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1. Introduction

In recent years, it has been shown that fractional differential equations serve as pow-
erful tools for modeling real-world phenomena which occur in scientific and engineering
disciplines (see, i.e., [1,2]). The existence and/or uniqueness of solutions (or positive solu-
tions) to boundary value issues for fractional-order differential equations have been the
subject of extensive investigation (see, i.e., [3–10] and the references therein).

In [10], under sufficient conditions, the authors proved, by using a fixed point theorem,
the existence of solutions to the problem −D

α ϕ(x) = F(x, ϕ(x)), x > 0, 1 < α ≤ 2,

ϕ(0) = 0, lim
x→∞

Dα−1 ϕ(x) = βϕ(ξ),
(1)

where β ∈ R, 0 < ξ < ∞ and Dα is the Riemann-Liouville fractional derivative (see
Definition 2).

In [11], by using Leray-Schauder theorem, the authors established the existence of
nonnegative solutions for the problem −D

α ϕ(z) = F(z, ϕ(z)), z ∈ (0, ∞), 1 < α ≤ 2,

Iα−2
0 ϕ(0) = 0, lim

z→∞
Dα−1 ϕ(z) = βIα−1

0 (ξ),
(2)

where F ∈ C([0, ∞) × R, [0, ∞)) and 0 < β, ξ < ∞. Here Iγ
0 is the Riemann-Liouville

fractional integral (see Definition 1).
In [12], the authors studied the problem −D

α ϕ(t) = F(t, ϕ(t)), t > 0, 1 < α ≤ 2,

lim
t→0

t2−α ϕ(t) = lim
t→∞

Dα−1 ϕ(t) =
∫ ∞

0 g(r)ϕ(r)dr,
(3)
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where F ∈ C((0, ∞)× [0, ∞), [0, ∞)) with F(z, 0) 6= 0 on (0, ∞) and g ∈ L1([0, ∞)) with∫ ∞
0 [ ζα−1

Γ(α) + ζα−2]g(ζ)dζ < 1.
The existence of positive solutions is obtained by using the monotone iterative tech-

nique.
In [6], by applying the Karamata theory and the Schauder fixed point theorem, the

authors established the existence and uniqueness of a positive continuous solution to
the problem  −D

α ϕ(z) = a(z)ϕσ, z ∈ (0, ∞), 1 < α ≤ 2,

lim
z→0

z2−α ϕ(z) = 0, lim
z→∞

z1−α ϕ(z) = 0,
(4)

where σ ∈ (−1, 1), and a ∈ C((0, ∞), [0, ∞)).
Natural phenomena in scientific and engineering areas can be described by semiposi-

tone problems, see for example [13]. Such problems involving ordinary and fractional
differential equations have been considered by many authors for both finite and infinite
intervals, see for example [14–20] and the references therein.

For instance, in [18], the authors used Bifurcation theory to prove the existence of
positive solutions of some classes of semi-positone problems with nonlinear boundary con-
ditions {

−ϕ′′(z) = λF(z, ϕ(z)), z ∈ (0, 1),

ϕ(0) = 0, ϕ′(1) + c((ϕ(1)))ϕ(1) = 0,
(5)

where c is a nondecreasing function in C([0, ∞), [0, ∞)) with c(∞) < ∞ and F ∈ C([0, 1]×
[0, ∞),R) with F(z, 0) < 0, for z ∈ [0, 1].

In [14], by using the Krasnosel’skii fixed point theorem, the authors established,
for small positive λ, the existence of positive solutions to the superlinear semi-positone
boundary value problem{

−(p(z)ϕ′)′(z) = λF(z, ϕ(z)), z ∈ (r, R),

aϕ(r)− bp(r)ϕ′(r) = cϕ(R) + dp(R)ϕ′(R) = 0,
(6)

where a, b, c, d ≥ 0 with ac + ad + bc > 0, p is a positive continuous function in [r, R] and
F ∈ C([r, R]× [0, ∞),R) satisfying some adequate conditions.

