energy effi-
ciency of Sw strongly depends on the underlying Hw, meaning that Sw performs differently
depending on the Hw platform used; the same Sw might produce low consumption levels
on some Hw and high levels on another. This fact makes it difficult to define what green
Sw is.

The reasons mentioned above show that the approach followed in the literature of just
measuring the consumption when executing the Sw is definitely misleading. We argue that
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there is a need to analyze the consumption profile of the Sw during the whole run, rather
than the aggregated consumption value itself. In this work, we therefore propose analyzing
the time series of the consumption of the Sw during the whole execution, with the aim of
finding a consumption evolution profile that can help in characterizing green Sw.

The execution of a Sw program is preceded by a compilation process that creates the
sequence of low level instructions to be executed on the Hw. This sequence is specific
for every Sw program and directly depends on the Hw itself, the compiler, its version,
and the flags used in the compilation process. Additionally, its performance can be highly
influenced by other concurrent processes. These reasons, together with the fact that current
processors typically execute several hundreds of thousands of millions of instructions per
second, make it extremely difficult to determine the actual behavior of the system or the
exact operations being executed at a specific time stamp.

This work proposes the characterization of Sw consumption by means of the MS-
MFDFA approach, generating a signature of the Sw/Hw consumption profile, regardless of
the execution time, the consumption values, and uncertainty. The consumption signal (time
series) is a high-frequency sampling of the instant input current of the device when execut-
ing the Sw. The uncertainty in the consumption measurements of a Sw program [25,26]
mean that a single experiment is not representative of the Sw performance, and multi-
ple experiments must be considered to achieve meaningful conclusions. The proposed
technique was applied here to analyze the performance of eight simple programs on the
selected architecture.

Although fractal and multifractal analyses have been extensively applied in many
different fields, to the best of our knowledge, there is a gap in the literature regarding
the application of multifractal analysis for studying uncertain systems. The main reason
behind this might be the need of analyzing and interpreting the results of a large number of
signals, and the difficulty of doing this by hand. Although several implementations of the
MFDFA algorithm are available in the literature [27,28], none of them tackle the automatic
analysis of a batch of time series.

Moreover, the characterization of the multifractal (MF) properties of energy consump-
tion has rarely been studied. Next, the most relevant works are briefly explained. In [29],
a fractal analysis of the energy consumption datasets of a real test-bed assembly line was
carried out. The Hurst exponent was computed for each of the datasets that corresponded
to different assembly operations for several manufacturing cycles. The results showed an
energy consumption pattern matching each operation. In addition, an MF study of the
daily electric load time series of a power system was carried out in [30], concluding that
the fluctuations in this time series exhibited a MF nature with a long-range correlation be-
havior. MF analysis has also been applied to study wind power consumption capacity [31].
The obtained MF parameters were used to describe the fluctuation characteristics of wind
power and its correlation with consumption capacity.

Fluctuations in the electricity market and prices have also been tackled, where the MF
analysis focused more on the time series of energy prices, rather than on the consumption
fluctuations themselves. To mention a few, four electricity regions in Unites States were
studied using MFDFA, using large daily data from 2001 to 2021 [32]. The results related the
highest multifractality to the lowest efficiency region and vice versa. Moreover, MFDFA was
used in [33] to numerically investigate the correlation, persistence, multifractal properties,
and scaling behavior of time series data (the hourly spot prices) from the Spanish electricity
market OMEL.

In terms of energy efficiency, there have been a number of works addressing Sw
consumption, in most cases as a component of the development of sustainable Sw [34]. These
works propose certain criteria that must be taken into account for the design of sustainable
Sw from a life-cycle perspective [35]. Most works in this line proposed different criteria to
enhance the sustainability of both the development of Sw products and the Sw design, taking
into account the Hw used (storage, computing, network, use of remote/local resources, etc.),
or required Sw services (databases, world wide web, web services, etc.) [36,37].
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In contrast, in this work, we were interested in studying the energy-efficiency of the Sw
execution and not of its development process. We believe this is worthy of study because
of its major impact, given that the same Sw is, in many cases, executed in millions of
computing devices 24 h a day. In this sense, Mancebo et al. [24] emphasized the difficulty of
measuring Sw consumption and performed some experiments to measure the consumption
of writing different tweets and Facebook posts. Their article proposed a more generic
method for providing a characterization of the Sw consumption profile, analyzing how
the available resources are used and not only what kind of resources or input data are
considered, as previously done in the literature. Additionally, our methodology takes
into account the high uncertainty levels present in the energy consumption of computing
devices, unlike most existing works [25].

The contributions of this work are as follows: (i) the proposal of MS-MFDFA, a new
simple methodology for applying MFDFA to a large number of signals, in order to miti-
gate the effects of uncertainty and obtain confident results; (ii) the development of a fully
functional application to automatically accomplish the multifractal detrended fluctuation
analysis for a large number of signals, which is freely available; (iii) the application, for the
first time, of multifractal analysis to studying the performance of Sw programs; (iv) the
characterization of the energy consumption induced by different Sw programs on a spe-
cific Hw architecture by means of MFDFA. Moreover, we propose a new Sw benchmark
composed of eight simple programs to analyze the consumption of low-power devices.

The remainder of this work is structured as follows: The next Section reviews the
most relevant works of the state of the art. Section 2 presents the theoretical framework
used, as well as the new methodology proposed. The new benchmark of Sw programs and
the experimental settings are explained in Section 3. The results obtained are analyzed in
Section 4, and they are used to validate the proposed MS-MFDFA methodology in Section 5.
A brief description of the fully functional MS-MFDFA software is presented in Section 6.
Finally, Section 7 concludes the work and proposes some future lines of research.

2. Multi-Signal Multifractal Detrended Fluctuation Analysis, MS-MFDFA

This section describes the proposed multi-signal multifractal detrended fluctuation
analysis (MS-MFDFA hereinafter), used in this work for assessing the temporal scaling
in energy consumption signals. For that, a description of MFDFA is first summarized in
Section 2.1, with the proposed methodology in Section 2.2.

2.1. Multifractal Detrended Fluctuation Analysis

MFDFA [1] is a generalization of detrended fluctuation analysis (DFA) [38], a technique
based on the detection of long-range correlations in time series. MFDFA allows a reliable
multifractal characterization of time series by adding a q-dependent averaging procedure
as an additional step to the DFA.

