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Abstract: The fractional reaction–diffusion equation has been used in many real-world applications
in fields such as physics, biology, and chemistry. Motivated by the huge application of fractional
reaction–diffusion, we propose a numerical scheme to solve the fractional reaction–diffusion equation
under different kernels. Our method can be particularly employed for singular and non-singular
kernels, such as the Riemann–Liouville, Caputo, Fabrizio–Caputo, and Atangana–Baleanu operators.
Moreover, we obtained general inequalities that guarantee that the stability condition depends
explicitly on the kernel. As an implementation of the method, we numerically solved the diffusion
equation under the power-law and exponential kernels. For the power-law kernel, we solved by
considering fractional time, space, and both operators. In another example, we considered the
exponential kernel acting on the time derivative and compared the numerical results with the
analytical ones. Our results showed that the numerical procedure developed in this work can be
employed to solve fractional differential equations considering different kernels.

Keywords: fractional operators; singular kernels; non-singular kernels; anomalous diffusion;
numerical approach

1. Introduction

In a few words, the diffusion equation describes the density of specific entities in
a certain medium as a function of time and space [1]. A classical manner to derive the
diffusion equation is by considering the mass conservation principle and Fick’s law of
diffusion [2]. This equation has a wide variety of applications in different fields such as
physics [3,4], epidemiology [5], rumor propagation [6], chemistry [7], the economy [8], and
many others [9–14]. In physics, this equation is used, for example, to describe the heat,
particles, mass diffusion in space [15], and the physics in semiconductors [16]. In biology,
the diffusion process of molecules plays a crucial role in transporting nutrients and waste
products within cells and tissues [17]. In epidemiology, it is developing a key role in the
spread of diseases and other epidemiological phenomena. For example, the diffusion of
viruses and pathogens in the population significantly impacts public health [18]. Thus,
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understanding the mechanisms and dynamics of diffusion is crucial for developing effective
prevention and control strategies. In chemistry, gas and liquid concentration gradients [19],
as well as electrochemical systems [20] can be described based on the diffusion equation.
In the economy, such an equation can be applied for modeling market competition [21]
and product diffusion in marketing [22]. In finance, a similar idea of the diffusion equation
is considered in the Black–Scholes equation, which consists of a model to calculate the
theoretical value of a financial market [23]. In geology, the diffusion equation is considered
to study weathering and erosion [24], flow in porous rocks [25], and the movement of
magma [26].

The diffusion equation governed by standard operators describes a large range of
systems [27]. However, fractional extensions of ordinary models have been showing
improvements in fitting real and experimental data [28]. This improvement, in general,
is attributed to the memory and long-range correlation effects presented in the fractional
formulation [29]. The fractional diffusion equation is described by integro-differential
equation [30] and has an explicit dependence on the integrated kernel choice. Depending
on the kernel and proportionally constants, we have different definitions that can be used
in several contexts. For example, the Riemann–Liouville definition can be employed for
the Cauchy problems for single and multiple terms [31]; the Caputo definition can be
used to study a population growth model [32]; the Grünwald–Letnikov definition can be
used to solve the Bagley–Torvik and Fokker–Planck equation [33]; other definitions can be
considered in different contexts [34,35].

Analytical solutions for fractional differential equations can be hard to find, and they
work only for specific cases [36]. Due to this, numerical methods are frequently applied
to achieve this objective [37]. Lin and Xu [38] derived a finite difference method to solve
the time fractional diffusion equation, while for time derivatives, they considered the
Legendre spectral methods. The numerical stability of the Grünwald–Letnikov derivative
was investigated by Li and Wang [39]. The authors used the Grünwald–Letnikov deriva-
tive as an approximation of the Caputo derivative and obtained stability conditions for
the time fractional delay differential equations. Also considering the background of the
finite difference scheme, Tian et al. [40] solved the modified Burgers model with nonlo-
cal dynamics by considering the implicit finite difference. To obtain the discrete form of
the Caputo operator, they utilized the L1 formula. Furthermore, the authors derived an
unconditional stability condition and showed three numerical examples, exhibiting the
consistency of their results. Solutions for non-linear fractional differential equations were
investigated by Jiang et al. [41]. The authors considered a predictor–corrector compact
difference scheme to solve the non-linear schemes and proved its existence and uniqueness.
The heat model arising in viscoelasticity media was solved by Yang et al. [42] using a
space–time Sinc-collocation method. Their results showed an exponential convergence rate
in space and time; in addition, the experimental results exhibited a good precision of their
method. Other numerical methods can be found in [43–46].

For solving the fractional diffusion equation, some authors have explored different
methods, as shown in [47–49]. The common factor of these works is that the authors derived
the numerical scheme for a specific kernel. In the present work, we propose a numerical
scheme to obtain numerical solutions of fractional reaction–diffusion equations under a
general kernel. In addition, we derived the stability condition as a function of different
kernel formulations. We considered general kernels acting in fractional time and space
operators to apply the numerical procedure. After that, we discretized the system according
to the finite differences method. Consequently, we obtained a general recurrence formula
to solve the reaction–diffusion equation. Considering a particular case, i.e., without source
terms, we investigated the stability conditions and obtained their expressions. In order to
exemplify the methodology, we considered the diffusion equation governed by the power-
law and exponential kernels. Our results showed that the diffusion process is anomalous
and depends on the fractional order and kernel choice. The main contribution of this
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work is presenting the general expression to solve the fractional diffusion equation and its
stability numerically.

We structure the manuscript as follows: Section 2 presents a general numerical scheme
for fractional diffusion equations. In Sections 3 and 4, we employ our methodology to
solve the fractional diffusion equation governed by the power-law and exponential kernels.
Finally, we draw our conclusions in Section 5.

2. A General Fractional Diffusion

The fractional diffusion equation, with time and space non-integer operators, is given
by [47,48]

∂α

∂tα
u(x, t) = D

∂µ

∂xµ u(x, t) + F(x, t), (1)

where u(x, t) is the density (e.g., population, particles, chemical substances, etc.), α ∈ (0, 1)
and µ ∈ (1, 2) are the temporal and space fractional order, respectively, D is the diffusivity
coefficient, and F(x, t) is the reaction term. To develop the numerical scheme, we considered
a diffusion process occurring in a limited space defined by 0 ≤ x ≤ X and 0 ≤ t ≤ T, with
null boundary conditions.