On the other hand, in [21], by applying the fixed point theory and the upper and lower
solutions method, the authors obtained a new result on the existence of at least three distinct
nonnegative solutions for the following nonlocal fractional boundary value problem

CDβ(p(z)ϕ′(z)) + q(z)F(z, ϕ(z)) = 0, z ∈ (0, ∞),

p(0)ϕ′(0) = 0, lim
z→∞

ϕ(z) =
∫ ∞

0 g(r)ϕ(r)dr,
(7)

where CDβ is the standard Caputo derivative (see [1,2,22]), 0 < β < 1 is a constant, F, g, p
and q are given functions.

By using Schauder’s fixed point theorem combined with the diagonalization method,
Arara et al. (see [23]) studied the existence of solutions for boundary value problems for
fractional differential equations of the form{ CDα ϕ(z) = F(z, ϕ(z)), z ∈ (0, ∞), 1 < α ≤ 2,

ϕ(0) = z0 ∈ R, ϕ is bounded on [0, ∞),
(8)

where CDα is the standard Caputo derivative of order 1 < α ≤ 2 and F : [0, ∞)×R→ R is
a continuous function.
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In [24], the authors have considered{
Dβ(ϕ− ϕ(0))(z) = F(z, ϕ(z)), z ∈ (0, ∞),

ϕ(0) = z0 ∈ R,
(9)

where Dβ is the Riemann-Liouville fractional derivative of order 0 < β < 1 and F :
[0, ∞)×R→ R is a continuous function satisfying: there exists the continuous function
q ∈ C([0, ∞), [0, ∞)) such that

|F(z, y1)− F(z, y2)| ≤ q(z)|y1 − y2|, for all z ≥ 0 and y1, y2 ∈ R.

They have showed, by using the contraction principle, that the initial value problem (9) has
a unique solution defined in C([0, ∞),R).

However, it seems, there are few works concerning the existence of positive solutions
for semipositone fractional problems on the half-line, see [25,26].

In this paper, we deal with the following semipositone Riemann-Liouville fractional
(see Definition 2) boundary value problem −D

α ϕ(z) = p(z) + λF(z, ϕ(z)), z ∈ (0, ∞), 1 < α ≤ 2,

lim
z→0+

z2−α ϕ(z) = 0, lim
z→∞

z1−α ϕ(z) = 0,
(10)

where λ ≥ 0, p ∈ C((0, ∞), [0, ∞)) which may be singular at 0 satisfying
∫ ∞

0
min(1, z)

p(z)dz < ∞ and F : (0, ∞)×R→ R is a continuous semipositone function.

The main purpose of this paper is to provide sufficient conditions to guarantee that
the semipositone problem (10) admits a unique positive continuous solution ϕ on (0, ∞)
satisfying

1
c

γ(z) ≤ ϕ(z) ≤ cγ(z), for z > 0,

where c is a positive constant and

γ(z) :=
∫ ∞

0
Gα(z, ζ)p(ζ)dζ. (11)

Here, Gα(z, ζ) is the the Green’s function of the operator ϕ → −Dα ϕ with boundary
conditions lim

z→0
z2−α ϕ(z) = 0 and lim

z→∞
z1−α ϕ(z) = 0.

From Lemma 11 [6], the explicit expression of Gα(z, ζ) is given by

Gα(z, ζ) =
1

Γ(α)
[zα−1 − (max(z− ζ, 0))α−1], z, ζ ∈ [0, ∞). (12)

By means of the properties of the Green function and the contraction principle on a
convenient complete metric space, we have proved our main result. We emphasize that the
approach adapted in this paper can be applied in many other problems involving ordinary,
elliptic or fractional differential equations.

In the rest of this paper, for α ∈ (1, 2], we use the following notations:

(i) B+((0, ∞)) denotes the set of nonnegative Borel measurable functions in (0, ∞).
(ii) For g1, g2 ∈ B+((0, ∞)), the notation g1 � g2 on a set S means there exists c > 0 such

that 1
c g2(ζ) ≤ g1(ζ) ≤ cg2(ζ), for all ζ ∈ S.

(iii) Let C((0, ∞),R) (resp. C+((0, ∞),R)) be the set of all (resp. nonnegative) continuous
functions on (0, ∞).

(iv) C2−α([0, ∞)) = {h ∈ C((0, ∞),R); z→ z2−αh(z) is continuous on [0, ∞)}.