Initially, consider that xk with k = 1, 2, ..., N is a time series of a compact support,
i.e., zero values represent an insignificant fraction of k (or simply zero values do not exist).
The MFDFA is comprised of five steps, which are described as follows [1]:

• Step 1: Obtain the integrated time series X(i) of xk by means of subtracting the mean x, to
the accumulative sum of the time series. In this context, X(i) is the so-called “profile”:

X(i) =
i

∑
k=1

[xk − x], i = 1, ..., N. (1)

Notice that subtraction of the mean x is optional, because it will be removed with the
subsequent detrending in Step 3.

• Step 2: Divide the integrated time series X(i) into Ns = int(N/s) non-overlapping
segments of identical length s. The set of s values correspond to the temporal scaling
for the analysis. Since the length N of the time series is not usually a multiple of s, it is
unavoidable that a short part at the end of the signal may be left out of the analysis.
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To entirely consider the signal, a identical dividing procedure is carried out from the
opposite end of the integrated time series. Thus, 2Ns divisions are obtained for each
s value.

• Step 3: Compute the local trend for each of the 2Ns segments. Then, detrending in
X(i) is carried out by subtracting xv(i) from X(i) in each segment v; xv(i) being the
polynomial fitting through the least squares method in segment v. The variance of the
residual, F2, is calculated for each segment of length s, as follows:

F2(s, v) =
1
s

s

∑
i=1
{X[(v− 1)s + i]− xv(i)}2 (2)

for each segment v, v = 1, ..., Ns and

F2(s, v) =
1
s

s

∑
i=1
{X[N − (v− Ns)s + i]− xv(i)}2 (3)

for v = Ns + 1, ..., 2Ns. Since trends are removed according to the order of the polyno-
mial fit m, the method is called MFDFAm. In this work, MFDFA1 was employed.

• Step 4: Assemble the local variances in the qth order fluctuation function Fq(s) by
averaging over all fluctuations for each time scale s. In this step, multifractal properties
are assessed by adding to F2(s, v) different qth order moments, according to

Fq(s) =

{
1

2Ns

2Ns

∑
v=1

[F2(s, v)]
q
2

} 1
q

(4)

As observed, q exponents magnify the local variances. Whereas positive q values
emphasize large variances (large deviations from the polynomial fit), negative q values
highlight small variances (small deviations from the corresponding fit). For the specific
q = 0 case, the exponent in Equation (4) diverges and may be estimated by means of a
logarithmic averaging procedure, resulting in

Fq=0(s) = exp

{
1

4Ns

2Ns

∑
v=1

ln F2(s, v)

}
(5)

Steps 2–4 are then repeated for an sufficiently large set of values of s.
MFDFA focuses on how the generalized q-dependent fluctuation functions depend on
the time scales for different values of q. For (multi)-fractal time series, it is expected
that Fq(s) increases for larger time scales s according to a power law. When this is
trusted, the double logarithmic representation of the fluctuation functions Fq(s) versus
the scaling s exhibits a linear relationship in one or several scaling ranges;

• Step 5: Determine the (multi)-fractal properties of the fluctuation functions according to

Fq(s) ∼ sh(q) (6)

where h(q) is estimated from the slope of the linear regression between ln Fq(s) and
ln s for a certain range of scales. Therefore, h(q), which is known as the generalized
Hurst exponent, represents the scaling behavior of the variance F2(s, v). When positive
(negative) q moments are considered, h(q) is governed by the segments with large
(small) fluctuations, respectively. In the case that segments with large and small
fluctuations scale similarly, h(s) is independent of q, which is known as a monofractal
case. This means that the scaling behavior of the variances F2(s, v) is identical for
all segments v, and thus the averaging procedure in Equation (4) provides identical
scaling behavior for all values of q. By contrast, a time series is multifractal when
segments with large and small fluctuations scale differently. Multifractality is clearly
evidenced when there is a significant dependence of h(q) on q. The greater the
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differences in large and small scaling fluctuations, the greater the multifractal strength,
which is proportional to the width of the h(q) function [∆h(q)].
On the other hand, the value of h(q = 2) provides useful information about the time
series. Whereas for stationary signals h(q = 2) is identical to the Hurst exponent H [39],
for non-stationary signals, the Hurst exponent is defined as H = h(q = 2)− 1 [40,41].
Additionally, h(q = 2) > 0.5 indicates the long memory or persistency in the signal
and h(q = 2) < 0.5 short memory or anti-persistency. When h(q = 2) = 0.5, the signal
is uncorrelated.

2.2. Multi-Signal Multifractal Detrended Fluctuation Analysis, MS-MFDFA

As has been previously discussed, the results of applying MFDFA on time series
from one single experiment are not representative of the behavior of an uncertain system.
Therefore, a novel methodology for simultaneously considering a large number of time
series in the MFDFA is needed, to mitigate the effects of uncertainty. However, applying
this type of MF analysis on a large number of signals is costly, because it is a manual process,
and additionally it would be difficult to draw overall conclusions. Thus, this methodology
allows analyzing multiple signals and offers overall conclusions on their performance
as one single fluctuation function, which is easy to interpret. To the best of our knowledge,
this approach has never been used before.

MS-MFDFA is a novel automatically driven methodology for applying MFDFA over
a huge amount of signals that can provide significant results for the characterization of a
system under high uncertainty levels. The proposed methodology first requires applying
the MFDFA algorithm to a set of time series, obtained from different observations of the
system. Once the fluctuation functions Fq(s) of each time series are obtained, a represen-
tative 〈Fq(s)〉 is computed with the average value of all Fq(s) functions (from negative to
positive q values). This averaged fluctuation function is called assembled and this is the
scaling function for the later estimation of the representative generalized Hurst dimension
functions 〈h(q)〉. According to this, Equation (6) from Step 5 of MFDFA is replaced by

〈Fq(s)〉 ∼ s〈h(q)〉 (7)

Because of the uncertain nature of the signals studied, we consider that averaging
the fluctuation functions and obtaining a single generalized Hurst dimension function is
more appropriate than calculating all generalized Hurst dimension functions and then
averaging them. This second approach would require independently analyzing each of
the 100 fluctuation functions and establishing crossover points common to all of them,
so that the linear regions could be calculated to obtain the corresponding h(q). In order
to validate the suitability of this approach, one hundred different synthetic signals with
fractional Gaussian noise (fGn) and a controlled known Hurst exponent (H = 0.7 in this
case) were generated using the MFDFA python package (https://mfdfa.readthedocs.io/
en/latest/). The assembled function was obtained and the resulting Hurst exponent was
the expected one.