The fractional time operator in Equation (1) is defined as

∂α

∂tα
u(x, t) ≡ Dα

t u(x, t) =
∫ t

0
Kα(t− t′)

∂

∂t′
u(x, t′)dt′ , (2)

and the fractional space operator is described by

∂µ

∂xµ u(x, t) ≡ x0 Dµ
x u(x, t) =

∫ x

x0

Λµ(x− x′)
∂2

∂x′2
u(x′, t)dx′ , (3)

to consider situations with singular and non-singular kernels in a unified way [1,37]. It is
worth noting that Λµ(x) = δ(x) and Kα(t) = δ(t) recover the usual diffusion equation.

To develop the numerical scheme, we considered a grid composed of [0, X]× [0, T],
where the space and time are discretized according to xi = i∆x and tj = j∆t, respectively,
where i = 0, 1, ..., Nx and j = 0, 1, ..., Nt. The step sizes are defined by ∆x = X/Nx and
∆t = T/Nt. The initial condition is considered in X/2. To avoid the loss of packet density
for the boundaries, it is necessary to consider a large value of Nx, e.g., 103. Maintain the
relation ∆t/∆x2 as small as possible, e.g., 10−1 (more details are presented in Section 2.1).
Our simulations suggested that a relation ∆t/∆x2 greater than 0.5 leads to the wrong
answers, once numerical errors are carried.

To obtain the discrete form of Equation (2), we split the integral related to the fractional
time derivative as follows:

Dα
t u(xi, tj+1) =

∫ t1

0
dt′Kα(tj+1 − t′)

∂

∂t′
u(x, t′)

+
∫ t2

t1

dt′Kα(tj+1 − t′)
∂

∂t′
u(x, t′) + ... +

∫ tj

tj−1

dt′Kα(tj+1 − t′)
∂

∂t′
u(x, t′),

=
j

∑
k=0

∫ tk+1

tk

dt′Kα(tj+1 − t′)
∂

∂t′
u(x, t′). (4)

The standard derivative inside the integrals in Equation (4) is approximated by the
finite difference method, given by

∂

∂t′
u(x, t′) =

u(xi, tj+1)− u(xi, tj)

∆t′

=
ui,j+1 − ui,j

∆t′
. (5)
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By combining the previous equations for the fractional time derivative, we obtain that

Dα
t u(xi, tj+1) = ∆t−1

j

∑
k=0

(
ui,j+1 − ui,j

) ∫ tk+1

tk

dt′Kα(tj+1 − t′) . (6)

Following the developments in [38], we can rewrite Equation (6) as follows:

Dα
t u(xi, tj+1) = ∆t−1

j

∑
k=0

(ui,j+1−k − ui,j−k)
∫ tj+1−k

tj−k

dt′Kα(tj+1 − t′), (7)

and consequently,

Dα
t u(xi, tj+1) = ∆t−1

[
(ui,j+1 − ui,j)

∫ tj+1

tj

dt′Kα(tj+1 − t′)

+
j

∑
k=1

(ui,j+1−k − ui,j−k)
∫ tj+1−k

tj−k
dt′Kα(tj+1 − t′)

]
. (8)

Equation (8) represents the discrete form of Dα
t u(x, t) and depends on the behavior of

the kernel Kα(t), which can be singular or non-singular.
A similar expression can be obtained for the spatial operator presented in Equation (1), i.e.,

x0 Dµ
x u(x, t) ≡ ∂µ

∂xµ u(x, t) =
∫ x

x0

dx′Λµ(x− x′)
∂2

∂x′2
u(x′, t) . (9)

By applying the previous procedure, we have that

x0 Dµ
x u(xi, tj) =

∫ x

x0

dx′Λµ(xi − x′)
∂2

∂x′2
u(x′, t) =

i−1

∑
n=0

∫ xn+1

xn
dx′Λµ(xi − x′)

∂2

∂x′2
u(x′, t), (10)

with

∂2

∂x2 u(x, t) =
u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

∆x2

=
ui+1,j − 2ui,j + ui−1,j

∆x2 . (11)

By substituting the previous equation in Equation (10), we obtain the following result
for the spatial fractional derivative:

x0 Dµ
x u(xi, tj) = ∆x−2

i−1

∑
n=0

(
ui+1,j − 2ui,j + ui−1,j

) ∫ xn+1

xn
dx′Λµ(xi − x′), (12)

and consequently,

x0 Dµ
x u(xi, tj) = ∆x−2

i−1

∑
n=0

(
ui−n+1,j − 2ui−n,j + ui−n−1,j

) ∫ xi−n+1

xi−n

dx′Λµ(xi − x′). (13)

In terms of Equations (8) and (13), the diffusion Equation (1) can be rewritten
as follows:

ui,j+1I(tj+1, tj) = ui,jI(tj+1, tj)−
j

∑
k=1

(ui,j+1−k − ui,j−k)I(tj+1−k, tj−k)

+ D
∆t

∆x2

i−1

∑
n=0

(ui−n+1,j − 2ui−n,j + ui−n−1,j)χ(xi−n+1, xi−n)
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+ ∆tF(xi, tj), (14)

where I(tj+1, tj) =
∫ tj+1

tj
dt′Kα(tj+1 − t′) and χ(xi+1, xi) =

∫ xi+1
xi

dx′Λµ(xi − x′).
Equation (14) enables us to obtain the recurrence equation:

ui,j+1 = ui,j −
1

I(tj+1, tj)

j

∑
k=1

(ui,j+1−k − ui,j−k)I(tj−k+1, tj−k)

+ D
∆t

I(tj+1, tj)∆x2

i−1

∑
n=0

(ui−n+1,j − 2ui−n,j + ui−n−1,j)χ(xi−n+1, xi−n)

+
∆t

I(tj+1, tj)
F(xi, tj) , (15)

which can be used to obtain numerical solutions for Equation (1), only if I(tj+1, tj) 6= 0.
Equation (15) is an explicit method due to the fact that the next values (ui,j+1) are obtained
from the previous ones (ui,j). It is important to note that we considered x0 = 0. Besides
the space fractional operator being defined in the range (−∞,+∞), we can make the
approximation and integrate numerically in the region (0, X) once this interval is large
enough compared to the time interval. Moreover, the initial condition starts in (0, X/2). It
is also worth mentioning that Equation (15) can cover scenarios characterized by singular
and non-singular kernels related to the Caputo, Fabrizio–Caputo, and Atangana–Baleanu
derivatives, among other fractional derivatives.

