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Abstract: In this research work, we investigate the complex structure of soliton in the Fractional
Kudryashov–Sinelshchikov Equation (FKSE) using conformable fractional derivatives. Our study
involves the development of soliton solutions using the modified Extended Direct Algebraic Method
(mEDAM). This approach involves a key variable transformation, which successfully transforms the
model into a Nonlinear Ordinary Differential Equation (NODE). Following that, by using a series
form solution, the NODE is turned into a system of algebraic equations, allowing us to construct
soliton solutions methodically. The FKSE is the governing equation, allowing for heat transmission
and viscosity effects while capturing the behaviour of pressure waves in liquid–gas bubble mixtures.
The solutions we discover include generalised trigonometric, hyperbolic, and rational functions with
kinks, singular kinks, multi-kinks, lumps, shocks, and periodic waves. We depict two-dimensional,
three-dimensional, and contour graphs to aid comprehension. These newly created soliton solutions
have far-reaching ramifications not just in mathematical physics, but also in a wide range of subjects
such as optical fibre research, plasma physics, and a variety of applied sciences.

Keywords: fractional Kudryashov–Sinelshchikov equation; nonlinear fractional partial differential
equations; conformable fractional derivatives; solitons; variable transformation

MSC: 35R11

1. Introduction

Nonlinear Fractional Partial Differential Equations (FPDEs) are a class of mathematical
equations that have a wide range of applications in a variety of scientific fields [1–5]. The
study of nonlinear FPDEs has several applications in mathematics, biology, chemistry,
and finance [6–9]. They are critical in characterizing complicated phenomena such as
diffusion processes, wave propagation, and pattern development. The fractional Korteweg–
de Vries equation [10], the fractional Fisher’s equation [11], and the fractional Burgers’
equation [12] are all well-known nonlinear FPDEs. These equations provide greater in-
depth understanding of complex systems that cannot be properly described by traditional
integer-order partial differential equations, leading to advances in modelling and prediction
across a wide range of scientific domains.
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Solitons are observed in nonlinear systems in fields such as physics, optics, and other
disciplines [13–15]. These incredible waves are self-sustaining waves that maintain their
shape and speed while propagating. They manifest as robust entities in a range of physical
circumstances, providing vital insights into wave dynamics. The fascination with solitons
has piqued the curiosity of mathematicians and academics, motivating them to investigate
soliton dynamics in both nonlinear FPDEs and PDEs. As a result of their efforts, several an-
alytical methods have emerged, including the extended state-dependent differential Riccati
equation approach [16], the sub-equation method [17], the (G′/G)-expansion approach [18],
the Sardar sub-equation method [19], the Kudryashov method [20], the modified extended
tanh method [21], the exp-function method [22], the sin-Gordon method [23], and the
mEDAM [24–26].

1.1. The Fks Equation

The FKSE is a fractional extension of the Kudryashov–Sinelshchikov Equation [27],
which was first introduced in 2010 by Kudryashov and Sinelshchikov through a combi-
nation of theoretical insights and experimental validation [28]. The FKSE describes the
behaviour of pressure waves in mixtures of liquid–gas bubbles while accounting for heat
transport and viscosity. This model is written as follows [29]:

Dβ
t v + avDα

xv + Dα
x(Dα

x(Dα
xv))− bDα

x(vDα
x(Dα

xv))− cDα
xvDα

x(Dα
xv)− dDα

x(Dα
xv)− eDα

x(vDα
xv) = 0, (1)

where the function v ≡ v(x, t) represents the composite properties of density, heat transfer,
and viscosity models. The derivative operators Dα

x(·) and Dβ
t (·) are conformable fractional

derivatives, defined in Section 2. The parameters a, b, c, d, and e are all real-valued constants
which play a vital role in the model’s structure. For instance, when b = c = d = e = 0, then
Equation (1) turns into the Korteweg–de Vries (KdV) (when α = β = 1) and fractional KdV
equations as shown by [30,31]:

Dβ
t v + avDα

xv + Dα
x(Dα

x(Dα
xv)) = 0. (2)

When b = c = e = 0, then Equation (1) becomes the Korteweg–de Vries–Burgers
(KdVB) (when α = β = 1) and fractional KdVB equations articulated as [32,33]:

Dβ
t v + avDα

xv + Dα
x(Dα

x(Dα
xv))− dDα

x(Dα
xv) = 0. (3)

Similarly, when a = b = 1, d = e = 0, then Equation (1) becomes generalized
Korteweg–de Vries–Burgers (gKdVB)(when α = β = 1) and generalized fractional KdVB
equation articulated as in [34,35]:

Dβ
t v + vDα

xv + Dα
x(Dα

x(Dα
xv))− Dα

x(vDα
x(Dα

xv))− cDα
xvDα

x(Dα
xv) = 0. (4)

1.2. Literature Review

Before this research work, many researchers have addressed the FKSE using different
numerical and analytical approaches. For instance, in Gupta and Ray’s study, the nonlinear
time-FKSE has been solved numerically by using the radial basis function (RBF) method [36].
Ali and Maneea in [37] have applied the fractional novel analytic method to obtain solutions
for the FKSE at different values of the fractional order derivative and at different stages of
time. Similarly, in [38], analytical approximate solutions for time-FKSE have been obtained
implementing two different techniques, namely the residual power series method and
homotopy analysis method by Akram et al. The approximate solutions are represented
graphically and numerically for different values of the fractional order of derivative. Finally,
Prakash has performed a systematic study for finding the symmetry group classification
for the time-FKSE [39]. Using the vector fields, Lie symmetries and invariance properties
of the underlying equation with various cases are presented and then similarity reductions
are obtained.
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The goal of this research is to look at soliton phenomena within the FKSE, as described
in Equation (1). The mEDAM technique utilised here transforms FPDEs into NODEs
through a transformative process. These NODEs are then transformed into a system of
algebraic equations using the concept of a series-based solution approach, permitting the
development of soliton solutions. This looks into a variety of soliton kinds such as kink,
solitary kink, multi-kink, shock, lump, periodic, and others. These many answers are critical
in comprehending the underlying physical laws that govern intricate wave behaviour. Kink
solitons demonstrate localised transitions between various states in nonlinear physics and
mathematics, characterised by a smooth and continuous shift in the solution profile. They
are propagating, stable structures that are frequently connected with symmetry breakdown
and phase transitions. Shock solitons, on the other hand, reflect sudden, discontinuous
alterations in physical parameters such as pressure or density, resulting in shock fronts.
These solitons are common in nonlinear systems and can appear as shock waves in a variety
of physical processes, including fluid and gas dynamics.

The rest of the article is organized as follows: In Section 2, we describe the conformable
derivative and the proposed approach. In Section 3, we apply the suggested approach
to the FKSE and discover the precise families of soliton solutions. Section 4 presents a
visual depiction and in-depth explanation of our findings, using illustrations to explain
the findings. The final portion acts as a conclusion, summarising and condensing our
research findings.

2. Methodology and Resources

The aim of this section is to introduce the concept of the conformable fractional
derivative as well as the working methodology of the mEDAM.

2.1. Conformable Fractional Derivative

In Equation (1), the fractional derivatives used correspond to conformable fractional
derivatives. The operator which expresses these derivatives of order δ is defined in [40]
as follows:

Dδ
θv(θ) = lim

κ→0

v(κθ1−δ + θ)− v(θ)
κ

, δ ∈ (0, 1]. (5)

The following features of this derivative are used in this investigation:

Dδ
θθ j = jθ j−δ, (6)

Dδ
θ(j1η(θ)± j2κ(θ)) = j1Dδ

θ(η(θ))± j2Dδ
θ(κ(θ)), (7)

Dδ
θχ[ξ(θ)] = χ′ξ(ξ(θ))Dδ

θξ(θ), (8)

where η(θ), κ(θ), χ(θ), and ξ(θ) represent functions that exhibit differentiability, whereas j,
j1, and j2 signify constants.