(v) J ={h ∈ C+((0, ∞),R) :
∫ ∞

0
min(1, ζ)h(ζ)dζ < ∞}.
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(vi) M = {h ∈ B+((0, ∞)) :
∫ ∞

0
rα−1h(r)dr < ∞}.

(vii) For q ∈ M, we let

Mq :=
∫ ∞

0
rα−1q(r)dr and ξq := sup

z,ζ∈(0,∞)

∫ ∞

0

Gα(z, r)Gα(r, ζ)

Gα(z, ζ)
q(r)dr. (13)

We will prove (see Lemma 1) that

1
Γ(α)

Mq ≤ ξq ≤
1

(α− 1)Γ(α)
Mq.

In particular, ξq < ∞

To study problem (10), we assume that:

(A1) p is a nontrivial function in J .
(A2) F : (0, ∞)×R→ R is a continuous function and there exists k ≥ 0 such that

|F(z, 0)| ≤ kp(z), for z > 0.

(A3) there exists a function q ∈ M such that

|F(z, y1)− F(z, y2)| ≤ q(z)|y1 − y2|, for all z > 0 and y1, y2 ∈ R.

Our main result is the following:

Theorem 1. Under assumptions (A1)–(A3), then there exists λ∗ > 0 such that for λ ∈ [0, λ∗),
the semipositone problem (10) admits a unique positive solution ϕ ∈ C2−α([0, ∞)) such that

2
(λ∗ − λ(kλ∗ + 1))

(2λ∗ − λ)
γ(z) ≤ ϕ(z) ≤ 2λ∗(

1 + λk
2λ∗ − λ

)γ(z), for z > 0, (14)

where γ(z)is given by (11).

Remark 1. Let p be a nontrivial function in J . Then from Proposition 15 [6], the unique solution
of the linear problem  −D

α ϕ(z) = p(z), z ∈ (0, ∞), 1 < α ≤ 2,

lim
z→0+

z2−α ϕ(z) = 0, lim
z→∞

z1−α ϕ(z) = 0,

is given by γ(z), see (11).
In Theorem 1, under sufficient conditions, we have proved that by adding a small perturbation

of the above linear problem, we still have a unique solution which globally behaves like γ(z).

The paper is organized as follows. In Section 2, we recall and establish some technical
estimates related to Gα(z, ζ), which will be very useful. In Section 3, we prove our main
result and we give an example.

2. Preliminaries

We recall the following basic definitions (see [1,2,22]).

Definition 1. For β > 0 and h : (0, ∞)→ R, we let

Iβ
0 h(z) :=

1
Γ(β)

∫ z

0
(z− ζ)β−1h(ζ)dζ, z > 0,

where Γ is the Euler Gamma function.



Fractal Fract. 2023, 7, 774 5 of 11

Definition 2. The Riemann-Liouville fractional derivative of order β > 0 for a function
h : (0, ∞)→ R is given by

Dβh(z) := (
d
dz

)n In−β
0 h(z), z > 0,

where n = [β] + 1 and [β] is the integer part of β.

The following estimates on the Green function Gα(z, ζ) given by (12) hold.

Proposition 1 ([5]). Let 1 < α ≤ 2 and Gα(z, ζ) given by (12), then we have
(i) Gα(z, ζ) is continuous on [0, ∞)× [0, ∞) with

(α− 1)zα−2 min(z, ζ) ≤ Γ(α)Gα(z, ζ) ≤ zα−2 min(z, ζ). (15)

In particular

(α− 1)zα−2 min(1, z)min(1, ζ) ≤ Γ(α)Gα(z, ζ) ≤ zα−2 max(1, z)min(1, ζ). (16)

(ii) For all z, r, ζ ∈ (0, ∞),

Gα(z, r)Gα(r, ζ)

Gα(z, ζ)
≤ 1

(α− 1)Γ(α)
rα−1. (17)

Lemma 1. Let q ∈ M, then

1
Γ(α)

Mq ≤ ξq ≤
1

(α− 1)Γ(α)
Mq, (18)

where Mq and ξq are given in (13).
In particular, ξq < ∞.