Therefore, MS-MFDFA uses the assembled fluctuation function 〈Fq(s)〉 as representative
of the 100 signals and determines the best fits for it. This representativeness is analyzed
later in Section 5.

A diagram of the MS-MFDFA methodology is shown in Figure 1.

https://mfdfa.readthedocs.io/en/latest/
https://mfdfa.readthedocs.io/en/latest/
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Figure 1. Illustration of the methodology followed by the proposed MS-MFDFA.

3. Experimental Settings

This section first describes the proposed benchmark of software programs employed
in this work (Section 3.1). Second, it summarizes how the studied consumption time series
were generated (Section 3.2). Finally, the procedure followed for pre-processing the signals
is presented in Section 3.3.

3.1. The Proposed Benchmark of Software Programs

In order to explore the energy consumption of Sw programs in a microcontroller
using MS-MFDFA, a benchmark constituted by eight simple programs was created. It
is composed of six self-developed simple Sw programs, and two other more complex
programs taken from the literature, which are introduced next. B1 just puts the device into
sleep mode for the whole experiment. Programs B2 to B6 are specifically implemented to
evaluate the impact of different types of matrix operations on energy consumption. Their
pseudocodes are given in Table 1. Matrices A and B were randomly initialized and matrix
C was initialized to zero, before the loop was invoked. Parameter N in all pseudocodes
took a value of 80 in the experiments carried out.

As mentioned above, the first software program named IDLE-STATE (or B1) just put
the device into sleep mode. Therefore, it would be right to consider the power signal
produced by B1 as the baseline power consumption of the hardware. B2 performs a large
number of sum operations, all conducted in an unrolled fashion, in order to avoid jumps in
the program execution. In these sum operations, the program accessed all positions of the
A and B matrices, and only position 0 of C in all cases. B4 is similar to B2, but performs
multiplications instead of sums. B3 traverses the three matrices A, B, and C, making sum
operations of the numbers they contain. B5 is similar to B3 but using multiplications. B6 is
a triple nested loop, as B3 and B5, but with the important difference that the result of the
multiplication operation is stored in C.

Additionally, two more sophisticated Sw, named B7 and B8, were taken from the
literature. The former is nettle SHA-256, a widely used cryptographic algorithm designed
by the United States National Security Agency (NSA), which transforms a file into a
unique value of fixed length. This value is known as a hash number. The implementation
used in this work was developed within the scope of the GNU Nettle project [42] (called
nettle-sha256). This program is highly demanding for the micro-controller, as it is both
CPU-intensive and memory-intensive, being a 256-bit cipher. The latter Sw taken from the
literature is picojpeg, a scaled-down implementation of a JPEG compressor, optimized for
minimal use of memory and resources, so that it is suitable for running on micro-controllers.
The degree of compression can be adjusted, so that either the file size or image quality can
be prioritized. The lightweight implementation of picojpeg used in this work was developed
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under the Embench project [43]. Although it is also CPU- and memory-intensive, it differs
from B7 in both the time and intensity of its resource usage.

Table 1. Pseudocode of the six simple Sw programs composing the proposed benchmark.

B1 IDLE-STATE B2 UNROLL-SUM

loop: loop:
A[0] + B[0] + C[0]

sleep() .
.

A[512,000] + B[512,000] + C[0]

B3 ROLL-SUM B4 UNROLL-PRODUCT

loop: loop:
for i = 0 to N-1

for j = 0 to N-1 A[0] ∗ B[0] ∗ C[0]
for k = 0 to N-1 .

A[i][k] + B[k][j] + C[i][j] .
end .

end A[512,000] ∗ B[512,000] ∗ C[0]
end

B5 ROLL-PRODUCT B6 SAVE-ROLL-PRODUCT

loop: loop:
for i = 0 to N-1 for i = 0 to N-1

for j = 0 to N-1 for j = 0 to N-1
for k = 0 to N-1 for k = 0 to N-1

A[i][k] ∗ B[k][j] ∗ C[i][j] C[i][j] <− A[i][k] ∗ B[k][j]
end end

end end
end end

3.2. Experimental Setup

The Hw where Sw is executed directly influences its behavior. In this work, an Adafruit
Metro M4 mote was selected as the underlying infrastructure, because it is a commonly
used device in the Internet of things. Additionally, the use of a low-computing-capacity
device allowed performing low level analyses, involving the use of small programs that
execute simple operations, along with others more complex. We believe this is the first step
towards the characterization of green Sw.

The acquisition of accurate values for the energy consumption of Sw programs is not
a trivial task. In our experiments, a tailored experimental meter designed and developed in
the context of GENIUS research project [44] (currently under patent evaluation) was used.
This experimental meter is able to synchronize the execution of a predefined Sw with a
current sensor, so that the instant input current is sampled at high frequency and accuracy.
The sampling rate is set to 1650 samples per second, and the accuracy of the intensity
meter goes up to the µA. The length of the time series for the B1 to B6 programs was
set to 90,000 samples (energy consumption in mA). This value was established according
to the limitation of the storage capacity of the meter. For the B7 and B8 Sw programs,
the time series lengths were defined by the program run time: 47,759 and 66,487 samples,
respectively. These time series were obtained after around 55 s execution time for B1–B6,
29 s for B7, and 40 s for B8. This amount of samples was considered sufficient for the
analyses performed.

The execution of a Sw program in a computing device is considered to be a highly
uncertain system, due to a number of issues influencing its performance, such as the
presence of coexisting processes, the state of software components (data and instructions
cache memories, registers, etc.), and ambient and Hw temperature, among many others.
Therefore, due to the nature of the system itself, different values will be measured in
different observations. Thus, each benchmark Sw was executed 100 times, in order to
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obtain confident results, providing 100 different time series with instant consumption
values for every Sw program during its execution.