2.1. Stability Analysis—Standard and Fractional Cases

The solution for Equation (1) represented by Equation (15) is obtained by considering
the finite difference method. The analysis of the stability of this solution can be performed
analogously to the procedure used to study the stability of the standard equation. The stan-
dard diffusion equation is

∂

∂t
u(x, t) = D

∂2

∂x2 u(x, t). (16)

In a finite differences scheme, we obtain

ui,j+1 = ui,j + D
∆t

∆x2 (ui+1,j − 2ui,j + ui−1,j). (17)

The stability condition for the solutions of the previous equation, which represents
the discrete form of Equation (16), is well known and can be obtained by the von Neu-
mann stability [50], which is valid for linear equations with defined boundary conditions.
The stability condition is D∆t/∆x2 ≤ 1/2 [27]. To perform a similar analysis and obtain the
stability condition for Equation (15), we considered, for simplicity, the absence of reaction
terms, i.e., F(xi, tj) = 0.

First, let us rewrite Equation (15) in a compact form, obtaining

ui,j+1 = ui,j − β j

j

∑
k=1

(ui,j+1−k − ui,j−k)µj,k + rj

i−1

∑
n=0

(ui−n+1,j − 2ui−n,j + ui−n−1,k)ξi,n, (18)

where β j = 1/I(tj+1, tj), µj,k = I(tj−k+1, tj−k), ξi,n = χ(xi−n+1, xi−n), and
rj = β j(D∆t/∆x2). Given a more-accurate solution Ui,j, the error is

εi,j = Ui,j − ui,j. (19)

Equation (19) is a linear combination of solutions for Equation (18), such that the
following equation must be satisfied:
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εi,j+1 = εi,j − β j

j

∑
k=1

(εi,j+1−k − εi,j−k)µj,k + rj

i−1

∑
n=0

(εi−n+1,j − 2εi−n,j + εi−n−1,j)ξi,n. (20)

For a convergent solution, |εi,j+1/εi,j| ≤ 1 [51] is necessary. As we are dealing with
a linear problem and the boundary conditions are well defined, the error space variation
can be expanded in the Fourier series in the interval L given by ε(x, t) = ∑L/2

m=1 eateIKmx,
where Km = πm/L and I is the imaginary unit. The discrete form is ε(xi, tj) = εi,j =

∑L/2
m=1 eaj∆teIKmi∆x. Considering the discrete form, we divide Equation (20) by εi,j, obtaining

εi,j+1

εi,j
= 1− β j

j

∑
k=1

(
εi,j+1−k

εi,j
−

εi,j−k

εi,j

)
µj,k + rj

i−1

∑
n=0

(
εi−n+1,j

εi,j
− 2

εi−n,j

εi,j
+

εi−n−1,j

εi,j

)
ξi,n, (21)

and each ratio is calculated separately, e.g.,

εi,j+1

εi,j
=

∑L/2
m=1 ea(j+1)∆teIKmi∆x

∑L/2
m=1 eaj∆teIKmi∆x

= ea∆t, (22)

and so on. After performing some calculus, we obtain

ea∆t = 1− β j

j

∑
k=1

(ea(1−k)∆t − e−ak∆t)µj,k + rj

i−1

∑
n=0

(eIkm(1−n)∆x − 2e−Ikmn∆x + e−Ikm(1+n)∆x)ξi,n. (23)

From the condition |εi,j+1/εi,j| ≤ 1, we conclude |ea∆t| ≤ 1. With this condition in
Equation (23), we obtain

|1− β jσj,k + rjνi,n| ≤ 1, (24)

where σj,k = ∑
j
k=1(e

a(1−k)∆t − e−ak∆t)µj,k and

νi,n =
i−1

∑
n=0

(eIkm(1−n)∆x − 2e−Ikmn∆x + e−Ikm(1+n)∆x)ξi,n; (25)

this expression converges since µj,k and ξi,n converge. The inequality, Equation (24), has
two possibilities: (i) 1− β jσj,k + rjνi,n ≥ 0 or (ii) 1− β jσj,k + rjνi,n < 0. Let us analyze them
separately. For the first case, i.e., Case (i), we verify that it is satisfied only if

D
∆t

∆x2 ≥
σj,k

νi,n
− 1

β j
, (26)

for which the solution of Equation (24) is

D
∆t

∆x2 ≤
σj,k

νi,n
. (27)

For Case (ii), we have that it is satisfied for

D
∆t

∆x2 <
β jσj,k − 1

β jνi,n
, (28)

where the inequality is solved by

D
∆t

∆x2 ≤
2− σj,k

β jνi,n
. (29)

The stability conditions given by Inequalities (27) and (29) are valid once σj,k and νi,n

are convergent and since ∆x 6= 0. Furthermore, note that νi,n ∝
∫ xi+1

xi
dx′Λµ(xi − x′) and

β j = 1/
∫ tj+1

tj
dt′Kα(tj+1 − t′). In this way, the stability is guaranteed when νi,n 6= 0 and

β j 6= 0.
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3. Fractional Operators—Power-Law Kernel

Besides Equation (15) admitting some forms of kernels, for the numerical examples,
we start by focusing our analysis on:

Kα(t) = tα
/

Γ(1− α) , (30)

and

Λµ(x) = xµ−1
/

Γ(2− µ) , (31)

where Γ(·) is the Gamma function [52], α ∈ (0, 1), and µ ∈ (1, 2). These kernels allow us
to connect the differential operators with the Caputo fractional differential operator [1].
Later, we considered an exponential kernel for the fractional time derivative, which is
non-singular. In addition, in our numerical examples, we considered the initial condition
given by u(x, 0) = e−x2/(2σ2)/

√
2πσ2, with σ = 0.4.