2.2. The Working Mechanism of the mEDAM

In this subsection, our goal is to demonstrate the strategy applied by the mEDAM in
addressing the FKSE. Consider the general FPDE below:

R(v, ∂δ1
t v, ∂δ2

s1 v, ∂δ3
s2 v, v∂δ2

s1 v, . . .) = 0, 0 < δ1, δ2, δ3, ... ≤ 1, (9)

where v = v(t, s1, s2, s3, . . . , sm).
The following steps are used for obtaining soliton solutions for Equation (9):
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Step 1. Initially, a variable transformation is carried out: v(t, s1, s2, s3, dots, sm) = V(θ). It is
important to note that there are several different representations for θ. This transformation
transforms (9), resulting in a NODE with the following structure:

P(V, V′, VV′, . . . ) = 0. (10)

Equation (10) includes derivatives of the function V with respect to θ. It should be noted
that integrating Equation (10) once or several times provides a method for determining the
integration constant(s).
Step 2. Following that, we propose the following as the analytical solution in closed form
to Equation (10):

V(θ) =
j

∑
n=−j

kn(ζ(θ))
n. (11)

In this context, the symbols kn, n ∈ [−j, j] serve as placeholders for indeterminate constants
that will be approximated later. Furthermore, the function ζ(θ) follows a first-order NODE
as defined by the following structure:

ζ ′(θ) = ln(ν)(σ(ζ(θ))2 + ρ + $ζ(θ)), (12)

where ν 6= 0, 1 and σ, ρ and $ are unknown constants.
Step 3. The positive integer j in Equation (11) is generated by establishing a homogeneous
balancing condition between the highest-order derivative and the nonlinear component in
Equation (10).
Step 4. Equation (11) or its integral analogue is then substituted into Equation (10). Then,
we collect all terms with identical orders of ζ(θ), which result in a polynomial equation
in ζ(θ). The coefficients of this polynomial are then equated to zero, resulting in a set of
algebraic equations in kn, n ∈ [−j, j] and other parameters.
Step 5. The system is solved using the MAPLE program.
Step 6. It is possible to obtain the soliton solutions for Equation (9) by solving for the
previously obtained system of algebraic equations in unknown parameters and putting
them into Equation (11), along with the solutions of ζ(θ) produced from Equation (12).
The following families show how to generate families of exact soliton solutions using the
generic solution described in Equation (12).

Family 1: Whenever J < 0 and σ 6= 0, we obtain

ζ1(θ) = −
$

2σ
+

√
−J tanν

(
1
2
√
−Jθ

)
2σ

,

ζ2(θ) = −
$

2σ
−

√
−J cotν

(
1
2
√
−Jθ

)
2σ

,

ζ3(θ) = −
$

2σ
+

√
−J
(
tanν

(√
−Jθ

)
±
(√

pq secν

(√
−Jθ

)))
2σ

,

ζ4(θ) = −
$

2σ
−
√
−J
(
cotν

(√
−Jθ

)
±
(√

pq cscν

(√
−Jθ

)))
2σ

,

and

ζ5(θ) = −
$

2σ
+

√
−J
(

tanν

(
1
4
√
−Jθ

)
− cotν

(
1
4
√
−Jθ

))
4σ

.

where J = $2 − 4ρσ.
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Family 2: Whenever J > 0 and σ 6= 0,

ζ6(θ) = −
$

2σ
−

√
J tanhν

(
1
2
√

Jθ
)

2σ
,

ζ7(θ) = −
$

2σ
−

√
J cothν

(
1
2
√

Jθ
)

2σ
,

ζ8(θ) = −
$

2σ
−
√

J
(
tanhν

(√
Jθ
)
±
(√

pqsechν

(√
Jθ
)))

2σ
,

ζ9(θ) = −
$

2σ
−
√

J
(
cothν

(√
Jθ
)
±
(√

pqcschν

(√
Jθ
)))

2σ
,

and

ζ10(θ) = −
$

2σ
−

√
J
(

tanhν

(
1
4
√

Jθ
)
− cothν

(
1
4
√

Jθ
))

4σ
.

Family 3: Whenever $ = 0 and σρ > 0,

ζ11(θ) =

√
ρ

σ
tanν(

√
ρσθ),

ζ12(θ) = −
√

ρ

σ
cotν(

√
ρσθ),

ζ13(θ) =

√
ρ

σ
(tanν(2

√
ρσθ)± (

√
qp secν(2

√
ρσθ))),

ζ14(θ) = −
√

ρ

σ
(cotν(2

√
ρσθ)± (

√
qp cscν(2

√
ρσθ))),

and

ζ15(θ) =

√
ρ

σ

(
tanν

(
1
2
√

ρσθ

)
− cotν

(
1
2
√

ρσθ

))
.

Family 4: Whenever $ = 0 and ρσ > 0,

ζ16(θ) = −
√
− ρ

σ
tanhν

(√
−ρσθ

)
,

ζ17(θ) = −
√
− ρ

σ
cothν

(√
−ρσθ

)
,

ζ18(θ) = −
√
− ρ

σ

(
tanhν

(
2
√
−ρσθ

)
±
(
i
√

pqsechν

(
2
√
−ρσθ

)))
,

ζ19(θ) = −
√
− ρ

σ

(
cothν

(
2
√
−ρσθ

)
±
(√

pqcschν

(
2
√
−ρσθ

)))
,

and

ζ20(θ) = −
1
2

√
− ρ

σ

(
tanhν

(
1
2
√
−ρσθ

)
+ cothν

(
1
2
√
−ρσθ

))
.

Family 5: Whenever $ = 0 and σ = ρ,

ζ21(θ) = tanν(ρθ),

ζ22(θ) = − cotν(ρθ),

ζ23(θ) = tan(2 (ρθ))± (
√

qp secν(2 (ρθ))),
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ζ24(θ) = − cotν(2 (ρθ))± (
√

qp cscν(2 (ρθ))),

and
ζ25(θ) =

1
2

tanν

(ρ

2
θ
)
− 1

2
cotν

(ρ

2
θ
)

.

Family 6: Whenever b = 0 and c = −a,

ζ26(θ) = − tanhν(ρθ),

ζ27(θ) = − cothν(ρθ),

ζ28(θ) = − tanhν(2 (ρθ))± (i
√

pqsechν(2 (ρθ))),

ζ29(θ) = − cothν(2 (ρθ))± (
√

pqcschν(2 (ρθ))),

and
ζ30(θ) = −

1
2

tanhν

(ρ

2
θ
)
− 1

2
cothν

(ρ

2
θ
)

.

Family 7: Whenever J = 0,

ζ31(θ) = −2
ρ($θ ln(ν) + 2)

$2θ ln(ν)
.

Family 8: Whenever σ = 0, $ = λ and ρ = hλ where h 6= 0,

ζ32(θ) = νh(θ) − h.

Family 9: Whenever σ = $ = 0,

ζ33(θ) = ρθ ln(ν).

Family 10: Whenever $ = ρ = 0,

ζ34(θ) =
−1

σθ ln(ν)
.