Figure 2 depicts the instant electric current measurements (in mA) for each of the
samples considered for the B1–B8 Sw programs. Specifically, execution 84 of each program
is depicted as a representative example of all the time series analyzed. As observed in
Figure 2a, the behavior of B1 was completely different from the others. The consumption of
the idle-state mode was close to 8 mA with an initial anomalous behavior during the first
20,000 samples. The functionality of B1 was to put the mote into sleep mode, in order to
achieve its lowest possible power state. Therefore, the initial anomalous behavior observed
during the first 20,000 samples was due to the process required to put the mote into sleep
mode. Additionally, at around samples 32,000 and 64,000, the consumption of the mote
suddenly reached a peak close to 35 mA for over 0.1 s. This fact suggests the periodic
watchdog used by the Hw every 32,000 samples, probably to check whether it should leave
the sleep mode or not. In Figure 2b–f, it is noted that the signals obtained from B2 to B6
exhibited more stable energy consumption values (37–40 mA) after an initial period of
low consumption (justified by the time the mote needed to initialize all its components).
In the case of B7 and B8 (see Figure 2g,h), after an initial unstable period, the consumption
oscillated around values close to 30 mA on average, which was notably lower than the
aforementioned consumption for B1–B6, although their variability in intensity was higher.
We envision that the consumption of the B1–B6 programs was probably higher because the
switching task caused idle periods in both the processor and memory.

3.3. Signal Pre-Processing

Since the interest of this work lies in the characterization of each of the Sw programs
of the benchmark, the anomalies described above must be addressed. For the specific case
of B1, both the initial samples and the watchdogs interfered in the analysis; thus, only the
last 25,000 samples were chosen as representative (see the rectangle with dashed line in
Figure 2a). For programs B2–B6, the first 5000 samples were removed, to avoid the initial
instability in the signals (see scratched rectangles in Figure 2b–f). Thus, 85,000 samples
remained for the analysis of programs B2 to B6. As observed in Figure 2g,h, after avoiding
the first 4300 values located in the scratched rectangles, 43,466 and 62,169 samples were
kept for programs B7 and B8, respectively. In this way, it was ensured that the signals only
contained the real regime of each program.

As a last step, the signals were cropped, with the aim of excluding all possible outliers
in the time series. For that, all values exceeding the mean value of the signal by three times
its standard deviation were replaced by the mean value of the signal. An insignificant
amount of outliers were found, ranging from 0.002% to 0.69% of the number of samples for
B7 and B3, respectively. As required by MFDFA, it was ensured that no zero values were
found in the time series.

Figure 3 shows the result of applying the explained pre-processing process to the
signals displayed in Figure 2. Moreover, some descriptive data of the Sw benchmark are
summarized in Table 2, i.e., the average values of the 100 executions, the standard deviation,
as well as the max and min values. As seen in Figure 3 and Table 2, B2 and B4 (the unrolled
versions of the sum and product, respectively) showed the highest and very similar energy
consumption values. The lowest energy consumption corresponded to B1 (around 8.23 mA),
as could be expected, followed by B7 and B8. In addition, the standard deviation of the B1
to B6 benchmarks was very low, ranging from 0.043 mA to 0.101 mA. By contrast, for both
B7 and B8, it reached 2.855 mA and 2.678 mA, respectively. The maximum and minimum
values around the mean, together with the computed deviation values, showed that no
outliers remained in the signals.
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Figure 2. Representation of the obtained energy consumption time series of one sample execution
(number 84 in this case) for every considered Sw program of the benchmark presented in Section 3.1,
according to (a) B1, (b) B2, (c) B3, (d) B4, (e) B5, (f) B6, (g) B7, and (h) B8.

Table 2. Average values for the different statistics of the pre-processed signals for the considered Sw
programs over 100 executions (mA).

Benchmark Samples Mean std Max Min

B1 idle state 25,000 8.230 0.068 8.625 7.722
B2 unroll sum 85,000 39,606 0.046 39.845 39.320
B3 roll sum 85,000 37.229 0.043 37.490 36.917
B4 unroll product 85,000 39.612 0.046 39.845 39.320
B5 roll product 85,000 37.233 0.043 37.466 36.941
B6 save roll product 85,000 38.000 0.101 38.417 37.588
B7 nettle SHA256 43,466 29.818 2.856 37.400 21.262
B8 picojpeg 62,169 29.084 2.678 36.100 21.054
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Figure 3. Representation of the pre-processed energy consumption time series of one execution (84 in
this case) of each Sw program of the benchmark presented in Section 3.1, according to (a) B1, (b) B2,
(c) B3, (d) B4, (e) B5, (f) B6, (g) B7, and (h) B8.

4. Results

Log–log plots of the fluctuation functions of the energy consumption for the eight Sw
programs were calculated from the MFDFA for q = −5 to q = 5 with increments of ∆q = 1.
The assembled fluctuation function of each Sw benchmark, computed as the average over
the corresponding 100 fluctuation functions, is depicted in Figure 4. As seen, all assembled
fluctuation functions 〈Fq(s)〉 increased with higher values of s. In general, the q-curves
seem to be linear and parallel to each other, except for B6, which exhibited a divergent area
depending on the q values (see Figure 4f).

The treatment of the fluctuation functions was as follows: In the initial region, which
corresponds to very small segment s, some anomalous points are observed in Figure 4a–e.
In this initial region, the segment sizes are very sensitive to signal noise, so a minimum
size s was usually set, from which to perform the subsequent analysis. In this case, we
chose a minimum segment value s between 19 and 21, so that all initial anomalies present
for negative q moments were excluded from the further analysis. This value is depicted
in Figure 4 by a dashed vertical line labeled smin. Likewise, s scales larger than N/4 were
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also excluded, due to the statistical unreliability derived from the scarce amount of large
segments averaging in Step 4 of MFDFA [45]. Thus, an upper limit was established in the
fluctuation functions, depicted as a dashed vertical line with the label smax.

Figure 4. Assembled fluctuation functions for each program, of the benchmark presented in Section 3.1,
according to (a) B1, (b) B2, (c) B3, (d) B4, (e) B5, (f) B6, (g) B7, and (h) B8. It also shows for each
program, the lower and upper limits, and their crossover points.