3.1. Power-Law in Time

Firstly, we considered the kernels given by Equation (30) and Λµ(x) = δ(x). In this
case, we have that

∂α

∂tα
u(x, t) = D

∂2

∂x2 u(x, t) + F(x, t), (32)

where

Dα
t u(x, t) =

1
Γ(1− α)

∫ t

0
dt′

1
(t− t′)α

∂

∂t
u(x, t). (33)

Note that these choices for the kernel led us to the standard operator, the spatial
variable, and a singular kernel for the time variable.

For a particular case, i.e., F(x, t) = 0, Equation (32) admits the following analyt-
ical solution:

u(x, t) =
1√

4πDtα

∫ ∞

−∞
dx′u(x′)H2,0

1,2

[
(x− x′)2

4Dtα

∣∣∣∣(1− α
2 ,α)

( 1
2 ,1) (0,1)

]
, (34)

where u(x′) is the initial condition, and the boundary conditions are given by u(±∞, t) =
0. This solution can be obtained by using the Fourier (F{· · · } =

∫ ∞
−∞ dxe−ikx · · · and

F−1{· · · } = 1
2π

∫ ∞
−∞ dkeikx · · · ) and Laplace (L{· · · } =

∫ ∞
0 dxe−st · · · and L−1{· · · } =

1
2πi
∫ ∞+iγ
−∞+iγ dsest · · · ) transforms. The previous solution is expressed in terms of the Fox H

functions, which are defined as follows [53]:

Hm,n
p,q

[
x
∣∣∣(a1,A1),··· ,(ap ,Ap)

(b1,B1),··· ,(bq ,Bq)

]
=

1
2πi

∫
L

ds χ(s)xs, (35)

where

χ(s) = ∏m
i=1 Γ(bi − Bis)∏n

i=1 Γ(1− ai + Ais)

∏
q
i=m+1 Γ(1− bi + Bis)∏

p
i=1+n Γ(ai − Ais)

. (36)

For the case F(x, t) 6= 0, the solution for Equation (32) is given by

u(x, t) =
1√

4πDtα

∫ ∞

−∞
dx′ū(x′)H2,0

1,2

[
(x− x′)2

4Dtα

∣∣∣∣(1− α
2 ,α)

( 1
2 ,1) (0,1)

]
+

∫ t

0
dt′
∫ ∞

−∞
dx′F(x′, t′)

1
|x− x′| H2,0

2,2

[
(x− x′)2

D(t− t′)α

∣∣∣(α,α) (1,1)
(1,2) (1,1)

]
. (37)
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Since these solutions are not very useful from a simulation point of view, we employed
the discretized form. To do that, we considered the time kernel defined by Equation (30) in
Equation (15) and obtain

ui,j+1 = ui,j −
j

∑
k=1

(ui,j+1−k − ui,j−k)[(k + 1)1−α − k1−α]

+ DΓ(2− α)
∆tα

∆x2 (ui+1,j − 2ui,j + ui−1,j) + ∆tαF(xi, tj). (38)

Considering F(x, t) = 0, Figure 1 displays a numerical solution for ∆t = 0.01, ∆x = 0.5,
D = 1, and σ = 0.4. The panels (a) and (d) are for α = 0.99, the panels (b) and (e) for
α = 0.9, and the panels (c) and (f) for α = 0.7. The effect of the fractional derivative in
the time operator is to narrow the packet spread. The diffusion of the Gaussian package
occurs with delay as α decreases. Decreasing α, the packet is narrowed, and the amplitude
is less than as in α near 1. The multiplicative factors in the sum of time contribution in
Equation (38) decrease with α. Consequently, the narrowed process occurs because the time
delay induced by the non-integer operator in the time derivative makes the package spread
slowly. These effects are more pronounced by looking at the profiles.

(a) (b) (c)

(d) (e) (f)

u

t x t x t x

t

x

t t

− − −

−−−

Figure 1. Diffusion of a Gaussian package under time power-law kernel. The panels (a,d) are for
α = 0.99; the panels (b,e) for α = 0.9; and the panels (c,f) for α = 0.7. We considered ∆t = 0.01,
∆x = 0.5, D = 1, and σ = 0.4.

Figure 2a–c show the profiles in t = 0.02, 10, 12.5, 25, 50, and 100 by the red, green,
black, blue, orange, and dark-green lines, respectively. Figure 2a is for α = 0.99; Figure 2b is
for α = 0.9; Figure 2c is for α = 0.7. In the profiles, as time advances, the Gaussian packet is
deformed by an anomalous relaxation process, due to the effects of non-integer operators.

−25 0 25
x

(a)

t

(b) (c)

0.02 10 12.5 25 50 100

10
−3
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10
−1

10
0

−25 0 25

u

x

t0.02 10 12.5 25 50 100

−25 0 25
x

t0.02 10 12.5 25 50 100

Figure 2. Profiles of Gaussian package. The panels (a–c) are for α = 0.99, α = 0.9, and α = 0.7,
respectively. We considered ∆t = 0.01, ∆x = 0.5, D = 1, and σ = 0.4.

Figure 3 displays u(0, t) for α = 0.99, α = 0.90, and α = 0.70 by the red, black, and blue
lines, respectively. The behavior of u(0, t) is a power-law with slopes equal to 0.5, 0.55, and
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0.65 for α = 0.99, α = 0.90, and α = 0.70. As the measured α decreases, the slope associated
with u(0, t) increases. The increment is related to the anomalous relaxation process.

10
−3

10
−2

10
−1

10
0

10
−1

10
0

10
1

10
2

u
(0

,t
)

t

α = 0.99
α = 0.90
α = 0.70

∝t
−0.50

∝
t −0.55

∝
t −0.65

Figure 3. Behavior of u(0, t) as a function of time. The red line is for α = 0.99; the black line is for
α = 0.90; the blue line is for α = 0.7. We considered ∆t = 0.01, ∆x = 0.5, D = 1, and σ = 0.4.