Family 11: Whenever σ 6= 0, $ 6= 0 and ρ = 0,

ζ35(θ) = −
p$

σ(coshν($θ)− sinhν($θ) + p)
,

and

ζ36(θ) = −
$(coshν($θ) + sinhν($θ))

σ(coshν($θ) + sinhν($θ) + q)
.

Family 12: Whenever ρ = 0, $ = λ and σ = hλ(h 6= 0),

ζ37(θ) =
pνKθ

p− KqνKθ
.

where both q and p are larger than zero, they are often referred to as deformation parameters.
The generalized trigonometric and hyperbolic functions are shown below:

sinν(θ) =
pνiθ − qν−iθ

2i
, cosν(θ) =

pνiθ + qν−iθ

2
,

secν(θ) =
1

cosν(θ)
, cscν(θ) =

1
sinν(θ)

,

tanν(θ) =
sinν(θ)

cosν(θ)
, cotν(θ) =

cosν(θ)

sinν(θ)
.
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Similarly,

sinhν(θ) =
pνθ − qν−θ

2
, coshν(θ) =

pνθ + qν−θ

2
,

sechν(θ) =
1

coshν(θ)
, cschν(θ) =

1
sinhν(θ)

,

tanhν(θ) =
sinhν(θ)

coshν(θ)
, cothν(θ) =

coshν(θ)

sinhν(θ)
.

3. Soliton Solutions

In this section, we use the mEDAM to generate soliton solutions for the FKSE given in
Equation (1). We begin with the application of a variable transformation of the form:

v(x, t) = V(θ), θ =
xα

α
−ω

tβ

β
. (13)

When applied to Equation (1), the above transformation yields a NODE. After inte-
grating the generated NODE once, we obtain:

−ωV +
a
2

V2 + V′′b VV′′ − c
2
(V′)2 − dV′ − eVV′ + C = 0, (14)

where C denotes an integration constant. We conclude that j = 1 by establishing a state
of homogenous balance between V′′ and −eVV′. We suggest the following series-based
solutions for (14) by substituting j = 1 into the Equation (11):

V(θ) =
1

∑
n=−1

kn(ζ(θ))
n = k−1(ζ(θ))

−1 + k0 + k1(ζ(θ)). (15)

We create an expression in ζ(θ) by inserting Equation (15) into Equation (14) and
accumulating terms with similar powers of ζ(θ). The procedure produces a system of
nonlinear algebraic equations when coefficients are set to zero as follow:

2 ck−1k1(ln(ν))
2σ ρ− 4 bk−1k1(ln(ν))

2σ ρ− bk0k−1(ln(ν))
2$ σ− bk0k1(ln(ν))

2$ ρ + k1(ln(ν))
2$ ρ−

1
2

ck−1
2(ln(ν))2σ2 − 1

2
ck1

2(ln(ν))2ρ2 + dk−1 ln(ν)σ− dk1 ln(ν)ρ + k−1(ln(ν))
2$ σ− 2 bk−1k1(ln(ν))

2$2

+ ck−1k1(ln(ν))
2$2 + ek0k−1 ln(ν)σ− ek0k1 ln(ν)ρ + ak−1k1 −ω k0 + 1/2 ak0

2 + C = 0,

(16)

− 2 bk1
2(ln(ν))2σ2 − 1

2
ck1

2(ln(ν))2σ2 = 0, (17)

2 k1(ln(ν))
2σ2 − 2 bk0k1(ln(ν))

2σ2 − ck1
2(ln(ν))2$ σ− 3 bk1

2(ln(ν))2$ σ− ek1
2 ln(ν)σ = 0, (18)

− bk1
2(ln(ν))2$2 − ck1

2(ln(ν))2σ ρ− dk1 ln(ν)σ− 2 bk1
2(ln(ν))2σ ρ +

1
2

ak1
2 + ck−1k1(ln(ν))

2σ2 − ek1
2 ln(ν)$

− ck1
2(ln(ν))2$2

2
− ek0k1 ln(ν)σ− 2 bk−1k1(ln(ν))

2σ2 + 3 k1(ln(ν))
2$ σ− 3 bk0k1(ln(ν))

2$ σ = 0,
(19)

− bk0k1(ln(ν))
2$2 + ak0k1 − ck1

2(ln(ν))2$ ρ + k1(ln(ν))
2$2 − 4 bk−1k1(ln(ν))

2$ σ− bk1
2(ln(ν))2$ ρ

+ 2 ck−1k1(ln(ν))
2$ σ− 2 bk0k1(ln(ν))

2σ ρ− ek0k1 ln(ν)$−ω k1 − ek1
2 ln(ν)ρ + 2 k1(ln(ν))

2σ ρ− dk1 ln(ν)$ = 0,
(20)
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k−1(ln(ν))
2$2 − bk−1

2(ln(ν))2$ σ− 4 bk−1k1(ln(ν))
2$ ρ− 2 bk0k−1(ln(ν))

2ρ σ + 2 k−1(ln(ν))
2ρ σ + ek−1

2 ln(ν)σ

+ dk−1 ln(ν)$ + ek0k−1 ln(ν)$ + ak−1k0 − ck−1
2(ln(ν))2$ σ + 2 ck−1k1(ln(ν))

2$ ρ− bk0k−1($ ln(ν))2 −ω k−1 = 0,
(21)

− bk−1
2(ln(ν))2$2 − 1

2
ck−1

2(ln(ν))2$2 + 3 k−1(ln(ν))
2ρ $ + ek−1

2 ln(ν)$− 2 bk1k−1(ρ ln(ν))2 + dk−1 ln(ν)ρ

− 2 bk−1
2(ln(ν))2ρ σ− 3 bk0k−1(ln(ν))

2ρ $ +
1
2

ak−1
2 + ek0k−1 ln(ν)ρ− ck−1

2(ln(ν))2ρ σ + ck1k−1(ρ ln(ν))2 = 0,
(22)

2 k−1(ln(ν))
2ρ2 − 3 bk−1

2(ln(ν))2ρ $ + ek−1
2 ln(ν)ρ− 2 bk0k−1(ln(ν))

2ρ2 − ck−1
2(ln(ν))2ρ $ = 0, (23)

− 2 bk−1
2(ln(ν))2ρ2 − 1

2
ck−1

2(ln(ν))2ρ2 = 0. (24)

When Maple is used to solve this system, the following three sets of solutions are obtained:

Case 1.

k0 = 8
(ln(ν))2ρ σ

a
, k1 =

4
3
(d + ln(ν)$)σ ln(ν)

a
, k−1 = 0,

ω =
2
3

ln(ν)
(
−$2 ln(ν) + 12 ρ σ ln(ν)− d$

)
, b =

1
8

a

(ln(ν))2ρ σ
,

c = −1
2

a

(ln(ν))2ρ σ
, e =

1
8

a$

ρ σ ln(ν)
,

C =
8
9

(ln(ν))2ρ σ
(
−4 d ln(ν)$− 5 (ln(ν))2$2 + d2 + 36 (ln(ν))2ρ σ

)
a

.

(25)

Case 2.

k0 =
−4
c

, k1 = 0, k−1 = −2
ln(ν)ρ (−d + ln(ν)$)

σ ρ (ln(ν))2c− a
,

ω = −
a
(
−$2(ln(ν))2c + c ln(ν)$ d + 4 σ ρ (ln(ν))2c− 4 a

)
c
(

σ ρ (ln(ν))2c− a
) ,

b = −1
4

c, e =
1
4

c ln(ν)$,

C = 2
a
(
−$2c2σ ρ + 4 σ2ρ2c2)(ln(ν))4(

(ln(ν))2ρ σ c− a
)2

c3

+ 2
a
(
d2ρ σ c2 − 8 ρ σ ca + 2 $2ca

)
(ln(ν))2(

(ln(ν))2ρ σ c− a
)2

c3
− 2

a
(
2 ac ln(ν)$ d− 4 a2)(
(ln(ν))2ρ σ c− a

)2
c3

.

