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Abstract: There is important theoretical and practical significance to scientifically identifying the
systemic importance of banks for effectively preventing and controlling systemic risks in the banking
system. Prevalent identification methods are biased because they only pay attention to measuring the
systemic risk contribution of individual banks to the whole system in order to determine that bank’s
systemic importance. Less attention is paid to the cascade effects of risk spillover among banks.
This study proposes a novel method for measuring the cascade effects of risk spillover of banks
and their contributions to systemic risks by building up a conditional tail risk network of China’s
banking system. Different from previous analyses of systemic risks based on the identification and
risk measurement of systemically important banks (SIBs), this paper focuses on analyzing the risk
spillover effects of non-SIBs and their contributions to systemic risks by building up a conditional tail
risk network of China’s banking system. Our empirical results show that some non-SIBs in China are
more vulnerable to the shocks of systemic risk than SIBs, and that they are more likely to act as key
intermediaries to transmit risk to SIBs, thereby triggering systemic risk. In view of this, we propose
to identify key non-SIBs according to their risk spillover intensity because they are also systemically
important. The market regulators not only need to pay attention to SIBs that are too big to fail, but
also treat seriously the key intermediaries of “risk spillover too strong to fail” in the network in order
to ensure the stability of the banking system.

Keywords: the generalized value at risk (GCoVaR); systemically important banks (SIBs); risk spillover

1. Introduction

After the 2008 financial crisis, strengthening the supervision of systemically important
financial institutions (SIFIs) has become one of the core issues in the financial reform of
various countries. The identification of SIFIs works under the premise of supervision
and is also the focus of regulatory reform. A useful definition of SIFIs was advanced
by Federal Reserve Governor Daniel Tarullo, who said that “Financial institutions are
systemically important if the failure of the firm to meet its obligations to creditors and
customers would have significant adverse consequences for the financial system and the
broader economy.” Although the definition of SIFIs is clear, the methods of identification
are not consistent. International financial regulators and monetary authorities judge SIFIs
mainly based on the indicator-based method. The Macroprudential Group (MPG) of the
Basel Committee on Banking Supervision (BCBS) is responsible for developing indicators
and methods for identifying SIFIs. MPG published a more detailed indicator system on
11 October 2010 [1], and improved it again in November 2022. The indicators usually focus
on describing the scale, the correlation, and the negative externalities of SIFIs. Scholars
often use the market-based method to determine the systemic importance of individual
financial institutions. The existing market-based methods mainly include the marginal
expected Shortfall (MES) [2,3], Shapley Value [4], CoVaR [5], and Extreme Value [6]. These
methods are essentially based on the underlying theoretical position that the bigger a
financial institution is, the greater the breadth of products it provides and the larger scale
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transactions it involves, the higher risk contribution to the financial system it has. These
prevalent identification methods are biased because less attention is paid to the cascade
effects of risk spillover among banks. With the development of the banking industry, the
scale of interbank business has been expanding, and it can be argued that the linkages
between banks are becoming stronger. Without taking into account the cascade effects of
risk spillover between banks, the identification of such SIBs would be inaccurate.

In the case of China’s banking system, the People’s Bank of China (PBC) and the China
Banking and Insurance Regulatory Commission (CBIRC) designated a total of 19 banks as
systemically important banks (SIBs) in 2022, with a focus to deliver additional regulation
to those banks. These 19 SIBs consist of six state-owned commercial banks (Industrial
and Commercial Bank of China, Bank of China, China Construction Bank, Postal Savings
Bank of China, Bank of Communications, and Agricultural Bank of China), nine joint-stock
commercial banks (China Minsheng Bank, China Everbright Bank, Pingan Bank, Huaxia
Bank, China Guangfa Bank, China CITIC Bank, and Shanghai Pudong Development Bank,
China Merchants Bank, and Industrial Bank), and four city commercial banks (Bank of
Ningbo, Bank of Jiangsu, Bank of Shanghai, and Bank of Beijing) (PBC press release,
9 September 2022). Each SIB’s total assets exceed 1500 billion yuan. However, it is found
that the expectation of SIBs being “too big to fail” actually reduces the probability of them
causing systemic risks. Additionally, the non-SIBs, some small-sized banks, with total
assets of about 500 billion yuan or less, often have a greater probability of failure, such
as the recent bankruptcy of Baoshang Bank, Shantou Commercial Bank, Liaoyang Rural
Commercial Bank, and Liaoning Taizihe Rural Bank, causing a considerable degree of
public panic. Are the failures of non-SIBs or small-sized banks irrelevant? Are they really
going to have no effect on systemic risk of the banking sector? This is a practical problem
that urgently needs to be answered.

In this paper, we propose a novel method, which is the algorithm-based identification
of the risk spillover effects of banks, in order to judge the systemic importance of banks
by building up a conditional tail risk network of China’s banking system. We conduct
empirical analysis by using the data of stock prices of 54 listed banks in the Chinese
securities market with a sample period from June 2021 to June 2023 and we adopt the
method proposed in this paper to rank the systemic importance of these banks. Our
empirical results shows that some non-SIBs in China are more vulnerable to the shocks of
systemic risk than SIBs, and that they are more likely to act as key intermediaries for the
transmission of risk to SIBs, in turn triggering systemic risk. In view of this, we propose
to identify key non-SIBs according to their risk spillover intensity because they are also
systemically important. The market regulators not only need to pay attention to SIBs that
are too big to fail, but also seriously consider the key intermediaries of “risk spillover too
strong to fail” in the network in order to ensure the stability of the banking system.