3.2. Power-Law in Space

Considering the power-law operator (Equation (31)) only in the space derivative,
Equation (1) becomes

∂

∂t
u(x, t) = D

∂µ

∂xµ u(x, t) + F(x, t), (39)

with Λµ(x) = x1−µ/Γ(2− µ).
From Equation (15), a numerical expression for Equation (39) is given by

ui,j+1 = ui,j +
D

Γ(3− µ)

∆t
∆xµ

i−1

∑
n=0

(ui−n+1,j − 2ui−n,j + ui−n−1,j)[(n + 1)2−µ − n2−µ]

+ ∆tF(xi, tj). (40)

The diffusion of a Gaussian packet under space fractional operators is displayed in
Figure 4. Figure 4a–c show the numerical solution for µ = 1.99, µ = 1.7, and µ = 1.5,
followed by the respective density plots in Figure 4d–f. The packet advances in time
with the same velocity at all times. However, the spread in the space region occurs in
a wider behavior. The effects of fractional space derivatives are not as evident as the
effects produced by time operators. This occurs due to the multiplicative terms in each
contribution in the distinguished numerical schemes.

(a) (b) (c)

(d) (e) (f)

u

t x t x t x

t

x

t t

− − −

−−−

Figure 4. Diffusion of a Gaussian package under power-law space derivative. The panels (a,d) are
for µ = 1.99; the panels (b,e) for µ = 1.7; and the panels (c,f) for µ = 1.5. We considered ∆t = 0.01,
∆x = 0.8, D = 1, and σ = 0.4.

Figure 5 shows the profiles for µ = 1.99 (Figure 5a), µ = 1.7 (Figure 5b), and µ = 1.5
(Figure 5c) in t = 0.02 (red line), 10 (green line), 12.5 (black line), 25 (blue line), 50 (orange
line), and 100 (dark-green line). We verified that the numerical solutions are very similar.
This effect can be investigated by looking at the profiles.
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Figure 5. Profiles of Gaussian package for power-law space kernel. The panels (a–c) are for µ = 1.99,
µ = 1.7, and µ = 1.5, respectively. We considered ∆t = 0.01, ∆x = 0.8, D = 1, and σ = 0.4.

The behavior of u(0, t) as a time function is shown in Figure 6, where the red line is
for µ = 1.99, the black line for µ = 1.7, and the blue line for µ = 1.5. The slopes associated
with µ = 1.99, µ = 1.7, and µ = 1.5 are 0.49, 0.58, and 0.67, respectively. The slopes oscillate
around 0.5, which is associated with the normal diffusion.
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∝
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Figure 6. u(0, t) as a function of the time for the power-law space kernel. The red line is for µ = 1.99;
the black line is for µ = 1.7; the blue line is for µ = 1.5. We considered ∆t = 0.01, ∆x = 0.8, D = 1,
and σ = 0.4.

3.3. Power-Law in Time and Space

For the last case, we considered both non-integer operators in the diffusion equation,
which is

∂α

∂tα
u(x, t) = D

∂µ

∂xµ u(x, t) + F(x, t). (41)

For this case, we haveKα(t) = t−α/Γ(1− α) and Λµ(x) = x1−µ/Γ(2− µ). Substituting
these values in Equation (15) and performing some operations, we obtain

ui,j+1 = ui,j −
j

∑
k=1

(ui,j+1−k − ui,j−k)
[
(k + 1)1−α − k1−α

]
+

+ D
Γ(2− α)

Γ(3− µ)

∆tα

∆xµ

i−1

∑
n=0

[ui−n+1,j − 2ui−n,j + ui−n−1,j][(n + 1)2−µ − n2−µ]

+ ∆tαΓ(2− α)F(xi, tj). (42)

Equation (42) provides a numerical solution for the diffusion equation (Equation (1)),
when the power-law kernels in space and time are considered.

Figure 7 displays the diffusion of a Gaussian package with the initial condition equal
to u(x, 0) = e−x2/(2σ2)/

√
2πσ2. Figure 7a–c exhibit the solutions in the three-dimensional

space, while Figure 7d–f show the density plot of u (color scale). In these results, we
considered σ = 0.4, ∆t = 0.01, ∆x = 0.5, D = 1, α = 0.99, and µ = 1.99 in Figure 7a,d,
α = 0.9 and µ = 1.7 in Figure 7b,e, and α = 0.7 and µ = 1.5 in Figure 7c,f. These results
show that the time fractional operator effects are more prominent than the effects of the
space fractional operator. This occurs due to each contribution’s multiplicative terms
appearing in Equation (42).
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(a) (b) (c)

(d) (e) (f)
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t x t x t x
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x
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Figure 7. Diffusion of a Gaussian package under time and space power-law kernels. The panels
(a,d) are for α = 0.99 and µ = 1.99; panels (b,e) for α = 0.9 and µ = 1.7; and panels (c,f) for α = 0.7
and µ = 1.5. We considered σ = 0.4, ∆t = 0.01, ∆x = 0.75, and D = 1.

Figure 8a–c show the profiles for t = 0.02 (red line), 10 (green line), 12.5 (black line),
25 (blue line), 50 (orange line), and 100 (dark-green line). The panel (a) is for α = 0.99 and
µ = 1.99, the panel (b) for α = 0.9 and µ = 1.7, and the panel (c) for α = 0.7 and µ = 1.5.
The profiles display that the package spreads slowly in an abnormal process when the
fractal orders decrease.

−25 0 25
x

−25 0 25
x

10
−3

10
−2

10
−1

10
0

−25 0 25

u

x

(a)

t

(b) (c)

0.02 10 12.5 25 50 100 t0.02 10 12.5 25 50 100 t0.02 10 12.5 25 50 100

Figure 8. Profiles of Gaussian package for time and space power-law kernels. The panel (a) is for
α = 0.99 and µ = 1.99; the panel (b) is for α = 0.9 and µ = 1.7; the panel (c) is for α = 0.7 and 1.5. We
considered σ = 0.4, ∆t = 0.01, ∆x = 0.75, and D = 1.