(26)

Case 3.

k0 = k0, k1 = 2
ln(ν)σ

e
, k−1 = 0, ω = (ln(ν))2$2 + (−2 ek0$− d$) ln(ν) + ek0d + e2k0

2,

C = −2
(ln(ν))3ρ $ σ

e
− 1

2

(
−4 ρ σ d− 2 k0$2e− 4 k0ρ σ e

)
(ln(ν))2

e

− 1
2

(
3 e2k0

2$ + 2 k0d$ e
)

ln(ν)

e
− 1

2
−e2k0

2d− e3k0
3

e
, a = −$ e ln(ν) + (d + ek0)e, b = c = 0.

(27)
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Using the values given in Case 1 and Equations (13) and (15), together with the
appropriate overarching solution supplied by Equation (12), the following arrays of soliton
solutions for Equation (1) are obtained:

Family 1.1. When J < 0 σ 6= 0,

v1,1(x, t) =
4
3

ln(ν)
(

6 σ ln(ν)ρ− d$ + d
√
−J tanν

(
1
2
√
−Jθ

)
− ln(ν)$2 + ln(ν)$

√
−J tanν

(
1
2
√
−Jθ

))
ρ

, (28)

v1,2(x, t) = −4
3

ln(ν)
(
−6 σ ln(ν)ρ + d$ + ln(ν)$2 + (d + ln(ν)$ )

√
−J cotν

(
1
2
√
−Jθ

))
ρ

, (29)

v1,3(x, t) = 8 σ (ln(ν))2 +
4
3

(d + ln(ν)$)σ ln(ν)
(
− $

σ +
√
−J(tanν(

√
−Jθ)+

√
pq secν(

√
−Jθ))

σ

)
ρ

,
(30)

v1,4(x, t) = 8 σ (ln(ν))2 +
4
3

(d + ln(ν)$)σ ln(ν)
(
− $

σ −
√
−J(cotν(

√
−Jθ)+

√
pq cscν(

√
−Jθ))

σ

)
ρ

,
(31)

and

v1,5(x, t) = 8 σ (ln(ν))2 +
4
3

(d + ln(ν)$)σ ln(ν)
(
− $

σ +
√
−J(tanν(1/4

√
−Jθ)−cotν(1/4

√
−Jθ))

σ

)
ρ

.
(32)

Family 1.2. When J > 0 σ 6= 0,

v1,6(x, t) = −4
3

ln(ν)
(
−6 σ ln(ν)ρ + d$ + d

√
J tanhν

(
1
2
√

Jθ
)
+ ln(ν)$2 + ln(ν)$

√
J tanhν

(
1
2
√

Jθ
))

ρ
, (33)

v1,7(x, t) = −4
3

ln(ν)
(
−6 σ ln(ν)ρ + d$ + d

√
J cothν

(
1
2
√

Jθ
)
+ ln(ν)$2 + ln(ν)$

√
J cothν

(
1
2
√

Jθ
))

ρ
, (34)

v1,8(x, t) = 8 σ (ln(ν))2 +
4
3

(d + ln(ν)$)σ ln(ν)
(
− $

σ −
√

J(tanhν(
√

Jθ)+
√−pqsechν(

√
Jθ))

σ

)
ρ

,
(35)

v1,9(x, t) = 8 σ (ln(ν))2 +
4
3

(d + ln(ν)$)σ ln(ν)
(
− $

σ −
√

J(cothν(
√

Jθ)+
√

pqcschν(
√

Jθ))
σ

)
ρ

,
(36)

and
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v1,10(x, t) = 8 σ (ln(ν))2 +
4
3

(d + ln(ν)$)σ ln(ν)
(
− $

σ −
√

J(tanhν(1/4
√

Jθ)−cothν(1/4
√

Jθ))
σ

)
ρ

.
(37)

Family 1.3. When σρ > 0 and $ = 0,

v1,11(x, t) =

4
3 σ ln(ν)

(
6 ln(ν)ρ + d

√
ρ
σ tanν

(√
σ ρθ

))
ρ

,
(38)

v1,12(x, t) =
− 4

3 σ ln(ν)
(
−6 ln(ν)ρ + d

√
ρ
σ cotν

(√
σ ρθ

))
ρ

,
(39)

v1,13(x, t) =

4
3 σ ln(ν)

(
6 ln(ν)ρ cosν

(
2
√

σ ρθ
)
+ d
√

ρ
σ sinν

(
2
√

σ ρθ
)
+ d
√

ρ
σ

√
pq
)

(
cosν

(
2
√

σ ρθ
))

ρ
, (40)

v1,14(x, t) =

4
3 σ ln(ν)

(
6 ln(ν)ρ sinν

(
2
√

σ ρθ
)
− d
√

ρ
σ cosν

(
2
√

σ ρθ
)
− d
√

ρ
σ

√
pq
)

(
sinν

(
2
√

σ ρθ
))

ρ
, (41)

and

v1,15(x, t) =
− 2

3 σ ln(ν)
(
−12 ln(ν)ρ cosν

(
1
2
√

σ ρθ
)

sinν

(
1
2
√

σ ρθ
)
− d
√

ρ
σ + 2 d

√
ρ
σ

(
cosν

(
1
2
√

σ ρθ
))2

)
(

cosν

(
1
2
√

σ ρθ
))(

sinν

(
1
2
√

σ ρθ
))

ρ
. (42)

Family 1.4. When σρ < 0 and $ = 0,

v1,16(x, t) =

4
3 σ ln(ν)

(
6 ln(ν)ρ− d

√
− ρ

σ tanhν(
√−σ ρθ)

)
ρ

,
(43)

v1,17(x, t) =

4
3 σ ln(ν)

(
6 ln(ν)ρ− d

√
− ρ

σ cothν(
√−σ ρθ)

)
ρ

,
(44)

v1,18(x, t) =

4
3 σ ln(ν)

(
6 ln(ν)ρ coshν(2

√−σ ρθ)− d
√
− ρ

σ sinhν(2
√−σ ρθ)− id

√
− ρ

σ

√
pq
)

ρ(coshν(2
√−σ ρθ))

,
(45)

v1,19(x, t) =

4
3 σ ln(ν)

(
6 ln(ν)ρ sinhν(2

√−σ ρθ)− d
√
− ρ

σ coshν(2
√−σ ρθ)− d

√
− ρ

σ

√
pq
)

ρ(sinhν(2
√−σ ρθ))

,
(46)
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and

v1,20(x, t) =

2
3 σ ln(ν)

(
12 ln(ν)ρ Ω− 2 d

√
− ρ

σ (
(

coshν

(√−σ ρθ
2

))2
− 1

2 )

)
ρΩ

,
(47)

where Ω = coshν

(
1
2
√−σ ρθ

)
sinhν

(√−σ ρθ
2

)
.