The assessment of the generalized Hurst dimension functions, 〈h(q)〉, was carried
out using least squares linear regression as the slope of the assembled fluctuation function.
Linear regions are delimited by changes in the slope of the fluctuation function, which are
known as crossovers in the MFDFA literature. Crossovers separate scaling regions with
different multifractal behaviors. Thus, the criterion followed in this work was to define an
adequately low and high cut-off for each linear region, to ensure proper goodness fits, i.e.,
the coefficients of determination (R2) from linear fits had to be, at least, greater than 0.90 for
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every q moment. According to the shape of the assembled fluctuation function obtained from
the programs analyzed, three typologies can be differentiated, and each will be discussed
separately. The crossover location and lower and upper limits for linear regressions are
summarized in Table 3.

Table 3. High and low cut-off for each linear region of the different assembled fluctuation functions
for each Sw program.

Benchmark Fit 1 Fit 2 Fit 3

smin smax
B1 idle state 19 6637

smin sx sx smax
B2 unroll sum 21 3957 3957 18,340
B3 roll sum 21 1160 1160 18,340
B4 unroll product 21 1576 1576 18,340
B5 roll product 21 2142 2142 18,340
B7 nettle SHA256 20 148 148 10,507
B8 picojpeg 20 143 143 14,144

smin sx1 sx1 sx2 sx2 smax
B6 save roll product 21 539 539 3957 3957 18,340

As can be seen in Figure 4a, B1 lacked of any crossover point, so the linear fits were set
between the aforementioned limits, i.e., from smin = 19 to smax = 6637, which approximately
represented 0.01 s and 4 s, respectively. The R2 values were greater than 0.999 for each
q-moment, meeting the goodness-of-fit criterion. This implies that the scaling behavior
of B1 was identical across the complete time range of the analysis. This is designated as
Fit 1 in Table 3 for the B1 idle state program. Figure 5a depicts the values of the generalized
Hurst dimension function of the B1 program, along with the standard error as vertical
bars, which are almost imperceptible due to the quality of the linear fit. The estimation of
〈h(q)〉 was carried out by applying Equation (7). As seen, 〈h(q)〉 was practically horizontal,
with values very close to 0.500. This implies that the consumption time series from an
idle state program running in the microcontroller were monofractal signals.The value
of 〈h(2)〉 = 0.499 obtained represents the uncorrelated nature of the device going into
sleep mode.

The most generalized typology for the studied benchmark is explained next. A single
crossover was found in each fluctuation function for B2, B3, B4, B5, B7, and B8, which
allowed differentiating two scaling regimes, one on each side of the crossovers. These
crossovers are depicted in Figure 4 as sx, and as can be seen their locations were different
for each Sw program. Simple sum and product programs (B2, B3, B4, and B5) exhibited a
crossover at medium and high scales, ranging from sx = 1160 to 3957, which represented
time scales between 0.7 s and 2.4 s. By contrast, as observed in Figure 4g,h, the nettle-
SHA256 and picojpeg programs presented a crossover at smaller scales, sx = 148 and 143,
respectively, which represented approximately 0.09 s. In either case, this allowed linear
adjustments to be made on both sides of the crossover, as detailed in Table 3 as Fit 1 and
Fit 2 (left and right sides, respectively).

The generalized Hurst exponent functions were estimated as the slopes of the linear
regressions of the fluctuation functions and are depicted in Figure 5b,c. Figure 5b shows the
values of the 〈h(q)〉 for fits to the left of the crossover, which can be considered small scales.
Furthermore, Figure 5c represents the values of 〈h(q)〉 for large scales. The R2 values were
grater than 0.95 for all programs and every q-moment considered. Error estimations are
also depicted as vertical bars. The main feature is that all 〈h(q)〉 are almost horizontal, so
this independence of q evidences that the energy consumption behavior of these programs
tended to be monofractal, both for short and long time scales. Monofractallity indicates
that the scaling behavior of the variances (F2(s, v)), computed in Step 3 in the MFDFA, was
identical for all segments v [1].
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Figure 5. Generalized Hurst exponent h(q) obtained from the multifractal fluctuation functions for
(a) benchmark B1, (b) fit 1 of benchmarks B2, B3, B4, B5, B7 and B8, (c) fit 2 of benchmarks B2, B3, B4,
B5, B7 and B8, (d) fit 1 of benchmark B6, (e) fit 2 of benchmark B6, and (f) fit 3 of benchmark B6.

However, differences exist between the behavior of the simple programs (B2, B3, B4,
and B5) compared to the more complex ones (B7 and B8). On the one hand, if we focus on
small scales (Figure 5b), the simple programs tended to show almost overlapping values of
〈h(q)〉 (gray circles). They not only presented a monofractal behavior but their 〈h(2)〉 values
varied from 0.534 to 0.577, which allowed defining them as stationary and slightly persistent
signals. Regarding the complex programs, they presented very similar 〈h(q)〉 values (see gray
crosses), which tended to slightly increased with values of 〈h(2)〉 close to zero, meaning there
was no scaling behavior for small time scales for the nettle-SHA256 and picojpeg programs.
On the other hand, linear fits to the right of the crossover allowed estimating 〈h(q)〉 for large
scales. As can be seen in Figure 5c, all the programs were monofractal given the independence
of 〈h(q)〉 versus q. Additionally, the functions tended to overlap according to the type of
program, so that the time series of the simple programs B2, B3, B4, and B5 had a value of
〈h(2)〉 that oscillated between 0.772 and 0.822 (gray circles), which enabled defining them as
stationary and persistent signals (i.e., high (low) fluctuations are likely to be followed by high
(low) fluctuations). On the other hand, for large scales, the behavior of the nettle-SHA256 and
picojpeg signals was similar (gray crosses) with a value of 〈h(2)〉 close to 0.4, which shows that
these signals were stationary and anti-persistent (and the opposite, high–low–fluctuations
were more often followed by low–high–fluctuations).