Proof. Since q ∈ M, then from (13) and (17), we have

ξq ≤
1

(α− 1)Γ(α)
Mq < ∞.

On the other hand, from (12), we derive that

lim
ζ→∞

Gα(r, ζ)

Gα(z, ζ)
=

rα−1

zα−1 and lim
z→0

Gα(z, r)
zα−1 =

1
Γ(α)

.

Hence by applying Fatou’s lemma, we obtain

1
Γ(α)

Mq =
1

Γ(α)

∫ ∞

0
rα−1q(r)dr ≤ lim inf

z→0

∫ ∞

0

Gα(z, r)
zα−1 rα−1q(r)dr

and ∫ ∞

0

Gα(z, r)
zα−1 rα−1q(r)dr ≤ lim inf

ζ→∞

∫ ∞

0

Gα(z, r)Gα(r, ζ)

Gα(z, ζ)
q(r)dr

≤ ξq.

So 1
Γ(α)Mq ≤ ξq.

Define V on B+((0, ∞)), by

V f (z) :=
∫ ∞

0
Gα(z, ζ) f (ζ)dζ, z ∈ (0, ∞). (19)
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The next proposition is due to (Proposition 15) [6].

Proposition 2. Assume that ζ → min(1, ζ) f (ζ) ∈ C((0, ∞),R) ∩ L1(0, ∞), then V f is the
unique solution in C2−α([0, ∞)) of the problem

(H f )


−Dα ϕ(z) = f (z), z ∈ (0, ∞), 1 < α ≤ 2,

lim
z→0

z2−α ϕ(z) = 0 and lim
z→∞

z1−α ϕ(z) = 0.
(20)

Remark 2. Assume (A1) and let γ(z) given by (11).
Then, by Proposition 2, γ ∈ C2−α([0, ∞)) and it is the unique solution of problem (Hp).

Furthermore, from (16), we have

(α− 1)Cα,pzα−2 min(1, z) ≤ γ(z) ≤ Cα,pzα−2 max(1, z), for z > 0, (21)

where Cα,p := 1
Γ(α)

∫ ∞

0
min(1, ζ)p(ζ)dζ.

Lemma 2. Let q ∈ M, then

V(qγ)(z) ≤ ξqγ(z), for z > 0. (22)

Proof. Let q ∈ M, then from (19), (11), the Fubini-Tonelli theorem and (13), we obtain for
z > 0,

V(qγ)(z) =
∫ ∞

0
Gα(z, ζ)q(ζ)(

∫ ∞

0
Gα(ζ, r)p(r)dr)dζ

=
∫ ∞

0
p(r)(

∫ ∞

0
Gα(z, ζ)Gα(ζ, r)q(ζ)dζ)dr

≤ ξq

∫ ∞

0
Gα(z, r)p(r)dr

= ξqγ(z).

Proposition 3. Let α ∈ (1, 2], ν < 2 and µ > 1. Set b(r) =
1

rν(1 + r)µ−ν , for r > 0. Then

b ∈ J and
γ0(z) := Vb(z) � zα−2ψν(min(z, 1))φµ(max(z, 1)),

where for z ∈ (0, 1],

ψν(z) =


z2−ν if 1 < ν < 2,

z ln( 2
z ) if ν = 1,

z if ν < 1,

and for z ≥ 1

φµ(z) =


z2−µ if 1 < µ < 2,

ln(1 + z) if µ = 2,

1 if µ > 2.

Proof. From Proposition 1 (i), we have

z2−αγ0(z) �
∫ 2

0
min(z, ζ)ζ−νdζ +

∫ ∞

2
min(z, ζ)ζ−µdζ

: = I(z) + J(z).
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Case 1: Assume that 0 < z ≤ 1.
Clearly, we have

J(z) � z. (23)

On the other hand,

I(z) =
∫ z

0
ζ1−νdζ + z

∫ 2

z
ζ−νdζ

= I1(z) + I2(z).

Therefore, we obtain
I1(z) � z2−ν,

and

I2(z) �


z2−ν if 1 < ν < 2,

z ln( 2
z ) if ν = 1,

z if ν < 1,

Hence, it follows that

I(z) �


z2−ν if 1 < ν < 2,

z ln( 2
z ) if ν = 1,

z if ν < 1.