Family. 1.5. When σ = ρ and $ = 0,

v1,21(x, t) =
4
3

ln(ν)(6 ln(ν)ρ + d tanν(ρ θ)), (48)

v1,22(x, t) =
4
3

ln(ν)(6 ln(ν)ρ− d cotν(ρ θ)), (49)

v1,23(x, t) =
4
3

ln(ν)
(
6 ln(ν)ρ cosν(2 ρ θ) + d sinν(2 ρ θ) + d

√
pq
)

cosν(2 ρ θ)
, (50)

v1,24(x, t) =
4
3

ln(ν)
(
6 ln(ν)ρ sinν(2 ρ θ)− d cosν(2 ρ θ)− d

√
pq
)

sinν(2 ρ θ)
, (51)

and

v1,25(x, t) =
2
3

ln(ν)
(

12 ln(ν)ρ cosν

(
1
2 ρ θ

)
sinν

(
1
2 ρ θ

)
+ d− 2 d

(
cosν

(
1
2 ρ θ

))2
)

cosν

(
1
2 ρ θ

)
sinν

(
1
2 ρ θ

) . (52)

Family 1.6. When σ = −ρ and $ = 0,

v1,26(x, t) = −4
3

ln(ν)(6 ρ ln(ν)− d tanhν(ρ θ)), (53)

v1,27(x, t) = −4
3

ln(ν)(6 ρ ln(ν)− d cothν(ρ θ)), (54)

v1,28(x, t) = −4
3

ln(ν)
(
6 ρ ln(ν) coshν(2 ρ θ)− d sinhν(2 ρ θ)− id

√
pq
)

coshν(2 ρ θ)
, (55)

v1,29(x, t) = −4
3

ln(ν)
(
6 ρ ln(ν) sinhν(2 ρ θ)− d coshν(2 ρ θ)− d

√
pq
)

sinhν(2 ρ θ)
, (56)

and

v1,30(x, t) = −2
3

ln(ν)
(

12 ρ ln(ν) coshν

(
1
2 ρ θ

)
sinhν

(
1
2 ρ θ

)
− 2 d

(
coshν

(
1
2 ρ θ

))2
+ d
)

coshν

(
1
2 ρ θ

)
sinhν

(
1
2 ρ θ

) . (57)
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Family 1.7. When J = 0, we obtain

v1,31(x, t) = 8/3
σ
(

3 (ln(ν))2ρ $2θ − ρ($ θ ln(ν) + 2)d− ρ($ θ ln(ν) + 2) ln(ν)$
)

ρ $2θ
. (58)

where θ = xα

α − ( 2
3 ln(ν)

(
−$2 ln(ν) + 12 ρ σ ln(ν)− d$

)
) tβ

β .

Using the values given in Case 2 and Equations (13) and (15), together with the
appropriate overarching solution supplied by Equation (12), the following arrays of soliton
solutions for Equation (1) are obtained:

Family 2.1. When J < 0 σ 6= 0,

v2,1(x, t) = −2
− ln(ν)σ2d− (ln(ν))2σ2$ + 2 $ + 2 ((ln(ν))2σ2√−J −

√
−J) tanν

(
1
2
√
−Jθ

)
(
(ln(ν))2σ2 − 1

)(
−$ +

√
−J tanν

(
1
2
√
−Jθ

))
σ

, (59)

v2,2(x, t) = −2
ln(ν)σ2d + (ln(ν))2σ2$ + 2 (ln(ν))2σ2(

√
−J cotν

(
1
2
√
−Jθ

)
− 1)− 2 $(

(ln(ν))2σ2 − 1
)(

$ +
√
−J cotν

(
1
2
√
−Jθ

))
σ

, (60)

v2,3(x, t) =
−2 ln(ν)ρ (−d + ln(ν)$)(

(ln(ν))2ρ σ2 − ρ
)(
− $

σ +
√
−J(tanν(

√
−Jθ)+

√
pq secν(

√
−Jθ))

σ

) − 4
σ

,
(61)

v2,4(x, t) =
−2 ln(ν)ρ (−d + ln(ν)$)(

(ln(ν))2ρ σ2 − ρ
)(
− $

σ −
√
−J(cotν(

√
−Jθ)+

√
pq cscν(

√
−Jθ))

σ

) − 4
σ

,
(62)

and

v2,5(x, t) =
−2 ln(ν)ρ (−d + ln(ν)$)(

(ln(ν))2ρ σ2 − ρ
)(
− $

σ +
√
−J(tanν( 1

4
√
−Jθ)−cotν( 1

4
√
−Jθ))

σ

) − 4
σ

.
(63)

Family 2.2. When J > 0 σ 6= 0,

v2,6(x, t) = −2
ln(ν)σ2d + (ln(ν))2σ2$ + 2 (ln(ν))2σ2√J tanhν

(
1
2
√

Jθ
)
− 2 $− 2

√
J tanhν

(
1
2
√

Jθ
)

(
(ln(ν))2σ2 − 1

)(
$ +
√

J tanhν

(
1
2
√

Jθ
))

σ
, (64)

v2,7(x, t) = −2
ln(ν)σ2d + (ln(ν))2σ2$ + 2 (ln(ν))2σ2√J cothν

(
1
2
√

Jθ
)
− 2 $− 2

√
J cothν

(
1
2
√

Jθ
)

(
(ln(ν))2σ2 − 1

)(
$ +
√

J cothν

(
1
2
√

Jθ
))

σ
, (65)

v2,8(x, t) =
−2 ln(ν)ρ (−d + ln(ν)$)(

(ln(ν))2ρ σ2 − ρ
)(
− $

σ −
√

J(tanhν(
√

Jθ)+
√−pqsechν(

√
Jθ))

σ

) − 4
σ

,
(66)

v2,9(x, t) =
−2 ln(ν)ρ (−d + ln(ν)$)(

(ln(ν))2ρ σ2 − ρ
)(
− $

σ −
√

J(cothν(
√

Jθ)+
√

pqcschν(
√

Jθ))
σ

) − 4
σ

,
(67)
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and

v2,10(x, t) =
−2 ln(ν)ρ (−d + ln(ν)$)(

(ln(ν))2ρ σ2 − ρ
)(
− $

σ −
√

J(tanhν( 1
4
√

Jθ)−cothν( 1
4
√

Jθ))
σ

) − 4
σ

.
(68)

Family 2.3. When σρ > 0 and $ = 0,

v2,11(x, t) =
2 ln(ν)ρ d

√
ρ
σ(

(ln(ν))2ρ σ2 − ρ
)(

tanν

(√
ρ σθ

)) − 4
σ

, (69)

v2,12(x, t) =
−2 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
ρ
σ

(
cotν

(√
ρ σθ

)) − 4
σ

, (70)

v2,13(x, t) =
2 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
ρ
σ

(
tanν

(
2
√

ρ σθ
)
+
√

pq secν

(
2
√

ρ σθ
)) − 4

σ
, (71)

v2,14(x, t) =
−2 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
ρ
σ

(
cotν

(
2
√

ρ σθ
)
+
√

pq cscν

(
2
√

ρ σθ
)) − 4

σ
, (72)

and

v2,15(x, t) =
4 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
ρ
σ

(
tanν

(
1
2
√

ρ σθ
)
− cotν

(
1
2
√

ρ σθ
)) − 4

σ
. (73)

Family 2.4. When ρσ < 0 and $ = 0,

v2,16(x, t) =
−2 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
− ρ

σ

(tanhν(
√−ρ σθ))

− 4
σ

, (74)

v2,17(x, t) =
−2 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
− ρ

σ

(cothν(
√−ρ σθ))

− 4
σ

, (75)

v2,18(x, t) =
−2 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
− ρ

σ

(
tanhν(2

√−ρ σθ) + i
√

pqsechν(2
√−ρ σθ)

) − 4
σ

, (76)

v2,19(x, t) =
−2 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
− ρ

σ

(
cothν(2

√−ρ σθ) +
√

pqcschν(2
√−ρ σθ)