The last typology was exclusively shown by the B6 Sw program, which was the only
one that included a large number of memory storage operations. As seen in Figure 4f,
the fluctuation function of B6 was completely different to the others. On the one hand,
the functions for each q were no longer parallel along all the scales, diverging in interme-
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diate scales. On the other hand, its shape allowed establishing two crossovers (sx1 and
sx2), which defined three regions: (i) small scales from smin = 21 to sx1 = 539, (ii) medium
scales from sx1 = 539 to sx2 = 3957, and (iii) large scales from sx2 = 3957 to smax = 18,340.
These are summarized in Table 3 as Fit 1, Fit 2, and Fit 3, respectively. These two crossovers
corresponded to a time stamp of approximately 0.33 s (sx1) and 2.4 s (sx2). Figure 5d–f
show the values of 〈h(q)〉 obtained for the linear fits in the three previously delimited
regions, along with their estimation errors. Figure 5d represents an increasing function
〈h(q)〉, which suggests that the B6 program signal did not show scaling behavior for small
scales. Figure 5e shows the dependency of 〈h(q)〉 on q. This decreasing relationship shows
that there was a multifractal behavior for intermediate scales in the consumption of the B6
program. The width of 〈h(q)〉measured the strength of the multifractality, in this case being
∆h(q) = 0.818. Although this fact indicates that the scaling behavior of the large and small
fluctuations scaled differently, being strict, it can be observed that 〈h(q)〉 was insensitive to
negative q-moments and was exclusively decreasing for positive ones. This phenomenon,
known as leveling of the q-order Hurst exponent [27], indicates that large fluctuations
were responsible for the multifractal behavior of these signals. The 〈h(2)〉 greater than
1 indicates that the signal was non-stationary with a Hurst exponent H = 1.355− 1 = 0.335,
which indicates anti-persistency. Finally, Figure 5f depicts the behavior for large time scales.
As can be seen, it became monofractal, with values of 〈h(2)〉 close to zero.

In order to determine the source of the multifractality found in the medium range
scales of B6 (Figure 5e), another study was accomplished. It is known that multifractality
can be due to both a broad probability density function and different long-range correlations
of small and large fluctuations [1]. Owing to the fact that multifractality originating from
correlations of small and large fluctuations can be destroyed through a random shuffling
of the signal, this process is a simple way to determine the origin of this multifractality.
Conversely, it should be noted that the multifractality due to the probability density
function cannot be removed with a shuffling procedure, because the order of the signal data
does not influence this function. Therefore, a random shuffling of the 100 signals taken from
the B6 program was carried out. Subsequently, all of them were introduced in the MFDFA,
so that an assembled fluctuation function (〈Fq(s)shu f 〉) was obtained, which is represented
in Figure 6. As can be seen, the new assembled fluctuation function changed notably after
shuffling: the crossovers disappeared and the functions became parallel. Linear fits were
made to obtain the 〈h(q)shu f 〉, which is shown in Figure 5e through crosses. It is noticeable
that the shuffled signal lost its multifracality, and its Hurst exponent Hshu f was 0.503, very
close to non-correlation.Therefore, since the multifractality completely disappeared after
shuffling, it can be stated that this was due to different long-range correlations of small and
large fluctuations. This correlation was due to the specific order in which the operations
of the Sw was performed, i.e., due to the Sw itself. Therefore, the multifractal features
obtained were descriptive for that specific Sw program.

Figure 6. Assembled fluctuation function for the shuffled B6 signal.
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5. Validation of the Proposed MS-MFDFA Methodology

In order to deal with uncertainty signals, in this work, we propose a novel methodology
that automatically applies the MFDFA algorithm to multiple signals. MS-MFDFA proposes
to execute the four first steps of the MFDFA algorithm for each of the signals individually,
calculate the assembled fluctuation function (〈Fq(s)〉) as the average value of the Fq(s)
functions, and then apply the fifth step of the MFDFA algorithm to it.

In order to validate MS-MFDFA, the representativeness of the assembled fluctuation
function as the overall behavior of each of the 100 signals was evaluated for each of the
eight Sw programs studied. For this, five q-moments were selected: −5, −2, −0, 2, and
5, and the coefficient of determination (R2) and root mean squared error (RMSE) metrics
were used. Table 4 presents the values of R2 and RMSE obtained from the linear fits of the
assembled fluctuation functions in rows Assem Bi. Each Sw program presents one row per
linear regression performed considering the crossover calculated for the assembled function.
As observed, the goodness-of-fit criterion established in this work was met for most of the
linear fits performed, which were higher than 0.90, with only one exception found for Fit 3
and q = −5 in program B6. It can be observed that the goodness-of-fit was above 0.99 for
all monofractal benchmarks of simple programs (B1–B5), presenting lower values for those
that were more complex (B7 and B8) or for multifractal (B6) software programs.

Table 4. Analysis of the quality of the linear regressions by means of the coefficient of determination
(R2) and root mean squared error (RMSE) for each Sw program for a set of q values: q = {−5, −2, 0, 2, 5}.
The rows Assem Bi show the R2 and RMSE of the assembled function i with respect to its linear regression.
Rows Fit j show the average value on top, and in the bottom row are the average standard deviation of
the R2 and RMSE of the 100 executions in terms of the linear regression of the assembled function.

Bi R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
q = −5 q = −5 q = −2 q = −2 q = 0 q = 0 q = 2 q = 2 q = 5 q = 5

Assem B1 0.9993 0.0230 0.9996 0.0158 0.9997 0.0122 0.9998 0.0100 0.9998 0.0113

Fit 1 0.9938 0.0653 0.9950 0.0567 0.9951 0.0555 0.9944 0.0590 0.9917 0.0713
0.0042 0.0206 0.0037 0.0202 0.0036 0.0199 0.0039 0.0203 0.0050 0.0220

Assem B2 0.9987 0.03096 0.9980 0.0388 0.9972 0.0465 0.9963 0.0540 0.9954 0.0613

Fit 1 0.9970 0.0464 0.9969 0.0477 0.9961 0.0542 0.9949 0.0627 0.9927 0.0760
0.0015 0.0119 0.0014 0.0115 0.0016 0.0122 0.00215 0.0134 0.0030 0.0164

Assem B2 0.9986 0.0144 0.9985 0.0150 0.9985 0.0153 0.9985 0.0154 0.9982 0.0165

Fit 2 0.8761 0.1268 0.9058 0.1084 0.9134 0.1038 0.9008 0.1120 0.8502 0.1385
0.1432 0.0498 0.1155 0.0490 0.0999 0.0514 0.1073 0.0547 0.1438 0.0591

Assem B3 0.9992 0.0176 0.9997 0.0100 0.9996 0.0118 0.9993 0.0167 0.9986 0.0235

Fit 1 0.9983 0.0262 0.9990 0.0187 0.9989 0.0193 0.9984 0.0239 0.9968 0.0349
0.0005 0.0047 0.0005 0.0056 0.0007 0.0068 0.0009 0.0074 0.0016 0.0092