(24)

Combining (23) and (24), we deduce that for 0 < z ≤ 1,

z2−αγ0(z) � ψν(z).

Case 2: Assume that z ≥ 3.
Clearly, we have

I(z) � 1. (25)

On the other hand,

J(z) =
∫ z

2
ζ1−µdζ + z

∫ ∞

z
ζ−µdζ

= J1(z) + J2(z).

Therefore, we obtain

J2(z) � z2−µ,

and

J1(z) �


z2−µ if 1 < µ < 2,

ln(1 + z) if µ = 2,

1 if µ > 2.

Hence, it follows that

J(z) �


z2−µ if 1 < µ < 2,

ln(1 + z) if µ = 2,

1 if µ > 2.

(26)
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Combining (25) and (26), we deduce that for z ≥ 3,

z2−αγ0(z) �


z2−µ if 1 < µ < 2,

ln( z
2 ) if µ = 2,

1 if µ > 2.

�


z2−µ if 1 < µ < 2,

ln(1 + z) if µ = 2,

1 if µ > 2.

� φµ(z).

Now since the functions z → φµ(z) and z → z2−αγ0(z) are positive and continuous on
[1, 3], we deduce that

z2−αγ0(z) � φµ(z), on [1, 3].

Hence
z2−αγ0(z) � φµ(z), on [1, ∞).

Finally, we obtain the result by combining the above two cases.

3. Proof of Main Result

We recall that γ(z) is given by (11).

Lemma 3. Assume that (A1)–(A3) hold. Let ϕ ∈ C2−α([0, ∞)) with ϕ(z) � γ(z). Then ϕ is a
solution of problem (10) if and only if

ϕ(z) = γ(z) + λ
∫ ∞

0
Gα(z, ζ)F(ζ, ϕ(ζ))dζ, for z > 0. (27)

Proof. Assume that ϕ satisfies (27).
From (A1) and Remark 2, we have γ(z) ∈ C2−α([0, ∞)) and it is a solution of problem

(Hp) (see (20)).
By using (A2) and (A3), we obtain

|F(z, ϕ(z))| ≤ |F(z, ϕ(z))− F(z, 0)|+ |F(z, 0)|
≤ cq(z)γ(z) + kp(z),

for some constant c > 0.
On the other hand, from (21), it follows that

min(1, z)q(z)γ(z) ≤ Cα,pzα−2q(z)min(1, z)max(1, z) = Cα,pzα−1q(z).

Since p ∈ J and q ∈ M, we deduce that the map z → min(1, z)F(z, ϕ(z)) is integrable
on (0, ∞). Therefore, by Proposition 2, we conclude that z → v(z) := VF(., ϕ)(z) ∈
C2−α([0, ∞)) and satisfies

−Dαv(z) = F(z, ϕ(z)), z ∈ (0, ∞),

lim
z→0

z2−αv(z) = 0 and lim
z→∞

z1−αv(z) = 0.

So ϕ is a solution of problem (10).
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Conversely, let ϕ ∈ C2−α([0, ∞)) be a solution of problem (10) with ϕ(z) � γ(z). Then

w(z) := ϕ(z)− γ(z)− λ
∫ ∞

0
Gα(z, ζ)F(ζ, ϕ(ζ))dζ satisfies


Dαw(z) = 0, z ∈ (0, ∞),

lim
z→0

z2−αw(z) = 0 and lim
z→∞

z1−αw(z) = 0.

From Theorem 2.4 [2],

w(z) = c1zα−1 + c2zα−2, for some c1, c2 ∈ R.

Using lim
z→0

z2−αw(z) = 0 and lim
z→∞

z1−αw(z) = 0, we conclude that c2 = c1 = 0. That is

w(z) ≡ 0.
Hence ϕ satisfies (27).

Proof of Theorem 1. Consider the Banach space of functions

E = {v ∈ C2−α([0, ∞)) : sup
z>0

|v(z)|
γ(z)

< +∞}

with the γ-norm

‖v‖γ = sup
z>0

|v(z)|
γ(z)

. (28)

Hence (E, d) is a complete metric space, with

d(v1, v2) := ‖v1 − v2‖γ.