In the last analysis, we display u(0, t) as a function of time in Figure 9 by the red,
black, and blue lines, for α = 0.99 and µ = 1.99, for α = 0.9 and µ = 1.7, and for α = 0.7
and µ = 1.5. As the fractional order decreases, the inclination of each curve decreases.
Our results show that the slopes associated with the red, black, and blue curves are given by
0.50, 0.62, and 0.77, respectively. These slopes show that the relaxation process is anomalous
and depends on the fractional order. We mixed both effects by combining α and µ.
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Figure 9. u(0, t) as a function of the time and space power-law kernels. The red line is for α = 0.99
and µ = 1.99. The black line is for α = 0.9 and µ = 1.7. The blue line is for α = 0.7 and µ = 1.5.
We considered σ = 0.4, ∆t = 0.01, ∆x = 0.75, and D = 1.
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4. Fractional Operators—Exponential Kernel

In our second example, we considered the exponential kernel, defined by

Kα(t) = M(α) e−
αt

1−α

/
(1− α) , (43)

and

Λµ(x) = δ(x) , (44)

where M(α) is the normalization constant. The kernel defined by Equation (44) returns
the standard space differential operator. By considering these choices for the kernel, the
diffusion equation can be written as follows:

∂α

∂tα
u(x, t) = D

∂2

∂x2 u(x, t) + F(x, t). (45)

The analytical solution for this equation can be found by using the integral transforms,
i.e., the Laplace and Fourier transforms [1], which allow us to obtain

u(x, t) =
∫ ∞

−∞
dx′Gα,1(x− x′, t)u(x) +

∫ ∞

−∞
dx′

∫ t

0
dt′Gα,2(x− x′, t− t′)F(x′, t′), (46)

with

Gα,1(x, t) =
1

2π

∫ ∞

−∞
dkeikx e

− αDk2t
1+(1−α)Dk2t

1 + (1− α)Dk2 , (47)

and

Gα,2(x, t) =
1

2π

∫ ∞

−∞
dkeikx e

− αDk2t
1+(1−α)Dk2t

[1 + (1− α)Dk2]
2 +

e
− |x|

2
√

(1−α)D√
(1− α)D

δ(t) . (48)

Considering Equation (43), the discretized diffusion equation becomes

ui,j+1 = ui,j −
1

1− e
−α∆t
1−α

j

∑
k=1

(ui,j+1−k − ui,j−k)
[
e
−α∆t
1−α k − e

−α∆t
1−α (1+k)

]
+

αD∆t

M(α)∆x2
(

1− e
−α∆t
1−α

) (ui+1,j − 2ui,j + ui−1,j) +
α∆tF(xi, tj)

M(α)
(

1− e
−α∆t
1−α

) ; (49)

for simplicity, we considered M(α) = 1 and F(xi, tj) = 0. Equation (49) is a discretization
for a non-singular kernel, while Equation (38) is for a singular kernel. When the time
operator is discretized for our kernel choices, the terms related to the memory effects
decay following a power-law and an exponential function for singular and non-singular
kernels. In addition, memory terms are divided by 1− e−α∆t/(1−α) for the exponential
kernel. Due to the product of the operator discretization, multiplicative terms appear in the
space derivative and source term. For the singular kernel, memory terms are proportional
to ∆tα, while for the non-singular kernel, they are proportional to α/[M(α)(1− e−α∆t/1−α)].
These constants carry information about the kernel type.

Numerical solutions for Equation (49) are displayed in Figure 10, where we considered
u(x, 0) = e−x2/(2σ2)/

√
2πσ2, σ = 0.4, ∆t = 0.01, ∆x = 0.5, D = 1, and M(α) = 1.

Figure 10a,d are for α = 0.99, Figure 10b,e are for α = 0.97, Figure 10c,f are for α = 0.95.
The effects of the diffusion process become anomalous. However, the abnormality is not
too pronounced. The effects of decreasing α maintain the slope near 0.5.
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Figure 10. Diffusion of a Gaussian package under exponential kernel. The panel (a,d) is for α = 0.99;
the panel (b,e) is for α = 0.97; the panel (c,f) is for α = 0.95. We considered σ = 0.4, ∆t = 0.01,
∆x = 0.5, D = 1, and M(α) = 1.

Profiles for t = 0.02 (red line), 1 (green line), 1.25 (black line), 2.5 (blue line), 5 (orange
line), and 10 (dark-green line) are displayed in Figure 11. Figure 11a is for α = 0.99;
Figure 11b is for α = 0.97; Figure 11c is for α = 0.95. As observed in the projection shown
in Figure 10, the exponential kernel does not affect the dynamics in a pronounced way.
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Figure 11. Profiles of Gaussian package for time exponential kernel. The panel (a) is for α = 0.99;
(b) is for α = 0.97; (c) is for α = 0.95. We considered σ = 0.4, ∆t = 0.001, ∆x = 0.5, D = 1, and
M(α) = 1.

To validate our algorithm, we compared the numerical solution with the analytical one
given by Equation (46). We calculated the relative error by ∆E = |usim(0, t)− uana(0, t)|.
The error is displayed in Figure 12 by the red points for α = 0.99, black points for α = 0.97,
and blue for α = 0.95 as a function of time. The error decreases as time advances. Also, the
error for α = 0.95 is greater than the errors for the other two cases. This occurs due to the
terms being inversely proportional to the exponential of α. We verified that the error can be
reduced by decreasing ∆x and ∆t.
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Figure 12. Error among simulated points and analytical ones defined by ∆E = |usim(0, t)− uana(0, t)|.
We considered σ = 0.4, ∆t = 0.01, ∆x = 0.5, D = 1, and M(α) = 1.
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Figure 13 exhibits u(0, t) as a time function for α = 0.99 (red line), α = 0.97 (black line),
and α = 0.95 (blue line). In the range t ∈ [10−1, 101], the slopes associated with each curve
are 0.50, 0.49, and 0.49. Each slope is practically 0.5, indicating a normal diffusion process.
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Figure 13. u(0, t) as a function of the time exponential kernel. The red line is for α = 0.99; the black
line is for α = 0.97; the blue line is for α = 0.95. We considered σ = 0.4, ∆t = 0.01, ∆x = 0.5, D = 1,
and M(α) = 1.