Assem B3 0.9967 0.0355 0.9976 0.0306 0.9979 0.0289 0.9983 0.0267 0.9987 0.0227

Fit 2 0.9688 0.1050 0.9778 0.0881 0.9788 0.0869 0.9749 0.0965 0.9613 0.1199
0.0206 0.0329 0.0166 0.0327 0.0168 0.0366 0.0197 0.0409 0.0297 0.0481

Assem B4 0.9993 0.0185 0.9994 0.0164 0.9989 0.0224 0.9982 0.0299 0.9970 0.0388

Fit 1 0.9981 0.02972 0.9986 0.0248 0.9982 0.0287 0.9973 0.0358 0.9953 0.0473
0.0009 0.0066 0.0008 0.0073 0.0010 0.0080 0.0013 0.0088 0.0020 0.0111

Assem B4 0.9974 0.02917 0.9982 0.0240 0.9985 0.0227 0.9985 0.0226 0.9984 0.02316

Fit 2 0.9452 0.1228 0.9637 0.1006 0.9690 0.0947 0.9655 0.1010 0.9496 0.1230
0.0585 0.04881 0.0367 0.0418 0.0314 0.0388 0.0356 0.0412 0.0477 0.0490

Assem B5 0.9993 0.0197 0.9992 0.0207 0.9987 0.0268 0.9979 0.0339 0.9968 0.0425

Fit 1 0.9980 0.0324 0.9983 0.0291 0.9978 0.0337 0.9969 0.0409 0.9949 0.0525
0.0011 0.0086 0.0010 0.0088 0.0011 0.0089 0.0015 0.0099 0.0025 0.0130
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Table 4. Cont.

Bi R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE
q = −5 q = −5 q = −2 q = −2 q = 0 q = 0 q = 2 q = 2 q = 5 q = 5

Assem B5 0.9976 0.02442 0.9983 0.0205 0.9984 0.0198 0.9985 0.0197 0.9985 0.0192

Fit 2 0.9383 0.1181 0.9529 0.1004 0.9552 0.0983 0.9462 0.1078 0.9154 0.1328
0.0540 0.0447 0.04527 0.0439 0.0414 0.0429 0.0582 0.0435 0.1070 0.0525

Assem B6 0.9766 0.0504 0.9670 0.0669 0.9469 0.1028 0.9254 0.1746 0.9733 0.1351

Fit 1 0.9753 0.0518 0.9661 0.0679 0.9463 0.1034 0.9252 0.1749 0.9727 0.1365
0.0025 0.0032 0.0024 0.0031 0.0023 0.0028 0.0021 0.0026 0.0021 0.0054

Assem B6 0.9159 0.3582 0.96549 0.2227 0.9941 0.0826 0.9965 0.0496 0.9977 0.0322

Fit 2 0.9109 0.3678 0.9635 0.2283 0.9937 0.0852 0.9962 0.0516 0.9971 0.0359
0.0171 0.0348 0.0060 0.0189 0.0005 0.0038 0.0004 0.0030 0.0007 0.0043

Assem B6 0.8833 0.0196 0.9014 0.0164 0.9149 0.0143 0.9270 0.0123 0.9355 0.0105

Fit 3 0.7798 0.0262 0.7755 0.0238 0.7664 0.0225 0.7472 0.0217 0.6886 0.0218
0.1225 0.0061 0.1455 0.0064 0.1680 0.0068 0.1972 0.0073 0.2557 0.0081

Assem B7 0.9691 0.0052 0.9532 0.0074 0.9450 0.0096 0.9435 0.0124 0.9690 0.0147

Fit 1 0.9509 0.0064 0.9320 0.0088 0.9179 0.0114 0.8985 0.0159 0.8054 0.0355
0.0203 0.0012 0.0263 0.0015 0.0366 0.0021 0.0710 0.0055 0.3002 0.0643

Assem B7 0.9626 0.0935 0.9721 0.0841 0.9775 0.0775 0.9822 0.0699 0.9855 0.0614

Fit 2 0.9372 0.1173 0.9522 0.1065 0.9580 0.1020 0.9579 0.1024 0.9314 0.1183
0.03867 0.0275 0.0285 0.0268 0.0276 0.0281 0.0320 0.0332 0.1131 0.05658

Assem B8 0.9789 0.0043 0.9655 0.0064 0.9567 0.0084 0.9520 0.0111 0.9716 0.0140

Fit 1 0.9671 0.0053 0.9519 0.0074 0.9402 0.0097 0.9266 0.0134 0.8577 0.0302
0.0167 0.0011 0.0196 0.0013 0.0247 0.0017 0.0413 0.0032 0.2356 0.0457

Assem B8 0.9691 0.0871 0.9788 0.0743 0.9848 0.0642 0.9899 0.0527 0.9940 0.0390

Fit 2 0.9525 0.1063 0.9648 0.0941 0.9701 0.0879 0.9712 0.0859 0.9523 0.1026
0.0206 0.0222 0.0163 0.0224 0.0154 0.0237 0.0177 0.0275 0.0467 0.0385

Moreover, the linear goodness-of-fit of each of the 100 signals was quantified with
respect to the linear fit of its corresponding assembled function by means of the parameters
R2 and RMSE. The average values of R2 and RMSE, along with the standard deviation in
italics, are shown in Table 4 (row Fit j). In general, the values of R2 and RMSE are similar if
compared with the linear fits of the assembled itself and the average values of the 100 samples
with respect to the assembled. Only ten out of the eighty (12.5%) possible combinations
presented a goodness-of-fit criterion lower than the 0.90 established. However, the RSME
presented low values in these cases.

These results denote that the assembled fluctuation function used was representative of
the scaling behavior of the 100 signals that generated it and that the propose methodology
was effective for working with an unmanageable number of signals that could not be
analyzed otherwise.

6. MS-MFDFA Software

In order to automatically perform a multifractal detrended fluctuation analysis on
a large set of signals, a software tool called MS-MFDFA was designed and implemented.
MS-MFDFA software was applied in this work for the first time, to study the energy
consumption of software programs, but it can be applied to any other type of uncertain
system, noisy signals, or to the analysis of different batches of signals.

This tool has great applicability and it is freely available for the research community.
A brief description of the application is provided next, but a more detailed user manual
and the software itself can be found at https://efracware.uca.es/software/ once the work
is published.