) − 4
σ

, (77)

and

v2,20(x, t) =
−4 ln(ν)ρ d(

(ln(ν))2ρ σ2 − ρ
)

1√
− ρ

σ

(
tanhν

(
1
2
√−ρ σθ

)
+ cothν

(
1
2
√−ρ σθ

)) − 4
σ

. (78)
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Family 2.5. When σ = ρ and $ = 0,

v2,21(x, t) = −2
− ln(ν)ρ d + 2 tanν(ρ θ)(ln(ν))2ρ2 − 2 tanν(ρ θ)(

(ln(ν))2ρ2 − 1
)

tanν(ρ θ)ρ
, (79)

v2,22(x, t) = −2
ln(ν)ρ d + 2 cotν(ρ θ)(ln(ν))2ρ2 − 2 cotν(ρ θ)(

(ln(ν))2ρ2 − 1
)

cotν(ρ θ)ρ
, (80)

v2,23(x, t) = −2
− ln(ν)dρ cosν(2 ρ θ) + 2 ((ln(ν))2ρ2 − 1) sinν(2 ρ θ) + 2 (ln(ν))2ρ2√pq− 2

√
pq

ρ
(
(ln(ν))2ρ2 − 1

)(
sinν(2 ρ θ) +

√
pq
) , (81)

v2,24(x, t) = −2
ln(ν)dρ sinν(2 ρ θ) + 2 ((ln(ν))2ρ2 − 1) cosν(2 ρ θ) + 2 (ln(ν))2ρ2√pq− 2

√
pq

ρ
(
(ln(ν))2ρ2 − 1

)(
cosν(2 ρ θ) +

√
pq
) , (82)

and

v2,25(x, t) = −4
ln(ν)dρ cosν

(
1
2 ρ θ

)
sinν

(
1
2 ρ θ

)
− (ln(ν))2ρ2 + 2 ((ln(ν))2ρ2 − 1)

(
cosν

(
1
2 ρ θ

))2
+ 1

ρ
(
(ln(ν))2ρ2 − 1

)(
−1 + 2 (cosν(1/2 ρ θ))2

) . (83)

Family 2.6. When ρ = −σ and $ = 0,

v2,26(x, t) = 2
− ln(ν)ρ d + 2 tanhν(ρ θ)(ln(ν))2ρ2 − 2 tanhν(ρ θ)(

(ln(ν))2ρ2 − 1
)

tanhν(ρ θ)ρ
, (84)

v2,27(x, t) = 2
− ln(ν)ρ d + 2 cothν(ρ θ)(ln(ν))2ρ2 − 2 cothν(ρ θ)(

(ln(ν))2ρ2 − 1
)

cothν(ρ θ)ρ
, (85)

v2,28(x, t) = 2
− ln(ν)dρ coshν(2 ρ θ) + 2 ((ln(ν))2ρ2 − 1) sinhν(2 ρ θ) + 2 i(ln(ν))2ρ2√pq− 2 i

√
pq

ρ
(
(ln(ν))2ρ2 − 1

)(
sinhν(2 ρ θ) + i

√
pq
) , (86)

v2,29(x, t) = 2
− ln(ν)ρ d sinhν(2 ρ θ) + 2 ((ln(ν))2ρ2 − 1) coshν(2 ρ θ) + 2 (ln(ν))2ρ2√pq− 2

√
pq

ρ
(
(ln(ν))2ρ2 − 1

)(
coshν(2 ρ θ) +

√
pq
) , (87)

and

v2,30(x, t) = 4
− ln(ν)ρ d coshν

(
1
2 ρ θ

)
sinhν

(
1
2 ρ θ

)
+ 2 ((ln(ν))2ρ2 − 1)

(
coshν

(
1
2 ρ θ

))2
− (ln(ν))2ρ2 + 1

ρ
(
(ln(ν))2ρ2 − 1

)(
2
(

coshν

(
1
2 ρ θ

))2
− 1
) . (88)

Family 2.7. When J = 0,
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v2,31(x, t) =
−(ln(ν))2$2θ σ d + (ln(ν))3$3θ σ− 4 ρ($ θ ln(ν) + 2)(ln(ν))2σ2 + 4 ρ($ θ ln(ν) + 2)(

(ln(ν))2σ2 − 1
)

ρ($ θ ln(ν) + 2)σ
. (89)

where θ = xα

α − (− a(−$2(ln(ν))2c+c ln(ν)$ d+4 σ ρ (ln(ν))2c−4 a)
c(σ ρ (ln(ν))2c−a)

) tβ

β .

Using the values given in Case 3 and Equations (13) and (15), together with the
appropriate overarching solution supplied by Equation (12), the following arrays of soliton
solutions for Equation (1) are obtained:

Family 3.1. When J < 0 and σ 6= 0,

v3,1(x, t) =
ek0 − 2 ln(ν)$ + 2 ln(ν)

√
−J tanν

(
1
2
√
−Jθ

)
e

, (90)

v3,2(x, t) = −
−ek0 + 2 ln(ν)$ + 2 ln(ν)

√
−J cotν

(
1
2
√
−Jθ

)
e

, (91)

v3,3(x, t) =
ek0 cosν

(√
−Jθ

)
− 2 ln(ν)$ cosν

(√
−Jθ

)
+ 2 ln(ν)

√
−J sinν

(√
−Jθ

)
+ 2 ln(ν)

√
−J
√

pq
cosν

(√
−Jθ

)
e

, (92)

v3,4(x, t) = −
(2 ln(ν)$ − ek0) sinν

(√
−Jθ

)
+ 2 ln(ν)

√
−J cosν

(√
−Jθ

)
+ 2 ln(ν)

√
−J
√

pq
sinν

(√
−Jθ

)
e

, (93)

and

v3,5(x, t) = −
(2 ln(ν)$− ek0) cosν

(
1
4
√
−Jθ

)
sinν

(
1
4
√
−Jθ

)
− 2 ln(ν)

√
−J(1− 2

(
cosν

(√
−Jθ
4

))2
)

cosν

(√
−Jθ
4

)
sinν

(√
−Jθ
4

)
e

. (94)

Family 3.2. When J > 0 and σ 6= 0,

v3,6(x, t) = −
−ek0 + 2 ln(ν)$ + 2 ln(ν)

√
J tanhν

(
1
2
√

Jθ
)

e
, (95)

v3,7(x, t) = −
−ek0 + 2 ln(ν)$ + 2 ln(ν)

√
J cothν

(
1
2
√

Jθ
)

e
, (96)

v3,8(x, t) = −
(2 ln(ν)$ − ek0) coshν

(√
Jθ
)
+ 2 ln(ν)

√
J sinhν

(√
Jθ
)
+ 2 ln(ν)

√
J
√−pq

coshν

(√
Jθ
)
e

, (97)

v3,9(x, t) = −
(2 ln(ν)$ − ek0) sinhν

(√
Jθ
)
+ 2 ln(ν)

√
J coshν

(√
Jθ
)
+ 2 ln(ν)

√
J
√

pq
sinhν

(√
Jθ
)
e

, (98)
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and

v3,10(x, t) = −
(2 ln(ν)$− ek0) coshν

(
1
4
√

Jθ
)

sinhν

(
1
4
√

Jθ
)
− 2 ln(ν)

√
J

coshν

(
1/4
√

Jθ
)

sinhν

(
1
4
√

Jθ
)

e
. (99)