5. Conclusions

We analyzed a reaction–diffusion equation governed by general fractional operators
from the numerical point of view. Considering the finite difference scheme, we proposed
a discretization for the fractional reaction–diffusion equation under the general kernel,
acting in space and time. In addition, we investigated and obtained the stability conditions
that explicitly depend on the kernel type. As a numerical application, we considered two
distinct kernels: power-law and exponential. For the power-law kernel, we studied the
effects when the fractional operator acts in time, space, and both derivatives. On the other
hand, for the exponential kernel, we investigated their action only in the time derivative.
For this case, we compared the simulation with our analytical solution. The results showed
an error of less than 10−1.

One limitation of the method is the entire dependence of the results from the integrals
that appear in Equation (15), which can be hard to calculate in some cases. Another
challenge is the numerical implementation. In this work, we presented two numerical
examples. Due to the stability conditions, the implementation of an exponential kernel
spends more computational cost than a power-law kernel. In addition, for another kernel
choice, it is important to consider an adequate grid size, which is a determinant factor
in the solution convergence. Our results showed that our algorithm works for different
kernel choices and can also be used to investigate anomalous diffusion, which agrees with
analytical solutions for specific cases. Other works proposed discrete forms for general time
kernel [54,55]. In a particular case, the diffusion equation under the space general kernel
was also explored in [56], where the authors obtained analytical solutions. Our results are
in agreement with these works. The novelty of our work is based on the investigation of
numerical solutions, as well as their stability for general kernels acting in both operators.

In summary, the fractal derivatives can be considered to explore aspects in which the
usual operators are not suitable to capture the system’s behavior, such as memory effects
and long-range correlations. When power-law kernels are considered, these effects have
implications in the relaxation process, which is related to the solutions proportionally with
Mittag–Leffler functions, which are asymptotically governed by power-laws. Specifically,
our results showed that the numerical procedure developed in this work can be employed
to solve fractional differential equations considering different kernels. Our methodology
can be extended to study high-order problems, as studied by Zhang et al. [57], which are
topics for future works.

Author Contributions: Conceptualization, E.C.G., P.R.P., E.K.L., E.S., J.T., M.K.L., F.S.B., I.L.C. and
A.M.B.; methodology, E.C.G., P.R.P., E.K.L., E.S., J.T., M.K.L., F.S.B., I.L.C. and A.M.B.; formal analysis,
E.C.G., P.R.P., E.K.L., E.S., J.T., M.K.L., F.S.B., I.L.C. and A.M.B.; investigation, E.C.G., P.R.P., E.K.L.,
E.S., J.T., M.K.L., F.S.B., I.L.C. and A.M.B.; writing—original draft preparation, E.C.G., P.R.P., E.K.L.,
E.S., J.T., M.K.L., F.S.B., I.L.C. and A.M.B.; writing—review and editing, E.C.G., P.R.P., E.K.L., E.S.,



Fractal Fract. 2023, 7, 792 15 of 17

J.T., M.K.L., F.S.B., I.L.C. and A.M.B. All authors have read and agreed to the published version of
the manuscript.

Funding: The authors thank the financial support from the Brazilian Federal Agencies (CNPq);
CAPES; and Fundação Araucária. São Paulo Research Foundation (FAPESP Nos. 2020/04624-2
and 2022/13761-9). E.K.L. acknowledges the support of the CNPq (Grant No. 301715/2022-0).
E.C.G. received partial financial support from Coordenação de Aperfeiçoamento de Pessoal de Nível
Superior—Brasil (CAPES)—Finance Code 88881.846051/2023-01.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors thank the financial support from the Brazilian Federal Agencies
(CNPq); CAPES; and Fundação Araucária. São Paulo Research Foundation (FAPESP Nos. 2020/04624-
2 and 2022/13761-9). E.K.L. acknowledges the support of the CNPq (Grant No. 301715/2022-0).
E.C.G. received partial financial support from Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior—Brasil (CAPES)—Finance Code 88881.846051/2023-01. We would like to thank
www.105groupscience.com, Accessed on: 1 September 2023.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Evangelista, L.R.; Lenzi, E.K. Fractional Diffusion Equations and Anomalous Diffusion; Cambridge University Press: Cambridge, UK, 2018.
2. Paul, A.; Laurila, T.; Vuorinen, V.; Divinski, S.V. Thermodynamics, Diffusion and the Kirkendall Effect in Solids; Springer: Cham,

Switzerland, 2014.
3. Da Silva, S.T.; Viana, R.L. Reaction-diffusion equation with stationary wave perturbation in weakly ionized plasmas. Braz. J.

Phys. 2020, 50, 780–787. [CrossRef]
4. Benetti, M.H.; Silveira, F.E.M.; Caldas, I.L. Fundamental solution of diffusion equation for Kappa gas: Diffusion length for

suprathermal electrons in solar wind. Phys. Rev. E 2023, 107, 055212. [CrossRef] [PubMed]
5. Salman, A.M.; Mohd, M.H.; Muhammad, A. A novel approach to investigate the stability analysis and the dynamics of

reaction–diffusion SVIR epidemic model. Commun. Nonlinear Sci. Numer. Simul. 2023, 126, 107517. [CrossRef]
6. Zhao, H.; Zhu, L. Dynamic Analysis of a Reaction–DiffusionRumor Propagation Model. Int. J. Bifurc. Chaos 2016, 26, 1650101.

[CrossRef]
7. Pinar, Z. An Analytical Studies of the Reaction-Diffusion Systems of Chemical Reactions. Int. J. Appl. Comput. Math. 2021, 7, 81.

[CrossRef]
8. Ganguly, S.; Neogi, U.; Chakrabarti, A.S.; Chakraborti, A. Reaction-diffusion equations with applications to economic systems.

In Proceedings of the Econophysics and Sociophysics: Recent Progress and Future Directions; Springer: Cham, Switzerland, 2017;
pp. 131–144.