The proposed MS-MFDFA software is fully developed and allows the automatic
MFDFA analysis of a large set of temporal signals or time series. It is composed of three

https://efracware.uca.es/software/
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main modules, which enable not only the automatic multifractal analysis but also signal
processing, in case it is needed. These three main modules are Preprocessing, Multianaly-
sis, and Multianalysis Quality. The software also offers two different graph viewers: one
for Matlab in fig format, and the other for images in jpeg format. The main screen of the
software is shown in Figure 7 and the three main modules included in the software are
outlined next.

Figure 7. MS-MFDFA software home page.

The Preprocessing module allows the user to trim a signal, in case the user wants to
obtain a sub-sample of the original signal. Moreover, it is also possible to set the order of
magnitude of the standard deviation a sample must exceed to be considered an outlier.

The Multianalysis module generates the assembled fluctuation function (as shown in
Figure 4). In order to keep track of all the steps in the analysis, the software not only stores
the assembled fluctuation function, but also the fluctuation functions of each of the signals
under study. Two different folders can be generated to store these graphs, in fig or jpeg
formats, respectively, and viewers are also provided. A tool for establishing the crossover
points for the assembled fluctuation function is available, and the linear regressions for each
specific section are calculated.

Finally, the software stores in an xlsx file the linear regressions performed on each
section of the assembled fluctuation function and their quality indices (R2 and RMSE)
according to the fluctuation functions of the batch of signals studied.

Finally, the Multianalysis Quality module generates a table in xlsx and LATEX tex
formats, containing the quality indices of the study carried out, similar to the one shown
in Table 4. In addition, it generates a table in xlsx format, containing the generalized Hurt
exponent h(q) obtained from the multifractal fluctuation functions, which is required to
generate charts like the one shown in Figure 5.

For more information about the software capabilities, please refer to the user manual
in https://efracware.uca.es/software/.

https://efracware.uca.es/software/
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7. Conclusions and Future Work

In this work, a novel automatically-driven methodology called multi-signal multifrac-
tal detrended fluctuation analysis (MS-MFDFA) for applying MFDFA over a huge amount
of signals was presented. This methodology allows, for the first time, the characterization
of uncertain systems comprised of a large amount of measurements. To the best of our
knowledge, the application of MF techniques to such a large amount of time series has
not been addressed before. MS-MFDFA is based on computing an averaged fluctuation
function, called assembled and denoted as 〈Fq(s)〉, which scales with s according to an
exponent 〈h(q)〉, which is estimated by means of linear fits of 〈Fq(s)〉.

For the first time in the literature, multifractal techniques have been applied to analyze
the energy consumption of software programs, where high uncertainty is present. In order
to do so, a software benchmark composed of eight programs of different complexity was
defined and proposed, to analyze the consumption of a microcontroller device, specifically
an Adafruit Metro M4 platform. Because the consumption profile of a given Sw presents
high uncertainty levels and requires the analysis of a large amount of signals, the MS-
MFDFA methodology was developed, applied, and assessed.

According to the results, the energy consumption of program B1 was unique. The anal-
ysis suggests that these signals were stationary and showed a monofractal behavior char-
acterized by quasi-uncorrelated fluctuations for all temporal scales. Therefore, this was a
scaling feature of the baseline power consumption of the hardware. Moreover, the results
evidenced that the energy consumption of the studied software programs that performed
sums and/or multiplications without memory storage operations (programs B2 to B5)
exhibited two scaling regimes, separated by a crossover. The crossover depended on the
program, being located at 2.4 s for B2, 0.7 s for B3, 0.96 s for B4, and 1.3 for B5. These were
always monofractal signals, but uncorrelated and persistent for scales lower and lager
than the crossover. nettle-SHA256 and picojpeg, which are more complex programs, also
exhibited two scaling regimes, separated by a crossover. Unlike the previous programs,
their crossovers were located with smaller temporal scaling (around 0.9 s). In this way,
for very small time scales, the energy consumption of these signals did not follow a scaling
behavior. Although, as seen from the said crossover, they were stationary and monofractal
signals, showing anti-persistence. Therefore, the main difference between simple and
complex programs is that the former are persistent, so high (low) fluctuations in consump-
tion are likely to be followed by high (low) fluctuations, whereas in the latter, high (low)
fluctuations are often followed by small (high) fluctuations, as they are anti-persistent.

We detected that the program performing memory storage (B6) showed a multifractal
behavior. First of all, this signal was the only one that showed two crossovers, which
allowed establishing three zones with different scaling behaviors. The scaling region for
small scales did not show fractal properties, so the analysis had to be extended to intermedi-
ate scaling regions, to locate a multifractal behavior, which occurred between 0.33 and 2.4 s.
In this second region, the signal was non-stationary and persistent. Its multifractality was
mainly determined by large fluctuations, since small fluctuations remained independent
of q-moments. The third region, the one with large scales, showed monofractality. Finally,
with the objective of determining the source of multifractality, the same procedure was
carried out after subjecting the signals of the B6 program to a random process of shuffling
their values. The analysis of the shuffled series showed that the origin of the multifractality
was due to the different long-range correlations of small and large fluctuations. That is, it
depended on the order in which operations were executed, i.e., on the software features.

A study was carried out to validate the proposed MS-MFDFA methodology, showing
that the assembled fluctuation function was representative of the scaling behavior of all
single functions used to build it (highly suitable values of R2 and RMSE metrics were
obtained in all cases).

Additionally, software was developed implementing the novel proposed methodol-
ogy. Its name is MS-MFDFA and it is freely available. MS-MFDFA software allows applying
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MFDFA to large batches of signals, which is especially interesting for characterizing uncer-
tain systems and noisy signals.

This work forms a basis for the full characterization of the profiles of the energy
consumption of software programs, and this might lead to the categorization of the energy
efficiency of software. This is a novel work, not only for the object of study, but for the
treatment of large amounts of signals. The results demonstrate that the analysis of multi-
fractal properties together with other characteristics of the software programs might lead to
a differentiating pattern. This opens an interesting line of research, to better understand the
behavior of the energy consumption of different software programs on different hardware.
As future work, we plan to completely automatize the multifractal analysis, to allow the
performance of more exhaustive experimentation. Additionally, it would be highly interest-
ing to obtain the multifractal properties of software programs executed in more advanced
architectures that exhibit higher uncertainties in their consumption, e.g., mobile phones or
computers with operating systems running on them.
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