Family 3.3. When σρ > 0 and $ = 0,

v3,11(x, t) =

(
ek0 + 2 ln(ν)σ

√
ρ
σ tanν

(√
ρ σθ

))
e

,
(100)

v3,12(x, t) =
−
(
−ek0 + 2 ln(ν)σ

√
ρ
σ cotν

(√
ρ σθ

))
e

,
(101)

v3,13(x, t) =

(
ek0 cosν

(
2
√

ρ σθ
)
+ 2 ln(ν)σ

√
ρ
σ sinν

(
2
√

ρ σθ
)
+ 2 ln(ν)σ

√
ρ
σ

√
pq
)

(
cosν

(
2
√

ρ σθ
))

e
, (102)

v3,14(x, t) =
−
(
−ek0 sinν

(
2
√

ρ σθ
)
+ 2 ln(ν)σ

√
ρ
σ cosν

(
2
√

ρ σθ
)
+ 2 ln(ν)σ

√
ρ
σ

√
pq
)

(
sinν

(
2
√

ρ σθ
))

e
, (103)

and

v3,15(x, t) =
−
(
−ek0 cosν

(
1
2
√

ρ σθ
)

sinν

(
1
2
√

ρ σθ
)
− ln(ν)σ

√
ρ
σ + 2 ln(ν)σ

√
ρ
σ

(
cosν

(
1
2
√

ρ σθ
))2

)
(

cosν

(
1
2
√

ρ σθ
))(

sinν

(
1
2
√

ρ σθ
))

e
. (104)

Family 3.4. When σρ < 0 and $ = 0,

v3,16(x, t) =
−
(
−ek0 + 2 ln(ν)σ

√
− ρ

σ tanhν(
√−ρ σθ)

)
e

,
(105)

v3,17(x, t) =
−
(
−ek0 + 2 ln(ν)σ

√
− ρ

σ cothν(
√−ρ σθ)

)
e

,
(106)

v3,18(x, t) =
−
(
−ek0 coshν(2

√−ρ σθ) + 2 ln(ν)σ
√
− ρ

σ sinhν(2
√−ρ σθ) + 2 i ln(ν)σ

√
− ρ

σ

√
pq
)

(coshν(2
√−ρ σθ))e

,
(107)

v3,19(x, t) =

(
ek0 sinhν(2

√−ρ σθ)− 2 ln(ν)σ
√
− ρ

σ coshν(2
√−ρ σθ)− 2 ln(ν)σ

√
− ρ

σ

√
pq
)

(sinhν(2
√−ρ σθ))e

,
(108)

and
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v3,20(x, t) =

(
ek0 coshν

(
1
2
√−ρ σθ

)
sinhν

(
1
2
√−ρ σθ

)
+ ln(ν)σ

√
− ρ

σ (1− 2
(

coshν

(√−ρ σθ
2

))2
)

)
(

coshν

(√−ρ σθ
2

))(
sinhν

(√−ρ σθ
2

))
e

. (109)

Family 3.5. When σ = ρ and $ = 0,

v3,21(x, t) =
ek0 + 2 ln(ν)ρ tanν(ρ θ)

e
, (110)

v3,22(x, t) = −−ek0 + 2 ln(ν)ρ cotν(ρ θ)

e
, (111)

v3,23(x, t) =
ek0 cosν(2 ρ θ) + 2 ln(ν)ρ sinν(2 ρ θ) + 2 ln(ν)ρ

√
pq

cosν(2 ρ θ)e
, (112)

v3,24(x, t) =
ek0 sinν(2 ρ θ)− 2 ln(ν)ρ cosν(2 ρ θ)− 2 ln(ν)ρ

√
pq

sinν(2 ρ θ)e
, (113)

and

v3,25(x, t) =
ek0 cosν

(
1
2 ρ θ

)
sinν

(
1
2 ρ θ

)
+ ln(ν)ρ− 2 ln(ν)ρ

(
cosν

(
1
2 ρ θ

))2

cosν

(
1
2 ρ θ

)
sinν

(
1
2 ρ θ

)
e

. (114)

Family 3.6. When σ = −ρ and $ = 0,

v3,26(x, t) =
ek0 + 2 ln(ν)ρ tanhν(ρ θ)

e
, (115)

v3,27(x, t) =
ek0 + 2 ln(ν)ρ cothν(ρ θ)

e
, (116)

v3,28(x, t) =
ek0 coshν(2 ρ θ) + 2 ln(ν)ρ sinhν(2 ρ θ) + 2 i ln(ν)ρ

√
pq

coshν(2 ρ θ)e
, (117)

v3,29(x, t) =
ek0 sinhν(2 ρ θ) + 2 ln(ν)ρ coshν(2 ρ θ) + 2 ln(ν)ρ

√
pq

sinhν(2 ρ θ)e
, (118)

and

v3,30(x, t) =
ek0 coshν

(
1
2 ρ θ

)
sinhν(1/2 ρ θ) + 2 ln(ν)ρ

(
coshν

(
1
2 ρ θ

))2
− ln(ν)ρ

coshν

(
1
2 ρ θ

)
sinhν

(
1
2 ρ θ

)
e

. (119)

Family 3.7. When J = 0,

v3,31(x, t) = −−k0e$2θ + 4 σ ρ($ θ ln(ν) + 2)
e$2θ

. (120)
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Family 3.8. When $ = ρ = 0,

v3,32(x, t) =
k0eθ − 2

eθ
. (121)

Family 3.9. When ρ = 0, $ 6= 0 and σ 6= 0,

v3,33(x, t) = −−k0e coshν($ θ) + k0e sinhν($ θ)− k0ep + 2 ln(ν)p$

e(coshν($ θ)− sinhν($ θ) + p)
, (122)

and

v3,34(x, t) = −−k0e coshν($ θ)− k0e sinhν($ θ)− k0eq + 2 ln(ν)$ coshν($ θ) + 2 ln(ν)$ sinhν($ θ)

e(coshν($ θ) + sinhν($ θ) + q)
. (123)

Family 3.10. When $ = λ, σ = hλ(h 6= 0) and ρ = 0,

v3,35(x, t) = − k0ep− k0ehqνλ θ + 2 ln(ν)hλ pνλ θ

e
(
−p + hqνλ θ

) . (124)

where θ = xα

α − ((ln(ν))2$2 + (−2 ek0$− d$) ln(ν) + ek0d + e2k0
2) tβ

β .

4. Discussion and Graphs

The investigation of soliton dynamics in the context of the FKSE has yielded important
insights into the complicated wave behaviours of liquid–gas bubbly combinations. The
mEDAM technique was useful in generating a spectrum of soliton solutions, which pro-
vided a better knowledge of diverse wave topologies. Graphical representations of these
solutions clearly display their distinguishing characteristics, assisting in the comprehension
of their physical consequences. The observed soliton phenomena, such as kink, solitary
kink, multi-kink, lump, and periodic waves, highlight the complexities of wave propagation
in complex media. We acquire a more detailed understanding of how these factors generate
pressure waves in bubbly liquids by studying the relationship between nonlinearity and
dispersion through these solutions. Our findings bridge the theoretical-to-real-world gap,
offering insight on the possible uses of soliton occurrences in a variety of domains. Further
research might dive into more complex settings, resulting in deeper insights and broader
applications in fluid dynamics and related fields.

Remark 1. Figure 1 shows a singular kink wave. A single kink wave is a sort of localised disturbance
distinguished by a quick and dramatic shift in the amplitude and phase of the wave. It involves a
sharp transition between two states, which is much more obvious in the event of a solitary kink,
resulting in a sudden and steep leap. A singular kink wave could represent an intense and highly
localised disturbance in the pressure field in the context of a model such as the FKSE describing
pressure waves in liquid–gas bubbly mixtures, potentially caused by specific conditions within the
mixture that lead to a dramatic variation in the wave’s behaviour.