9. Essa, K.; Etman, S.M.; El-Otaify, M.S.; Embaby, M.; Mosallem, A.M.; Shalaby, A.S. Different solutions of the diffusion equation
and its applications. J. Basic Appl. Sci. 2021, 10, 82. [CrossRef]

10. Leonel, E.D.; Kuwana, C.M.; Yoshida, M.; Oliveira, J.A. Application of the diffusion equation to prove scaling invariance on the
transition from limited to unlimited diffusion. Europhys. Lett. 2020, 131, 10004. [CrossRef]

11. Lenzi, E.; Lenzi, M.; Ribeiro, H.; Evangelista, L. Extensions and solutions for non-linear diffusion equations and random walks.
Proc. R. Soc. A 2019, 475, 20190432. [CrossRef]

12. Belova, I.V.; Afikuzzaman, M.; Murch, G.E. A new approach for analysing interdiffusion in multicomponent alloys. Scr. Mater.
2021, 204, 114143. [CrossRef]

13. Belova, I.V.; Afikuzzaman, M.; Murch, G.E. Novel Interdiffusion Analysis in Multicomponent Alloys—Part 2: Application to
Quaternary, Quinary and Higher Alloys. Diffus. Found. 2021, 29, 179–203. [CrossRef]

14. Luo, H.; Liu, W.; Gong, H.; Liang, C. First Principles Calculation of Composition Dependence Tracer and Interdiffusion with
Phase Change: A Case Study of Ir/Ir3nb Superalloy. SSRN 2023. [CrossRef]

15. Li, F.; Feng, J.; Zhang, H.; Li, W.Y. Particle-scale heat and mass transfer processes during the pyrolysis of millimeter-sized lignite
particles with solid heat carriers. Appl. Therm. Eng. 2023, 219, 119372. [CrossRef]

16. Markowich, P.A.; Szmolyan, P. A system of convection–diffusion equations with small diffusion coefficient arising in semicon-
ductor physics. J. Differ. Eqs. 1989, 81, 234–254. [CrossRef]

17. Chaffey, N. Molecular Biology of the Cell; Oxford University Press: Oxford, UK, 2003.
18. Kucharski, A.J.; Russell, T.W.; Diamond, C.; Liu, Y.; Edmunds, J.; Funk, S.; Eggo, R.M. Early dynamics of transmission and control

of COVID-19: A mathematical modelling study. Lancet Infect. Dis. 2020, 20, 553–558. [CrossRef] [PubMed]
19. Ratnakar, R.R.; Dindoruk, B. The Role of Diffusivity in Oil and Gas Industries: Fundamentals, Measurement, and Correlative

Techniques. Processes 2022, 10, 1194. [CrossRef]

www.105groupscience.com
http://doi.org/10.1007/s13538-020-00793-4
http://dx.doi.org/10.1103/PhysRevE.107.055212
http://www.ncbi.nlm.nih.gov/pubmed/37329056
http://dx.doi.org/10.1016/j.cnsns.2023.107517
http://dx.doi.org/10.1142/S0218127416501017
http://dx.doi.org/10.1007/s40819-021-01028-z
http://dx.doi.org/10.1186/s43088-021-00153-4
http://dx.doi.org/10.1209/0295-5075/131/10004
http://dx.doi.org/10.1098/rspa.2019.0432
http://dx.doi.org/10.1016/j.scriptamat.2021.114143
http://dx.doi.org/10.4028/www.scientific.net/DF.29.179
http://dx.doi.org/10.2139/ssrn.4336741
http://dx.doi.org/10.1016/j.applthermaleng.2022.119372
http://dx.doi.org/10.1016/0022-0396(89)90122-8
http://dx.doi.org/10.1016/S1473-3099(20)30144-4
http://www.ncbi.nlm.nih.gov/pubmed/32171059
http://dx.doi.org/10.3390/pr10061194


Fractal Fract. 2023, 7, 792 16 of 17

20. Criado, C.; Galán-Montenegro, P.; Velásquez, P.; Ramos-Barrado, J. Diffusion with general boundary conditions in electrochemical
systems. J. Electroanal. Chem. 2000, 488, 59–63. [CrossRef]

21. Yan, H.S.; Ma, K.P. Competitive diffusion process of repurchased products in knowledgeable manufacturing. Eur. J. Oper. Res.
2011, 208, 243–252. [CrossRef]

22. Mahajan, V.; Muller, E.; Bass, F.M. New product diffusion models in marketing: A review and directions for research. J. Mark.
1990, 54, 1–26. [CrossRef]

23. Shinde, A.; Takale, K. Study of Black–Scholes Model and its Applications. Procedia Eng. 2012, 38, 270–279. [CrossRef]
24. Lebedeva, M.I.; Brantley, S.L. Weathering and erosion of fractured bedrock systems. Earth Surf. Process. Landforms 2017,

42, 2090–2108. [CrossRef]
25. Pant, P. Diffusion Equations for Fluid Flow in Porous Rocks. SAMRIDDHI J. Phys. Sci. Eng. Technol. 2017, 9, 5–13. [CrossRef]
26. Watson, E.B.; Baker, D.R. Chemical diffusion in magmas: An overview of experimental results and geochemical applications.

In Physical Chemistry of Magmas; Springer: New York, NY, USA, 1991; pp. 120–151.
27. Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1975.
28. Almeida, R.; Bastos, N.R.; Monteiro, M.T.T. Modeling some real phenomena by fractional differential equations. Math. Methods

Appl. Sci. 2016, 39, 4846–4855. [CrossRef]
29. Tarasov, V.; Zaslavsky, G. Fractional dynamics of systems with long-range interaction. Commun. Nonlinear Sci. Numer. Simul.

2011, 11, 885–898. [CrossRef]
30. Al-Refai, M.; Abdeljawad, T. Analysis of the fractional diffusion equations with fractional derivative of non-singular kernel. Adv.

Differ. Eqs. 2017, 2017, 315. [CrossRef]
31. Luchko, Y. Fractional differential equations with the general fractional derivatives of arbitrary order in the Riemann–Liouville

sense. Mathematics 2022, 10, 849. [CrossRef]
32. Almeida, R.; Malinowska, A.B.; Monteiro, M.T.T. Fractional differential equations with a Caputo derivative with respect to a

kernel function and their applications. Math. Methods Appl. Sci. 2018, 41, 336–352. [CrossRef]
33. Hassan, S.K.; Alazzawi, S.N.A.; Ibrahem, N.M. Some Results in Grűnwald–Letnikov Fractional Derivative and its Best Approxi-
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