Set λ∗ := 1
2ξq

and for λ ∈ [0, λ∗), let Ω be the non-empty closed subset of (E, d) defined by

Ω = {v ∈ E, Aγ(z) ≤ v(z) ≤ Bγ(z), for z > 0},

where A := 2 (λ∗−λ(kλ∗+1))
(2λ∗−λ)

and B := 2λ∗( 1+λk
2λ∗−λ ).

Define T on Ω by

Tv(z) = γ(z) + λ
∫ ∞

0
Gα(z, ζ)F(ζ, v(ζ))dζ, for z > 0.

We claim that T is a contraction operator from (Ω, d) into itself.
Following the proof of Lemma 3, we conclude that for all v ∈ Ω, Tv(z) ∈ C2−α([0, ∞)).
By using (A1)–(A3) and Lemma 2, we obtain for all v ∈ Ω and z > 0∣∣∣∣∫ ∞

0
Gα(z, ζ)F(ζ, v(ζ))dζ

∣∣∣∣ ≤ ∫ ∞

0
Gα(z, ζ)|F(ζ, v(ζ))− F(ζ, 0)|dζ +

∫ ∞

0
Gα(z, ζ)|F(ζ, 0)|dζ

≤ (
B

2λ∗
+ k)γ(z)

So T(Ω) ⊂ Ω.
Now for v1, v2 ∈ Ω, by using (A2)–(A3), (A1) and Lemma 2, we obtain for z > 0

|Tv1(z)−Tv2(z)| ≤ λ
∫ ∞

0
Gα(z, ζ)|F(ζ, v1(ζ))− F(ζ, v2(ζ))|dζ

≤ λ
∫ ∞

0
Gα(z, ζ)q(ζ)|v1(ζ)− v2(ζ)|dζ

≤ λd(v1, v2)
∫ ∞

0
Gα(z, ζ)q(ζ)γ(ζ)dζ

≤ λ

2λ∗
ξqd(v1, v2)γ(z).
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Hence
d(Tv1,Tv2) ≤

λ

2λ∗
d(v1, v2).

Since λ < λ∗, then T is a contraction operator from (Ω, d) into itself. So, there exists a unique ϕ ∈ Ω
satisfying

ϕ(z) = γ(z) + λ
∫ ∞

0
Gα(z, ζ)F(ζ, ϕ(ζ))dζ. (29)

Due to Lemma 3, we conclude that ϕ is the unique solution to problem (10) satisfying (14).

Example 1. Let 1 < α ≤ 2 and s < α + 1. Let ν < 2, µ > 1 and p(z) =
1

zν(1 + z)µ−ν , for

z > 0.
There exists λ∗ > 0 such that for λ ∈ [0, λ∗), the problem −D

α ϕ(z) = p(z) + λz−se−z sin(zϕ(z)), z > 0,

lim
z→0+

z2−α ϕ(z) = 0, lim
z→∞

z1−α ϕ(z) = 0,

has a unique positive solution ϕ ∈ C2−α([0, ∞)) satisfying

ϕ(z) � γ(z) � zα−2ψν(min(z, 1))φµ(max(z, 1)),

where for z ∈ (0, 1],

ψν(z) =


z2−ν if 1 < ν < 2,

z ln( 2
z ) if ν = 1,

z if ν < 1,

and for z ≥ 1

φµ(z) =


z2−µ if 1 < µ < 2,

ln(1 + z) if µ = 2,

1 if µ > 2.

Indeed, we may apply Theorem 1 (with F(z, y) := z−se−z sin(zy) and q(z) := z1−se−z) and
Proposition 3.

4. Conclusions

In this paper, a semipositone fractional boundary value problems on the half-line is
studied. Under sufficient conditions, we have proved the existence and uniqueness of a
positive continuous solution with some global behavior. Natural phenomena in scientific
and engineering areas can be described by semipositone problems. Such problem are more
interesting and challenging due to the fact that the nonlinearity may change sign. The
approach is based on a fixed point theorem. It will be interesting to investigate similar
problems for others operators.
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