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1. Introduction

There are several branches of science and engineering in which the dynamic behaviour
of natural processes is swiftly modelled using the concept of integrals, which have non-
integer order and are covered in fractional calculus of functions and their derivatives, etc.
Since FDEs include non-local relationships for both time and space, the study of fractional
calculus has begun to advance more quickly all over the world. Additionally, fractional
differential equations are an excellent tool for explaining memory and genetic traits in
a variety of processes. The authors of [1,2] employed fractional differential operators
for a different use. These operators were used to understand population growth models.
Fractional calculus underwent significant growth after the 19th century, primarily as a result
of its suitability for a wide range of disciplines and the emergence of numerous definitions
for fractional derivatives, each of which had its own unique characteristics. Examples
of these definitions include the Wieyl definition, the Riemann–Liouville definition, the
Caputo definition, and others. Ironically, the integral form appears in the majority of the
formulations of fractional derivatives. Readers are directed to [3–5] for a comprehensive
understanding of fractional calculus and [6–16] for an overview of fractional differential
equations (FDEs).

The majority of definitions of fractional derivatives utilise the integral form, as previ-
ously established. However, in 2014, R. Khalil et al. [17] proposed a limit-based approach,
similar to the usual derivative, characterising it as conformable and analogous to a con-
ventional derivative. Subsequently, F. Zulfeqarr et al. [18] introduced the new concept of
deformable derivatives, which was notably more straightforward than Khalil’s definition.
This derivative was inspired by Khalil’s work and addressed its limitations while also
accommodating a broader range of applications.
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It is common knowledge that engineering and mathematical control theory both
strongly depend on the idea of controllability. As a result, several researchers have thor-
oughly examined the controllability of various nonlinear systems in recent years, for
example [19–25], and the references therein. Finding an appropriate control function that
will allow researchers to move the dynamical system’s state towards the targeted final state
is the controllability problem. While exact controllability steers towards an exact final state,
approximate controllability allows researchers to steer the system towards an arbitrarily
small neighbourhood of the final state. Approximate controllability, therefore, applies more
to dynamical systems.

Since Hille and Yosida’s discovery of generation theory in 1948, the study of semi-
groups of BLOs has undergone significant developments, making it a substantial area
of mathematics that is widely employed in several analytical fields. To solve differential
equations, it is necessary to understand the concept of semigroups of BLOs. It has been
effective in resolving a considerable class of differential and integro-differential problems
in recent years. Using semigroups, Pazy [26] investigated the EaU of classical solutions,
strong solutions, and mild solutions to evolution systems.

Further investigation started with a discussion of previously published works [10,27–29].
Specifically, the existence and uniqueness of the mild solutions and approximate
controllability of fractional evolution equations with deformable derivatives were
investigated in [29,30]

Dρω(β) = Qω(β) + f (β, ω(β)), β ∈ I = [0, b], 0 < ρ < 1,

ω(0) = ω0,

and the conclusions were made possible using Banach’s and Schauder’s fixed-point theo-
rems in semigroup theory.

The authors of [10] examined the existence and uniqueness of solutions to the Cauchy
problem for fractional differential equations with non-local conditions

Dρω(β) = f (β, ω(β)), β ∈ I = [0, Z], 0 < ρ < 1,

ω(0) + g(ω) = ω0,

in a Banach space.
Also, the authors of [16] further investigated the properties of the deformable deriva-

tives and used the results to study the existence of solutions to the integro-differential
equation

Dρω(β) = k(ω(β)) + f (β, ω(β)) +
∫ β

0
K(β, σ, ω(σ))dσ, I = [0, Z] and β ∈ I, 0 < ρ < 1,

ω(0) = ω0,

achieving their results using Weissinger’s fixed-point theorem and Krasnoselskii’s fixed-
point theorem.

Later, M. Etefa and Guerekata et al. [27] studied the results of sufficient conditions
for the existence of solutions for a class of initial value problems for impulsive fractional
differential equations involving the deformable fractional derivative

Dρω(β) = f (β, ω(β)), β ∈ I = [0, χ], β 6= βl , l = 1, 2, . . . , p,

∆ω|β=βl
= Il

(
ω
(

β−l
))

,

ω(0) = ω0.

Further, they obtained their results using the Banach contraction principle and the
alternative Leray–Schauder fixed-point theorems.
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Drawing inspiration from the above-mentioned works, we study the existence and
uniqueness results for FNDE with DD of the model

DDDρ[ω(β)− A1(β, ω(β))] = Q[ω(β)− A1(β, ω(β))] + A2(β, ω(β)), (1)

ω(0) = ω0, (2)

and the corresponding controllability model

DDDρ[ω(β)− A1(β, ω(β))] = Q[ω(β)− A1(β, ω(β))] + A2(β, ω(β)) + Bv(β), (3)

ω(0) = ω0, (4)

where DDDρ is the deformable fractional derivative of order ρ ∈ (0, 1) and β ∈ [0, χ],
χ > 0 is a constant.
Q : D(Q) ⊂ X → X is an infinitesimal generator of a C0-semigroup Z(β)(β ≥ 0), and
A2 : [0, χ] × X → X are continuous functions. A1 : [0, χ] × X → X is a continuously
differentiable function and ω0 ∈ X, where X is an appropriate space, v ∈ L2([0, χ], V),
where V is a Hilbert space, and B : V → X is a BLO.

This study’s primary findings are as follows:

1. We obtain the solutions to systems (1) and (2) and present them in Theorems 5 and 6.
Also, we prove that systems (3) and (4) have approximate controllability.

2. The results of this work improve and generalise other studies that have been reported
in the literature [10,27–29].

The rest of this article is organised as follows. In Section 2, we discuss the basic defini-
tions, essential properties, and theorems. Our results were obtained using Krasnoselskii’s
fixed-point theorem and the Banach contraction principle. In Section 3, we discuss the main
results, i.e., the existence and uniqueness of the solution to systems (1) and (2), using ap-
propriate fixed-point theorems. Then, we show that systems (3) and (4) are approximately
controllable. Moreover, in Section 4, we present three numerical examples to illustrate
our results.

2. Preliminaries

The objective of this section is to present a summary of the key concepts and results
associated with deformable derivatives. These ideas and outcomes are instrumental in our
efforts to derive our primary conclusions.

Definition 1 (see [18]). The deformable derivative of order ρ ∈ [0, 1] for a function ω : (e1, e2)→ R
is defined by

lim
ε→0

(1 + εµ)ω(β + ερ)−ω(β)

ε
,

where ρ + µ = 1. If this limit exists, we denote it by Dρω(β).

Remark 1. One can note that definition (1) is compatible with ρ = 0, 1.
If ρ = 0, D0ω(β) = ω(β), which is the usual convention, and if ρ = 1, Dω(β) = ω′(β).