Remark 2. A multi-kinks profile is displayed in Figure 2. A multi-kink wave is a kink wave with
numerous gentle transitions between distinct states inside a single waveform. During transmission,
this phenomenon retains its shape and placements. Multi-kink waves display complicated, different
transitions in the FKSE, which describes pressure waves in liquid–gas bubble mixes, exhibiting
intricate pressure dynamics caused by various densities and characteristics within the mixture.
These patterns are formed by the interaction of nonlinear and dispersive effects in the FKSE, which
improves our understanding of wave behaviours in such systems.
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Figure 1. The three-dimensional plot in (a) of v1,10 described in (37) is depicted for ρ = 1, $ = 5,
σ = −1, ν = e, d = 10, α = 1, β = 1. Whereas, the two-dimensional graph in (b) is produced on the
assumption that t = 0 and with the same parameter values that are involved.

Figure 2. The three-dimensional plot in (a) of v1,21 given in (48) is designed for ρ = 20, $ = 0,
σ = 20, ν = e, d = 6, α = 1, β = 0.9. The two-dimensional graph in (b) is produced on the assumption
that t = 1 and with the same parameter values that are involved.

Remark 3. Figure 3 shows a shock wave profile. A shock wave is a sudden and powerful disturbance
in a medium, characterised by an abrupt increase in pressure, density, and temperature as the wave
passes through. In the context of the previously stated model, such as the FKSE describing pressure
waves in liquid–gas bubble mixes, a shock wave might result from a quick change in circumstances
inside the mixture, creating an abrupt shift in pressure and density. The interaction of nonlinearity
and dispersion in the model might result in the development of shock waves as these waves travel
through the bubbly liquid, impacting pressure dynamics and perhaps triggering dynamic changes
within the medium.
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Figure 3. The three-dimensional plots (in different resolutions) in (a) and (c), and contour graph in
(b) of v1,31 describe in (58) are depicted for ρ = 2, $ = 4, σ = 2, ν = 2, d = 15, α = 0.8, β = 1. The
two-dimensional graph (d) is produced on the assumption that t = 10 and with the same parameter
values that are involved.

Remark 4. Figure 4 depicts a periodic wave profile. A periodic wave is a repeating oscillation with
a constant pattern across time and regular crests and troughs. A periodic wave would indicate
a recurring fluctuation in pressure and density inside the mixture as the wave propagates in the
context of the earlier stated model, such as the FKSE explaining pressure waves in liquid–gas bubble
mixes. The model’s nonlinearity and dispersion effects may cause periodic waves with specified
frequencies and wavelengths to arise, representing the cyclic behaviour of pressure variations in the
bubbly liquid medium.
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Figure 4. The three-dimensional plots (in different resolutions) in (a) and (b) of v2,13 given in (71)
are depicted for ρ = 5, $ = 0, σ = 6, ν = e, d = 10, α = 1, β = 1, c = a = 1, p = 3, q = 4. The
two-dimensional graph in (c) is produced on the assumption that t = 5 and with the same parameter
values that are involved.

Remark 5. Figure 5 shows a kink wave profile. A kink wave is a form of soliton, or solitary wave
that keeps its shape and velocity during propagation due to a balance of dispersion and nonlinearity.
A kink wave relates to a localised disturbance or wavefront that demonstrates an abrupt transition
between two distinct states in the context of the previously stated model, such as the FKSE describing
pressure waves in liquid–gas bubble mixes. Kink waves are an important characteristic in many
physical systems, including fluid dynamics, plasma physics, and others, since they occur smoothly
across a finite distance. Kink waves can help us to understand the behaviour of pressure waves in
bubbly liquids, where nonlinear and dispersive processes shape the dynamics of these waves.

Remark 6. Figure 6 shows a lump wave. A lump wave, also known as a lumpy wave or a compacton,
is a form of a solitary wave characterised by a localised peak or lump that travels with minimum
dispersion while preserving its structure. A lump wave, in the context of the previously discussed
model, such as the FKSE describing pressure waves in liquid–gas bubbly mixtures, could represent
a concentrated region of pressure variation within the mixture that retains its distinctive shape
over distance due to the balance between nonlinearity and dispersion. Lump waves are fascinating
phenomena because they display both wave-like and particle-like behaviour. Their presence in
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complicated systems such as bubbly liquids might provide information on the intricate pressure
dynamics inside the mixture.

Figure 5. The three-dimensional graph in (a) of v2,26 described in (84) is depicted for ρ = 30, $ = 0,
σ = −30, ν = e, d = 7, α = 0.7, β = 0.9, c = 8, a = 0.1. The two-dimensional graph in (b) is produced
on the assumption that t = 0 and with the same parameter values that are involved.

Figure 6. The three-dimensional graph in (a) of v3,32 given in (121) is depicted for ρ = 0, $ = 0,
σ = 5, ν = 3, d = 25, α = 1, β = 1, e = 2, k0 = 2. The two-dimensional graph in (b) is produced on
the assumption that t = 1 and with the same parameter values that are involved.

Remark 7. Figure 7 also shows another shock wave. A shock wave is a fast and intense disturbance
in a medium that causes a sudden rise in pressure, density, and temperature as it passes through.
A shock wave might emerge from a quick change in circumstances inside the mixture, creating an
abrupt shift in pressure and density in the context of the earlier stated model, such as the FKSE
explaining pressure waves in liquid–gas bubbly mixes. The model’s interaction of nonlinearity and
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dispersion may result in the development of shock waves, as these waves travel through the bubbly
liquid, impacting pressure dynamics and perhaps triggering dynamic changes within the medium.

Figure 7. The three-dimensional graph in (a) of w3,35 given in (124) is depicted for ρ = 0, $ = 4,
σ = 8, λ = 4, h = 2, ν = 5, d = 2, α = 0.9, β = 0.9, e = 1, k0 = 5, p = 1, q = 0. The two-dimensional
graph in (b) is produced on the assumption that t = 0 and with the same parameter values that are
involved.

5. Conclusions

We have investigated the intricacies of soliton dynamics within the context of the
FKSE, which governs pressure waves in liquid–gas bubbly mixes. Furthermore, we have
discovered a diverse range of soliton solutions using the mEDAM approach, including
kink, solitary kink, multi-kink, lump, and periodic wave patterns. Our investigation high-
lighted the interaction of nonlinearity and dispersion, demonstrating their contributions
to the various behaviours of waves in complex fluid systems. These answers have far-
reaching ramifications that go beyond mathematical physics, influencing domains such
as optical fibres, plasma physics, and other practical sciences. We proved the practical
importance of these solutions by graphical depiction and thorough analysis, emphasising
their role in improving our understanding of wave events across several disciplines. This
research increases our understanding of soliton dynamics by delving further into the vari-
ous complexities of wave propagation through complicated media. Further research has
the potential to yield innovative insights and practical applications, promoting advances in
both theoretical knowledge and real-world implementations. Moreover, the adaptability
of the mEDAM technique we offer is demonstrated by its ability to handle extremely non-
linear systems. In contrast to the approaches outlined in the literature review, our system
speeds the translation of a model into a nonlinear algebraic equation system. This fast
procedure allows for the development of many families of soliton solutions, distinguishing
it from other methods that primarily allow for a more thorough study of the model. It
should be noted, however, that this strategy may find difficulties in scenarios involving
very complicated models or circumstances in which the homogenous balancing principle is
not applicable.
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