Definition 2 (see [18]). Let ω be a continuous function defined on the interval [e1, e2].
The ρ-fractional integral of ω is as follows:

Iρ
e1 ω(β) =

1
ρ

e
−µ
ρ β
∫ β

e1

e
µ
ρ σ

ω(σ)dσ, where ρ + µ = 1, ρ ∈ (0, 1]. (5)

Remark 2. If e1 = 0, Equation (5) becomes

Iρω(β) =
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ

ω(σ)dσ.
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Theorem 1 (see [18]). Let ω be a differentiable function at a point β ∈ (e1, e2) that is differentiable
for all ρ at that point. So far, we have

Dρω(β) = µω(β) + ρDω(β),

where Dω = d
dβ ω.

Theorem 2 (see [18]). By assuming that ω is continuous over the interval [e1, e2], it follows that
Iρ
e1 ω is differentiable with respect to ρ in the open interval (e1, e2), which can also be expressed as

Dρ Iρ
e1 ω(β) = ω(β) and Iρ

e1 Dρω(β) = ω(β)− e
µ
ρ (e1−β)

ω(e1).

We refer the reader to [10,18,27] for further information on the properties and outcomes
of deformable derivatives.

Assume that Q is a linear operator from D(Q) ⊂ X into X and ω0 ∈ X.

Lemma 1 ([31]). The Cauchy problem for the deformable fractional derivative is governed by the
parameter ρ ∈ (0, 1]

Dρ[ω(β)− k(β)] = Q[ω(β)− k(β)] β ∈ [0, χ], (6)

ω(0) = ω0, (7)

which has the solution

ω(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − k(0)] + k(β),

where β is a non-negative real number, ω0 ∈ D(Q), and k : [0, χ]→ X is an appropriate space.
Let ρ ∈ (0, 1]. The ensuing fractional inhomogeneous deformable Cauchy system is

Dρ[ω(β)− k(β)] = Q[ω(β)− k(β)] + f (β) β ∈ [0, χ], (8)

ω(0) = ω0, (9)

where β is a non-negative real number, ω0 ∈ D(Q), and f , k : [0, χ]→ X are suitable functions.

Theorem 3 ([31]). Consider ω as the solution to systems (8) and (9) and f ∈ L1([0, χ],X). Then,
ω satisfies

ω(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − k(0)] + k(β) +

1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
f (σ)dσ.

Theorem 4 ([31]). Consider Q as the infinitesimal generator of a C0 semigroup and f ∈ C([0, χ],X).
If f (σ) ∈ D(Q) for σ ∈ [0, β] & Q f (σ) ∈ L1([0, χ],X), for every ω0 − k(0) ∈ D(Q), then
ω : [0, χ]→ X described by

ω(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − k(0)] + k(β) +

1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
f (σ)dσ. (10)

is a mild solution to (8) and (9).

Proof. If y(β) = e
−µ
ρ βW

(
β
ρ

)
[ω0− k(0)]+ k(β)and z(β) =

1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
f (σ)dσ,

then ω(Q) can be written as y(β) + z(β). Since ω0 − k(0) ∈ D(Q), y(β) is differentiable
and according to Lemma 1, it is a known fact that Dρ[ω(β) − k(β)] = Q[ω(β) − k(β)].
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From Theorem 3.5 [29], we have z′(β) = 1
ρ (−µz(β) + Qz(β) + f (β)). From Theorem 1,

we obtain

Dρz(β) = µz(β) + ρz′(β)

= µz(β) + ρ · 1
ρ
(−µz(β) + Qz(β) + f (β))

= Qz(β) + f (β).

As a result,

Dρω(β) = Dρy(β) + Dρz(β)

= Q[y(β)− k(β)] + Dρk(β) + Qz(β) + f (β).

=⇒

Dρ[ω(β)− k(β)] = Qy(β)− k(β)] + zQ(β) + f (β)

= Qy(β) + Qz(β)−Qk(β) + f (β)

= Qω(β)−Qk(β) + f (β)

= Q[ω(β)− k(β)] + f (β).

By substituting the initial conditions for y and z into the equation ω(0) = y(0) + z(0) =
ω0 − k(0) + k(0) = ω0, we can see that ω(β), as given by Equation (10), represents a mild
solution to (8) and (9).

3. Main Results

The following section begins with a discussion of the EaU of a mild solution to
systems (1) and (2), after which the researchers describe and demonstrate the requirements
for the approximate controllability of systems (3) and (4).

3.1. Existence Results

Let X be a Banach space with the norm ‖ · ‖, and C([0, χ],X) be a Banach space
of all continuous functions from [0, χ] into X endowed with the supremum norm
‖ω‖C = sup

β∈[0,χ]
‖ω(β)‖.

By using the information in the preceding Theorem 4, we are able to determine the
solution to our addressed systems (1) and (2).

Definition 3. A function ω ∈ C is considered to be a mild solution to systems (1) and (2)

ω(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β))

+
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
A2(σ, ω(σ))dσ, β ∈ [0, χ],

(11)

provided the integral exists. To study systems (1) and (2), the conditions that follow need to be listed:

(M0) Q is the infinitesimal generator of a C0 semigroup of BLOs {W(β)}β≥0 such that
M = supβ∈[0,χ] ‖W(β)‖L(X), where the term L(X) is Banach space on X, N ≥ 1.

(M1) A2 is the function, A2: [0, χ] × X → X is continuous, and A1 : [0, χ] × X → X is
continuously differentiable and we can find the positive constants IA2 , IA1 in such a way that:

(i)
‖A2(β, u)− A2(β, ū)‖ ≤ IA2‖u− ū‖, for every β ∈ [0, χ], u, ū ∈ X

and IA2 = sup
β∈[0,χ]

‖A2(β, 0)‖.
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(ii)
‖A1(β, u)− A1(β, ū)‖ ≤ IA1‖u− ū‖, for every β ∈ [0, χ], u, ū ∈ X

and IA1 = sup
β∈[0,χ]

‖A1(β, 0)‖.

(M2) The function A2 : [0, χ] × X → X is continuous, A1 : [0, χ] × X → X is continuously
differentiable, and the positive constants ÎA2 , ÎA1 , ĨA2 , ĨA1 can be found in such a way that:

(i) ∃ positive constants ÎA2 , ĨA2 in such a way that

‖A2(β, ω)‖ ≤ ÎA2 + ĨA2‖ω‖, β ∈ [0, χ], ω ∈ X.

(ii) ∃ positive constants ÎH , ĨH in such a way that

‖A1(β, ω)‖ ≤ ÎA1 + ĨA1‖ω‖, β ∈ [0, χ], ω ∈ X.

Theorem 5. Assume that A1 and A2 meet the requirements of (M0)-(M1) and that

Λ =

[
IA1 +

MIA2

µ

]
< 1, (12)

then, systems (1) and (2) have a unique solution on [0, χ].

Proof. We modify systems (1) and (2) into a fixed-point problem. Define Υ : C → C by

(Υω)(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β))

+
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ sW

(
β− σ

ρ

)
A2(σ, ω(σ))dσ, β ∈ [0, χ]. (13)

We now show that ΥBQ ⊂ BQ, where BQ = B(0, Q) = {ω ∈ C([0, χ],X) : ‖ω‖C ≤ Q},

and radius Q >
‖Ω1‖
1− µ̃

, where ‖Ω1‖ = ‖Ω‖ +
(
IA1 +

MIA2
µ

)
, ‖Ω‖ = M[‖ω0‖ +

‖A1(0, ω0)‖], µ̃ = IA1 +
MIA2

µ .
Obviously, let ω ∈ BQ,

‖(Υω)(β)‖ =
∥∥∥∥∥e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β))

+
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
A2(σ, ω(σ))dσ

∥∥∥∥∥
≤ ‖Ω‖+ ‖A1(β, p(β))− A1(β, 0)‖+ ‖A1(β, 0)‖

+
M
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ
(‖A2(σ, ω(σ))− A2(σ, 0)‖+ ‖A2(σ, 0)‖)dσ

≤ ‖Ω‖+ IA1 Q + IA1 + (IA2 Q + IA2 )
M
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σdσ

≤ ‖Ω‖+ IA1 Q + IA1 + (IA2 Q + IA2 )
M
µ

(1− e
−µ
ρ β

)

= ‖Ω‖+ IA1 Q + IA1 +
M
µ

[
(IA2 Q + IA2 )

]
(1− e

−µ
ρ β

)

≤ ‖Ω1‖+
[
IA1 +

MIA2

µ

]
Q.
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As a result, for β ∈ [0, χ] and ω ∈ BQ, we have

‖Υω)‖C ≤ ‖Ω1‖+
[
IA1 +

MIA2

µ

]
Q < Q.

The above results establish that the Υ causes the ball BQ to be transformed into itself.
To proceed further with ω, ω ∈ BQ, we define

‖(Υω)(β)− (Υω)(β)‖

≤ ‖A1(β, ω(β))− A1(β, ω(β))‖+M
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ‖A2(σ, ω(σ))− A2(σ, ω(σ))‖dσ

≤ IA1‖ω−ω‖C +
MIA2

µ
‖ω−ω‖C(1− e

−µ
ρ β

)

≤
[
IA1 +

MIA2

µ

]
‖ω−ω‖C .

As a result, for β ∈ [0, χ], the researchers arrived at

‖Υ(ω)− Υ(ω)‖C ≤ Λ‖ω−ω‖C ,

where Λ = ΛM,IA2 ,IA1
,µ are the parameters of the system. According to (12), Λ < 1, so Υ is

a contraction. As a result, systems (1) and (2) have a unique solution on [0, χ] in accordance
with Lemma 2.2 [32] of the Banach contraction principle.

Now, we can prove that there exist solutions to (1) and (2) by applying Krasnoselskii’s
fixed-point theorem (Lemma 2.3, [32]).

Theorem 6. Assumptions (M0), (M1)(ii), and (M2) hold with IA1 < 1. In this case, there is at
least one solution to systems (1) and (2) on [0, χ].

Proof. Let us define two operators using system (11) as follows:

(Υ1ω)(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β)), β ∈ [0, χ] (14)

and

(Υ2ω)(β) =
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
A2(σ, ω(σ))dσ, β ∈ [0, χ]. (15)

We now show that ΥBQ ⊂ BQ and the radius Q >
‖Ω∗1‖
1− µ̃1

, where

‖Ω∗1‖ = ‖Ω‖+
(
ÎA1 +

MÎA2
µ

)
, ‖Ω‖ =M[‖ω0‖+ ‖A1(0, ω0)‖], µ̃1 = ĨA1 +

MĨA2
µ .

For ω, ω1 ∈ BQ, we find that

‖Υ1ω(β) + Υ2ω1(β)‖

≤
∥∥∥∥∥e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β)) +

1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
F(σ, ω1(σ))dσ

∥∥∥∥∥
≤ ‖Ω‖+ ÎA1 + ĨA1 Q +

M
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ s
[ÎA2 + ĨA2 Q]dσ

≤ ‖Ω‖+ ÎA1 + ĨA1 Q +
M
µ
ÎA2 +

M
µ
ĨA2 Q
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≤ ‖Ω‖+ ÎA1 +
MÎA2

µ
+

[
ĨA1 +

MĨA2

µ

]
Q

≤ ‖Ω∗1‖+
[
ĨA1 +

MĨA2

µ

]
Q.

Thus, for β ∈ [0, χ] and ω ∈ BQ, we have

‖Υ1(ω) + Υ2(ω1)‖C ≤ ‖Ω∗1‖+
[
ĨA1 +

MĨA2

µ

]
Q < Q.

Thus, Υ1(ω) + Υ2(ω1) ∈ BQ. As a next step, we prove that Υ1 is a contraction. As A1 is
continuous, so is Υ1. By letting ω, ω ∈ BQ, from (14) and (M0), (M1)(ii), we obtain

‖(Υ1ω)(β)− (Υ1ω)(β)‖ ≤ IA1‖ω−ω‖C .

Therefore, for β ∈ [0, χ] and ω ∈ BQ, the researchers arrived at

‖(Υ1ω)− (Υ1ω)‖C ≤ IA1‖ω−ω‖C .

Hence, Υ1 is a contraction. The continuous operator Υ2 has been deduced from the fact that
the function A2 is continuous. Moreover, Υ2 is uniformly bounded on BQ as

‖(Υ2ω)(β)‖ ≤ M
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ‖A2(σ, ω(σ))‖dσ

≤ M
µ

(ÎA2 + ĨA2 Q) = A,

which suggests that ‖Υ2ω‖C ≤ A. So, the value of Υ2 is uniformly bounded, but it is still
necessary to demonstrate that Υ2 is equi-continuous to show that the operator is compact.
Now, we find that for every κ1, κ2 in [0, χ] with κ1, κ2, and ω in BQ

‖(Υ2ω)(κ2)− (Υ2ω)(κ1)‖

=

∥∥∥∥∥1
ρ

e
−µ
ρ κ2

∫ κ2

κ1

e
µ
ρ σW

(
κ2 − σ

ρ

)
A2(σ, ω(σ))dσ

∥∥∥∥∥
+

∥∥∥∥∥1
ρ

e
−µ
ρ κ1

∫ κ1

0
e

µ
ρ σ
[

W
(

κ2 − σ

ρ

)
−W

(
κ1 − σ

ρ

)]
A2(σ, ω(σ))dσ

∥∥∥∥∥
= I1 + I2. (16)

By utilising (M0) and (M1)(i), we obtain

I1 =
M(ÎA2 + ĨA2 Q)

µ
[1− e

−µ
ρ (κ2−κ1)].

For κ1 = 0, it is simple to see that I2 = 0. If κ1 > 0 and ε > 0 are small enough, we have

I2 ≤
∥∥∥∥1

ρ
e
−µ
ρ κ1

∫ κ1−ε

0
e

µ
ρ σ
[

W
(

κ2 − σ

ρ

)
−W

(
κ1 − σ

ρ

)]
A2(σ, ω(σ))dσ

∥∥∥∥
+

∥∥∥∥1
ρ

e
−µ
ρ κ1

∫ κ1

κ1−ε
e

µ
ρ σ
[

W
(

κ2 − σ

ρ

)
−W

(
κ1 − σ

ρ

)]
F(σ, ω(σ))dσ

∥∥∥∥
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≤
ÎA2 + ĨA2 Q

ρ
e
−µ
ρ κ1

∫ κ1−ε

0
e

µ
ρ σdσ sup

σ∈[0,κ1−ε]

∥∥∥∥W
(

κ2 − σ

ρ

)
−W

(
κ1 − σ

ρ

)∥∥∥∥
+

2M(ÎA2 + ĨA2 Q)

ρ
e
−µ
ρ κ1

∫ κ1

κ1−ε
e

µ
ρ σdσ.

Because of the operator’s compactness W(β), β > 0, the fact that Ii → 0(i = 1, 2) as
κ2 → κ1, ε → 0. Consequently, ‖(Υ2ω)(κ2)− (Υ2ω)(κ1)‖ → 0 as κ2 → κ1. Thus, Υ2 is
equi-continuous. Because Υ2(X) ⊂ X, Υ has at least one fixed point, according to Arzela-
Ascoli’s theorem, and Υ2 is considered to be compact, then the problem obtained through
the associated system has at least one solution.

3.2. Approximate Controllability

X is taken to be a Hilbert space for the sake of this subsection. In this subsection, we
define and provide the requirements for the ACFNDE in (3) and (4). First, we define the
mild solution to systems (3) and (4).

Definition 4. A function ω ∈ C is termed a mild solution to (3) and (4) if for any
v ∈ L2([0, χ],X) and

ω(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β))

+
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
[A2(σ, ω(σ)) + Bv(σ)]dσ, β ∈ [0, χ],

(17)

provided the integral exists.
Let ωχ(ω0, v) be the state value of (3) and (4) at terminal time χ, corresponding to the control

v and the initial value ω0. We present the setR(χ, ω0) =
{

ωχ(ω0, v) : v ∈ L2([0, χ], V)
}

, which
is called the reachable set of the model in (3) and (4) at terminal time χ, and its closure in X is
described byR(χ, ω0).

Definition 5 (see [20]). Given any ε > 0, it is possible to steer from the point ω0 to within a
distance ε from all points in the state space X at time χ, and systems (3) and (4) are considered
approximately controllable on [0, χ] ifR(χ, ω0) = X.

Let us take the subsequent linear fractional differential model corresponding to (3) and (4)

DDDρω(β) = Qω(β) + Bv(β), β ∈ [0, χ],

ω(0) = ω0.
(18)

Definition 6 (see [29]).

(a) A controllability map for system (18) on [0, χ] is a bounded linear map
Bχ: L2([0, χ], V)→ X, which is defined as

Bχv :=
1
ρ

e
−µ
ρ χ
∫ χ

0
e

µ
ρ σW

(
χ− σ

ρ

)
Bv(σ)dσ.

(b) System (18) is called AC on [0, χ] if ranBχ = X.
(c) The controllability gramian of (18) on [0, χ] is defined as Γχ

0 = Bχ(Bχ)∗.

Lemma 2 (see [29,33]). The model (18) is AC on [0, χ] if and only if θR
(
θ, Γχ

0
)
→ 0 as θ → 0+in

strong operator topology, where R
(
θ, Γχ

0
)
=
(
θ I + Γχ

0
)−1.

We refer the reader to [20–22,29,33] for background information and more details on
approximate controllability.

We create the following conditions to evaluate the approximate controllability of (3) and (4):
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(M0)∗Q is the infinitesimal generator of a C0 semigroup of BLOs {W(β)}β≥0 on X,
and W(β)(β > 0) is compact. Further, denoteM = supβ∈[0,χ] ‖W(β)‖L(X), where L(X)
represents the Banach space of all linear and bounded operators on X andM≥ 1.

(M3) For each β ∈ [0, χ], the function A2(β, ·) : X → X is continuous, and for all u ∈ X,
the function A2(·, u) : [0, χ]→ X is Lebesgue measurable.

(M4) There exists a constant ρ1 ∈ (0, ρ) and a function ĨA2 ∈ L
1

ρ1 ([0, χ],R+) in such a way that

‖A2(β, u)‖ ≤ ĨA2(β), ∀u ∈ X; β ∈ [0, χ].

(M5) The linear control system (18) is AC on [0, χ].

We notate things as follows for simplicity:
In BQ, for each finite constant Q > 0, we denote

IB = ‖B‖, IA2 = ‖ĨA2‖
L

1
ρ1 ([0,χ],R+)

, t =
1

1− ρ1
, and Ñ =

1
ρ

(
ρ

tµ

) 1
t
IA2 .

The feedback control function for systems (3) and (4) is now selected as follows:

v(β) = vθ(β, ω) = B∗T∗
(

χ− β

ρ

)
R
(
θ, Γχ

0
)
q(ω),

where

q(ω) = ωχ − e
−t
ρ χW

(
χ

ρ

)
[ω0 − A1(0, ω0)]− A1(χ, ω(χ))

− 1
ρ

e
−µ
ρ χ
∫ χ

0
e

µ
ρ σW

(
χ− σ

ρ

)
A2(σ, ω(σ))dσ. (19)

For any θ > 0, we describe the operator Υθ : C([0, χ],X)→ C([0, χ],X) as follows:

(Υθω)(β) = e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(χ, ω(χ))

+
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
[A2(σ, ω(σ)) + Bvθ(σ, ω)]dσ. (20)

Lemma 3. If assumptions (M0)∗-(M4) hold, for any β ∈ [0, χ], we obtain:

(i)
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ
∥∥∥∥W
(

β− σ

ρ

)
A2(σ, ω(σ))

∥∥∥∥dσ ≤MÑ.

(ii) ‖vθ(β, ω)‖ ≤ MIB
θ

[
‖ωχ‖+M[‖ω0‖+ ‖A1(0, ω0)‖+ Ñ] + ÎA1 + ĨA1 Q

]
.

Proof. (i) Given Holder’s inequality and (Q3), we obtain

1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ
∥∥∥∥W
(

β− σ

ρ

)
A2(σ, ω(σ))

∥∥∥∥dσ

≤ M
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σĨA2(σ)dσ

≤ M
ρ

e
−µ
ρ β

(∫ β

0

(
e

µ
ρ σ
) 1

1−ρ1 dσ

)1−ρ1(∫ β

0

(
ĨA2(σ)

) 1
ρ1 dσ

)ρ1

≤ M
ρ

e
−µ
ρ β
(∫ β

0
e

tµ
ρ σdσ

) 1
t

‖ĨA2‖
L

1
ρ1 ([0,χ],R+)
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≤ 1
ρ

(
ρ

tµ

) 1
t
IA2Me

−µ
ρ β

(e
µ
ρ β − 1)

≤MÑ.

(ii) From (19), (20), and (i), we have

‖vθ(β, ω)‖ ≤
∥∥∥∥B∗T∗

(
χ− β

ρ

)
R
(
θ, Γχ

0
)
q(ω)

∥∥∥∥
≤ MIB

θ
‖q(ω)‖

≤ MIB
θ

[
‖ωχ‖+M[‖ω0‖+ ‖A1(0, ω0)‖] + ÎA1 + ĨA1 Q +MÑ

]
≤ MIB

θ

[
‖ωχ‖+M[‖ω0‖+ ‖A1(0, ω0)‖+ Ñ] + ÎA1 + ĨA1 Q

]
.

Theorem 7. If hypotheses (M0)∗-(M3) are true, a mild solution exists for the FN control
systems (3) and (4).

Proof. We must demonstrate that Υθ has a fixed point to show that the FN control systems
((3) and (4)) have a mild solution. The proof is divided into the following stages for
simplicity:
Step 1: For any θ > 0, we can find a constant Λ = Λ(θ) > 0 in such a way that Υθ(BΛ) ⊂ BΛ.
For any positive integer Q > 0 and ω ∈ BQ, if β ∈ [0, χ], then from Lemma 3, we obtain

‖(Υθω)(β)‖ = e
−µ
ρ β‖W

(
β

ρ

)
[ω0 − A1(0, ω0)]‖+ ‖A1(β, ω(β))‖

+
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ‖W

(
β− σ

ρ

)
[A2(σ, ω(σ)) + Bvθ(σ, ω)]‖dσ

≤M[‖ω0‖+ ||A1(0, ω0)‖] + ÎA1 + ĨA1 Q +
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ
∥∥∥∥W
(

β− σ

ρ

)
A2(σ, ω(σ))

∥∥∥∥dσ

+
1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σ
∥∥∥∥W
(

β− σ

ρ

)
Bvθ(σ, ω)

∥∥∥∥dσ

≤M[‖ω0‖+ ||A1(0, ω0)‖] + ÎA1 + ĨA1 Q +MÑ

+
1
µ
MIBe

−µ
ρ β

(e
µ
ρ β − 1)||vθ(β, ω)‖

≤ M[‖ω0‖+ ||A1(0, ω0)‖+ Ñ] + ÎA1 + ĨA1 Q

+
MIB

µ
· MIB

θ

[
‖ωβ‖+M[‖ω0‖+ ‖A1(0, ω0)‖+ Ñ] + ÎA1 + ĨA1 Q

]
≤
(

1 +
M2I2

B
µθ

)
[M[‖ω0‖+ ||A1(0, ω0)‖+ Ñ] + ÎA1 + ĨA1 Q] +

M2I2
B

µθ
‖ωβ‖.

For this, we conclude that for large Λ > 0, Υθ(BΛ) ⊂ BΛ holds.

Step 2: For any β ∈ [0, χ], the set {(Υθω)(β) : ω ∈ BΛ} is compact in X. If β = 0, the set is
obviously compact in X. Let 0 < β ≤ χ be fixed and let ε fulfil 0 < ε < β. For ω ∈ BΛ, we
describe
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(Υε
θω)(β) = e

−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β))

+
1
ρ

e
−µ
ρ β
∫ β−ε

0
e

µ
ρ σW

(
β− σ

ρ

)
[A2(σ, ω(σ)) + Bvθ(σ, ω)]dσ

= e
−µ
ρ βW

(
β

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ω(β))

+
1
ρ

e
−µ
ρ βW

(
ε

ρ

) ∫ β−ε

0
e

µ
ρ σW

(
β− σ− ε

ρ

)
[A2(σ, ω(σ)) + Bvθ(σ, ω)]dσ.

Since W(β) is compact for β > 0, we find that the set {(Υθω)(β) : ω ∈ BΛ} is relatively
compact in X. Moreover, from Lemma 3, we obtain

||(Υθω)(β)− (Υε
θω)(β)‖ ≤

∥∥∥∥1
ρ

e
−µ
ρ β
∫ β

β−ε
e

µ
ρ σW

(
β− σ

ρ

)
[A2(σ, ω(σ)) + Bvθ(σ, ω)]dσ

∥∥∥∥
→ 0 as ε→ 0.

As a result, the set {(Υθω)(β) : ω ∈ BΛ}, β ∈ (0, χ] is relatively compact in X.
Step 3: A family of functions {Υθω : ω ∈ Bλ} is equi-continuous on [0, χ].
Let 0 ≤ κ1 < κ2 ≤ χ, and for any ω ∈ Bλ, we have

‖(Υθω)(κ2)− (Υθ p)(κ1)‖ ≤
∥∥∥∥e
−µ
ρ κ1

[
W
(

κ2

ρ

)
−W

(
κ1

ρ

)]
[ω0 − A1(0, ω0)]

∥∥∥∥
+ ‖A1(κ2, ω(κ2))− A1(κ1, ω(κ1))‖

+

∥∥∥∥1
ρ

e
−µ
ρ κ2

∫ κ2

κ1

e
µ
ρ σW

(
κ2 − σ

ρ

)
A2(σ, ω(σ))dσ

∥∥∥∥
+

∥∥∥∥1
ρ

e
−µ
ρ κ2

∫ κ2

κ1

e
µ
ρ σW

(
κ2 − σ

ρ

)
Bvθ(σ, ω)dσ

∥∥∥∥
+

∥∥∥∥1
ρ

e
−µ
ρ κ1

∫ κ1

0
e

µ
ρ σ
[

W
(

κ2 − σ

ρ

)
−W

(
κ1 − σ

ρ

)]
A2(σ, ω(σ))dσ

∥∥∥∥
+

∥∥∥∥1
ρ

e
−µ
ρ κ1

∫ κ1

0
e

µ
ρ σ
[

W
(

κ2 − σ

ρ

)
−W

(
κ1 − σ

ρ

)]
Bvθ(σ, ω)dσ

∥∥∥∥
≤

6

∑
i=1

Ii.

Given Lemma 3 and Theorem 6, we have

I1 ≤
∥∥∥∥W
(

κ2

ρ

)
−W

(
κ1

ρ

)∥∥∥∥[‖ω0||+ ‖A1(0, ω0)||]

I1 ≤ ‖A1(κ2, ω(κ2))− A1(κ1, ω(κ1))‖

I3 ≤
MIA2

ρ

(
ρ

tµ

) 1
t
[

e
tµ
ρ κ2 − e

tµ
ρ κ1

] 1
t

I4 ≤
M2I2

B
µθ

[M[‖ω0‖+ ||A1(0, ω0)‖+ Ñ] + ÎA1 + ĨA1 Q]
[
e

µ
ρ κ2 − e

µ
ρ κ1
]
.

Given that the operator W(β) is compact and β > 0, we see that Ii → 0
(i = 1, 2, 3, 4, 5, 6) as κ2 → κ1, ε → 0. Consequently, ‖(Υ2ω)(κ2) − (Υ2ω)(κ1)‖ → 0 as
κ2 → κ1. Thus, Υ2 is equi-continuous. For the same reason that Υ2(X) ⊂ X, Υ2 is consid-
ered to be compact. Hence, according to Schauder’s fixed-point theorem (Theorem 2.8, [29]),
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we conclude that the operator Υθ has a fixed point, which is a mild solution of the
model in (3) and (4).

Theorem 8. Suppose that (M0)∗-(M4) are true. Furthermore, if the function A2 is uniformly
bounded by the positive constant C, then the FN model in (3) and (4) is AC on [0, χ].

Proof. Let ωθ be a fixed point of Υθ in BΛ. Any fixed point of Υθ is a mild solution of the
system in (3) and (4) under the control

vθ(β, ωθ) = B∗T∗
(

χ− β

ρ

)
R
(
θ, Γχ

0
)
q(ωθ),

where

q(ωθ) = ωχ − e
−µ
ρ χW

(
χ

ρ

)
[ω0 − A1(0, ω0)]− A1(β, ωθ(β))

− 1
ρ

e
−µ
ρ χ
∫ χ

0
e

µ
ρ σW

(
χ− σ

ρ

)
A2(σ, ωθ(σ))dσ,

and fulfils the subsequent inequality

ωθ(χ) = e
−µ
ρ χW

(
χ

ρ

)
[ω0 − A1(0, ω0)] + A1(β, ωθ(β))

+
1
ρ

e
−µ
ρ χ
∫ χ

0
e

µ
ρ σW

(
χ− σ

ρ

)
[A2(σ, ωθ(σ)) + Bvθ(σ, ωθ)]dσ

= ωχ − q(ωθ) + R
(
θ, Γχ

0
)
q(ωθ)

= ωχ − θR
(
θ, Γχ

0
)
q(ωθ). (21)

Since A2 is uniformly bounded, we have∫ χ

0
‖A2(σ, ωθ(σ))‖2dσ ≤ C2χ.

Thus, the sequence A2(·, ωθ(·)) is bounded in L2([0, χ],X). Then, we can find a subsequence of
{A2(·, ωθ(·) : θ > 0}, still signified by it, that converges weakly to some A2(σ) ∈ L2([0, χ],X).
Denote

ν = ωχ − e
−µ
ρ χW

(
χ

ρ

)
[ω0 − A1(0, ω0)]− A1(β, ωθ(β))− 1

ρ
e
−µ
ρ χ
∫ χ

0
e

µ
ρ σW

(
χ− σ

ρ

)
A2(σ)dσ.

It is proposed that

‖q(ωθ)− ν‖ =
∥∥∥∥1

ρ
e
−µ
ρ χ
∫ χ

0
e

µ
ρ σW

(
χ− σ

ρ

)
[A2(σ, ωθ(σ))− A2(σ)]dσ

∥∥∥∥
≤ sup

β∈[0,χ]

∥∥∥∥1
ρ

e
−µ
ρ β
∫ β

0
e

µ
ρ σW

(
β− σ

ρ

)
[A2(σ, ωθ(σ))− A2(σ)]dσ

∥∥∥∥.

Consequently,
‖q(ωθ)− ν‖ → 0 as θ → 0+.

Then, from the above discussion, we have

||ωθ(χ)−ωχ‖ ≤ ‖θR(θ, Γχ
0 )q(ωθ)‖

≤ ‖θR(θ, Γχ
0 )ν‖+ ‖θR(θ, Γχ

0 )‖‖q(ωθ)− ν‖
≤ ‖θR(θ, Γχ

0 )ν‖+ ‖q(ωθ)− ν‖ → 0 as θ → 0+.

Consequently, this proves the approximate controllability of the model in (3) and (4).
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4. Applications
Example 1. Consider the following deformable FN partial differential equation of the form

DDD
1
2

[
ω(β, z)− e−β

25 + eβ
· |ω(β, z)|
(1 + |ω(β, z)|)

]
=

∂2

∂z2 ω(β, z) +
e−β|ω(β, z)|

(16 + eβ)(1 + |ω(β, z)|)
,

β ∈ (0, 1), z ∈ (0, 1); (22)

ω(β, 0) = ω(β, 1) = 0, 0 ≤ β ≤ 1; (23)

ω(0, z) = ω0(z), 0 ≤ z ≤ 1; (24)

where X = L2[0, 1], ω0(z) ∈ X.
Define Qω = ω′′ with D(Q) = {ω ∈ X : ω, ω′ are absolutely continuous and ω′′ ∈ X,
ω(0) = ω(1) = 0}.

Then,

Qω =
∞

∑
n=1
−n2〈ω, Θn〉Θn, ω ∈ D(Q),

where Θn(z) =
√

2
π sin(nz), 0 6 z 6 1, n = 1, 2, . . .. It is well-known that Q generates a C0

semigroup W(β)(β > 0) on X, which is given by

W(β)ω =
∞

∑
n=1

Θ−n2β〈ω, Θn〉Θn, ω ∈ X, (25)

with ‖W(β)‖ 6 1, for any β > 0. Put ω(β) = ω(β, ·), that is, ω(β)(z) = ω(β, z), β,
z ∈ [0, 1], and

A2(β, ω(β)) =
e−β

(16 + eβ)
· |ω(β, ·)|

1 + |ω(β, ·)| ;

A1(β, ω(β)) =
e−β

(25 + eβ)
· |ω(β, ·)|

1 + |ω(β, ·)| .

Then, let x, x ∈ [0, ∞) and β ∈ [0, 1]. Then, there is

‖A2(β, x)− A2(β, x)‖ ≤ e−β

(16 + eβ)

∥∥∥∥ x
1 + x

− y
1 + y

∥∥∥∥
≤ 1

17
‖x− x‖,

‖A1(β, x)− A1(β, y)‖ ≤ e−β

(25 + eβ)

∥∥∥∥ x
1 + x

− y
1 + y

∥∥∥∥
≤ 1

26
‖x− y‖.

Assumption (M1) holds, with IA2 = 1
17 and IA1 = 1

26 . Since ρ = 1
2 and ρ + µ = 1, we

have µ = 1
2 .

IfM = 2, we have

Λ =

[
IA1 +

M
µ
IA2

]
=

1
26

+
2

0.5
· 1

17
= 0.2737.
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Therefore, (12) holds, where Λ = 0.2737 < 1. According to Theorem 5, the given problem in
(22)–(24) has a unique solution in the interval [0, 1].

Example 2. Consider the following subsequent FN system using deformable derivatives of the form

DDD
1
2

[
ω(β, z)−

(
β2

4
+

sin β

64
|ω(β, z)|

)]
=

∂2

∂z2 ω(β, z) +
β

4
+

sin β

36
|ω(β, z)|,

z ∈ (0, 1) and β ∈ [0, 1]. (26)

Using the preliminaries in Example 1, we set

A2(β, ω(β)) =
β

4
+

sin β

36
|ω(β, ·)|;

A1(β, ω(β)) =
β2

4
+

sin β

64
|ω(β, ·)|.

Then,
let x, y ∈ [0, ∞) and β ∈ [0, 1]. Then, we have

‖A2(β, x)− A2(β, y)‖ ≤
∥∥∥∥ β

4
+

sin β

36
x− β

4
− sin β

36
y
∥∥∥∥

≤ 1
36
‖x− y‖.

and

‖A1(β, x)− A1(β, y)‖ ≤
∥∥∥∥ β2

4
+

sin β

64
x− β2

4
− sin β

64
y
∥∥∥∥

≤ 1
64
‖x− y‖.

For all β ∈ [0, 1] and x ∈ [0, ∞), we have

‖A2(β, x)‖ ≤
∥∥∥∥ β

4
+

sin β

36
x
∥∥∥∥

≤
∥∥∥∥ β

4

∥∥∥∥+ sin β

36
‖x‖

≤ 1
4
+

1
36
‖x‖.

and

‖A1(β, x)‖ ≤
∥∥∥∥ β2

4
+

sin β

64
x
∥∥∥∥

≤
∥∥∥∥ β2

4

∥∥∥∥+ sin β

64
‖x‖

≤ 1
4
+

1
64
‖x‖.

So, assumptions (M1)(i)(ii) and (M2)(i)(ii) hold with IA2 = 1
36 , IA1 = 1

64 , ÎA2 = 1
4 ,

ÎA1 = 1
4 , ĨA2 = 1

36 , ĨA1 = 1
64 . Since ρ = 1

2 and ρ + µ = 1, we have µ = 1
2 . According to

Theorem 6, the given FN system (26) with conditions (23) and (24) has at least one solution in [0, 1].

Example 3. Consider the following FN system using deformable derivatives of the form
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DDD
1
2

[
ω(β, z)−

(
β2

4
+

sin β

64
|ω(β, z)|

)]
=

∂2

∂z2 ω(β, z) + v(β, ω) +
1
4
· e−β

1 + eβ
· |ω(β, z)|
(1 + |ω(β, z)|) ,

β ∈ [0, 1], z ∈ (0, 1), (27)

where X = V = L2([0, 1]).
From Example 1, we obtain

A2(β, ω(β)) =
1
4
· e−β

1 + eβ
· |ω(β, ·)|

1 + |ω(β, ·)| ;

A1(β, ω(β)) =
β2

4
+

sin β

64
|ω(β, ·)|.

Furthermore, the bounded linear operator B : V → X is defined as Bv(β) = v(β, ·). Then,
the system (27) with (23) and (24) is transformed into the abstract form of the system in (1) and (2).

Moreover, assumptions (M3)–(M4) hold with ĨA2 =
e−β

1 + eβ
and C = 1

4 .

According to Theorem 3.12 [29], the linear system corresponding to (27) with conditions (23)
and (24) is AC on [0, χ] iff

B∗T∗
(

χ− β

ρ

)
ω = 0, χ ∈ [0, χ] =⇒ x = 0. (28)

From (25), we notice that

B∗T∗
(

χ− β

ρ

)
ω =

∞

∑
n=1

e−n2
(

χ−β
ρ

)
〈ω, Θn〉Θn, ω ∈ X, β ∈ [0, χ].

Therefore, condition (28) holds and hence assumption (M5) holds. Thus, according to
Theorem 8, system (27) with conditions (23) and (24) is AC on [0, χ].

5. Conclusions

The concept of a deformable derivative was novel when it was first proposed by F.
Zulfeqarr, A. Ujlayan, and P. Ahuja [18]. The limit approach is utilised in this new deriva-
tive in the same manner as the traditional derivative. It was given the term “deformable”
because it had the inherent capacity to continuously deform functions into derivatives.
This idea opens up new avenues for study, allowing one to look at both qualitative and
quantitative behaviour in a variety of systems. In this work, we used the novel findings
from [18] to address our systems ((1), (2), (3), and (4)). By using the Banach contrac-
tion principle and Krasnoselskii’s and Schauder’s fixed-point theorems, we established
Theorems 5 and 6, which demonstrated the existence and uniqueness of the solutions
for the addressed systems. We then proved that systems (3) and (4) were approximately
controllable in Theorems 7 and 8, and we were able to validate all of the assumptions
(M0) and (M0)*-(M5). An appropriate fixed-point theorem might be utilised to develop the
usefulness of present research to establish existence and approach controllability with non-
instantaneous impulses for a number of different models. The use of the proper fixed-point
theorem would make this achievable.

Author Contributions: Conceptualisation, S.R. and R.B.S.; methodology, S.R.; software, S.R.;
validation, S.R., R.B.S. and R.U.; formal analysis, S.R.; investigation, G.A.; resources, S.R.; data
curation, U.A.; writing—original draft preparation, S.R. and R.B.S.; writing—review and editing, S.R.
and R.B.S.; visualisation, R.U., G.A. and U.A.; supervision, R.U., G.A. and U.A.; project administration,
S.R. and R.B.S.; funding acquisition, G.A. All authors have read and agreed to the published version
of the manuscript.



Fractal Fract. 2023, 7, 741 17 of 18

Funding: This research was funded by the Princess Nourah bint Abdulrahman University
Researchers Supporting Project number (PNURSP2023R45), Princess Nourah bint Abdulrahman
University, Riyadh, Saudi Arabia.

Data Availability Statement: Data sharing is not applicable to this article as no datasets were
generated or analysed during the current study.

Acknowledgments: Princess Nourah bint Abdulrahman University Researchers Supporting Project
number (PNURSP2023R45), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

EaU existence and uniqueness
ACFNDE approximate controllability of fractional neutral differential equations
DD deformable derivative
FDE fractional differential equation
BLOs bounded linear operators
FN fractional neutral
FNDEs fractional neutral differential equations

References
1. Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul.

2017, 44, 460–481.
2. Jarad, F.; Abdeljawad, T. Generalized fractional derivatives and Laplace transform. Discret. Contin. Dyn. Syst.-Ser. S 2019, 13, 709–722.
3. Baleanu, D.; Machado, J.A.T.; Luo, A.C.J. Fractional Dynamics and Control; Springer: New York, NY, USA, 2012.
4. Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier:

Amsterdam, The Netherlands, 2006.
5. Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999.
6. Aghayan, Z.S.; Alfi, A.; Mousavi, Y.; Fekih, A. Criteria for stability and stabilization of variable fractional-order uncertain neutral

systems with time-varying delay: Delay-dependent analysis. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 3393–3397.
7. Aghayan, Z.S.; Alfi, A.; Mousavi, Y.; Kucukdemiral, I.B.; Fekih, A. Guaranteed cost robust output feedback control design for

fractional-order uncertain neutral delay systems. Chaos Solitons Fractals 2022, 163, 112523.
8. Abbas, M.I. On the initial value problems for the Caputo-Fabrizio impulsive fractional differential equations. Asian-Eur. J. Math.

2021, 14, 2150073.
9. Abbas, S.; Benchohra, M.; Nieto, J.J. Caputo-Fabrizio fractional differential equations with instantaneous impulses. AIMS Math.

2020, 6, 2932–2946.
10. N’Guerekata, G.M. A Cauchy problem for some fractional abstract differential equation with non local conditions. Nonlinear Anal.

Theory Methods Appl. 2009, 70, 1873–1876.
11. Arjunan, M.; Anbalagan, P.; Al-Mdallal, Q. Robust uniform stability criteria for fractional-order gene regulatory networks with

leakage delays. Math. Methods Appl. Sci. 2022, 46, 8372–8389. [CrossRef]
12. Sivasankar, S.; Udhayakumar, R.; Muthukumaran, V.; Madhrubootham, S.; AlNemer, G.; Elshenhab, A.M. Existence of

Sobolev-Type Hilfer Fractional Neutral Stochastic Evolution Hemivariational Inequalities and Optimal Controls. Fractal Fract.
2023, 7, 303.

13. Sivasankar, S.; Udhayakumar, R.; Muthukumaran, V. A new conversation on the existence of Hilfer fractional stochastic
Volterra–Fredholm integro-differential inclusions via almost sectorial operators. Nonlinear Anal. Model. Control 2023, 28, 288–307.

14. Byszewski, L. Theorems about existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math.
Anal. Appl. 1991, 162, 494–505.

15. Kavitha, V.; Wang, P.Z.; Murugesu. R. Existence results for neutral functional fractional differential equations with state
dependent-delay. Malaya J. Mat. 2012, 1, 50–61.

16. Mebrat, M.; N’Guerekata, G.M. An existence result for some fractional-integro differential equations in Banach spaces via the
deformable derivative. J. Math. Ext. 2022, 16, 1–19.

17. Khalil, R.; Al Horani, M.; Yusuf, A.; Sababhed, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70.
18. Zulfeqarr, F.; Ujlayan, A.; Ahuja, P. A new fractional derivative and its fractional integral with some applications. arXiv

2017, arXiv:1705.00962v1.
19. Aimene, D.; Baleanu, D.; Seba, D. Controllability of semilinear impulsive Atangana-Baleanu fractional differential equations with

delay. Chaos Solitons Fractals 2019, 128, 51–57.

http://doi.org/10.1002/mma.8255


Fractal Fract. 2023, 7, 741 18 of 18

20. Mahmudov, N.I.; Zorlu, S. On the approximate controllability of fractional evolution equations with compact analytic semigroup.
J. Comput. Appl. Math. 2014, 259, 194–204.

21. Mahmudov, N.I. Approximate controllability of semilinear deterministic and stochastic evolution equations in abstract spaces.
SIAM J. Control Optim. 2003, 42, 1604–1622.

22. Saktivel, R.; Ren, Y.; Mahmudov, N.I. On the approximate controllability of semilinear fractional differential systems. Comput.
Math. Appl. 2011, 62, 1451–1459.

23. Varun Bose, C.S.; Udhayakumar, R.; Velmurugan, S.; Saradha, M.; Almarri, B. Approximate Controllability of Ψ-Hilfer Fractional
Neutral Differential Equation with Infinite Delay. Fractal Fract. 2023, 7, 537.

24. Varun Bose, C.S.; Udhayakumar, R. Approximate controllability of Ψ-Caputo fractional differential equation. Math. Methods
Appl. Sci. 2023. [CrossRef]

25. Liaqat, M.I.; Khan, A.; Alqudah, M.A.; Abdeljawad, T. Adapted Homotopy Perturbation Method with Shehu Transform for
Solving Conformable Fractional Nonlinear Partial Differential Equations. Fractals 2023, 31, 2340027.

26. Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations; Springer: New York, NY, USA, 1983.
27. Etefa, M.; N’Guerekata, G.M.; Benchohra, M. Existence and uniqueness of solutions to impulsive fractional differential equations

via the deformable derivative. Appl. Anal. 2021, 1–12. [CrossRef]
28. Mebrat, M.; N’Guerekata, G.M. A Cauchy problem for some fractional differential equation via deformable derivatives. J. Nonlinear

Evol. Equ. Appl. 2020, 4, 55–63.
29. Meraj, A.; Pandey, D.N. Existence and uniqueness of mild solution and approximate controllability of fractional evolution

equations with deformable derivative. J. Nonlinear Evol. Equ. Appl. 2018, 7, 85–100.
30. Anjitha, K.M.; Kavitha, V.; Sivasundaram, S.; Arjunan, M.M. Existence results for fractional neutral differential inclusion via

deformable fractional derivative in Banach spaces. Nonlinear Stud. 2023, 30, 351–364.
31. Sreedharan, R.; Raja Balachandar, S.; Raja, S.P. Existence of mild solutions for perturbed fractional neutral equations through

deformable derivatives in Banach spaces. Int. J. Wavelets Multiresolut. Inf. 2023, 21, 2250052. [CrossRef]
32. Borah, J.; Bora, S.N. Existence of mild solution of a class of nonlocal fractional order differential equation with not instantaneous

impulses. Fract. Calc. Appl. Anal. 2019, 22, 495–508.
33. Curtain, R.F.; Zwart, H. Infinite-Dimensional Linear Systems Theory (Texts in Applied Mathematics, 21); Springer:

New York, NY, USA, 1995.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1002/mma.9523
http://dx.doi.org/10.1080/00036811.2021.1979224
http://dx.doi.org/10.1142/S0219691322500527

	Introduction
	Preliminaries
	Main Results
	Existence Results
	Approximate Controllability

	Applications
	Conclusions
	References