The remaining sections of this paper are as follows. In Section 2, we review the
prevalent modeling methods of risk spillover effects among academia. In Section 3, we
introduce all the technical methods used in this paper, including the GCoVaR method and
the fitting technique. In Section 4, we present the empirical analysis of China’s banking
system and a robustness test for GCoVaR method. Section 5 concludes.

2. Literature Review

The financial system can be regarded as a financial network. The extreme risks of
individual financial institutions would lead to the deterioration of the overall risk of
the financial system through network links, which is the main manifestation of systemic
financial risks. Network modeling is often used to explore such financial risk contagion. In
these network model institutions are nodes, and the connecting edges represent the business
relations between institutions. As an interdisciplinary technology, the complex network
method provides a theoretical framework in order to help people better understand the
internal structure and dynamic behavior of complex systems (Neveu, 2018). By constructing
a network, researchers can not only analyze the network structure and characteristics from
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the perspective of the system, but also analyze the characteristics of important nodes in the
system. The construction of a network requires a connection matrix used to express the
risk contagion and information spillover among nodes. The data used for the calculation
of connection matrix can be roughly divided into two categories. One is inter-institutions’
offered credit or capital flow data. This is based on the specific business connections
between institutions [7–10]. The other is market data, such as stock prices or credit default
swap (CDS) prices of the institutions [11–13]. Based on the increasing availability of data,
stock market data is being more and more widely used. The market data of financial
institutions could reflect investors’ sentiment and is real-time and forward-looking; it
provides an immediate and transparent measure for studying systemic financial risks [14,
15].

The traditional methods used for the calculation of connection matrixes are mainly
the correlation coefficient method [16], probabilistic analysis [17], and the error correction
model [18]. Because these traditional methods are unable to describe the nonlinearity,
dynamics, and asymmetry of risk spillovers, Conditional Value at Risk (CoVaR), introduced
by Adrian and Brunnermeier [5], a method that quantifies the amount of tail risk an
investment portfolio, has been widely used in recent years. Reboredo and Ugolini [19]
analyzed the systemic risks of the European sovereign debt market by using CoVaR method
and believed that this method could better identify the changes of risk spillovers before and
after the Greek debt crisis. Reboredo and Rivera-Castro [20] verified the asymmetric risk
spillover effect of the exchange rates between the Euro and the US Dollar on major global
emerging stock markets by calculating their CoVaR. Warshaw [21] proved the effectiveness
of CoVaR method by measuring the extreme risk spillover effect of the North American
equity market and its changes before and after the subprime crisis.

However, Lopez-Espinosa et al. [22] found empirically that the original CoVaR model,
based on the normal hypothesis, underestimated the systemic financial risks of the U.S.
listed banks. In response, they introduced asymmetric terms to improve the quantile
regression method of CoVaR. Girardi and Ergun [23] also pointed out that CoVaR would
underestimate risks under extreme conditions by studying a network consisted of 74 listed
banks in the United States, and then proposed an improved generalized conditional value
at risk (GCoVaR) method. Their empirical analysis verified that GCoVaR could improve
the stability of the measurements obtained. GCoVaR could consider more distress events
within the tail region, which would more accurately reflect the characteristics of “volatility
clustering, thick tail and nonlinear correlation” of financial markets. Torri et al. [24] believe
that using GCoVaR to measure the risk spillover effect would not only help investors to
manage portfolio risks, but also help market regulators to carry out dynamic monitoring of
financial risks.

As for financial risk contagion, previous studies have mostly focused on the identifi-
cation and risk measurement of systemically important financial institutions [14,15], and
explore ways and tools for preventing and controlling the financial systemic risk based
on systemically important financial institutions [25,26]. However, the financial system is
made up of systemically important financial institutions and non-systemically important
financial institutions, and they both have impacts on the formation and amplification of
financial systemic risks. Mistrulli [27] stated that systemic risk can be characterized as a
negative pecuniary externality exerted by financial institutions, and that any institution’s
risk exposure may evolve into a systemic risk through its interconnectedness within the
financial system. Scholars engaged in correlation research believe that the stronger the
correlation among institutions, the greater the effect of risk contagion, and more easily
to induce systemic risks. However, some scholars suggest that correlation is an effective
way to disperse systemic risks [28]. Georg [29]pointed out that the degree of connection
between institutions and the level of risk contagion have a non-monotonic relationship. A
higher degree of connection between institutions is conducive to risk diversification when
the connection level is low, but when it exceeds a certain threshold, the risk of contagion
would increase rapidly and could lead to large-scale collapse of institutions. Therefore,
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some scholars propose that it should pay attention not only to institutions that are “too big
to fail”, but also to banks that are “too connected to fail” in order to prevent and control
systemic risk [30,31].

It can be seen above that most studies in this area are based on the systemically
important financial institutions in order to explore ways to identify and mitigate systemic
risks. Less research has been done specifically on non-systemically important financial
institutions. The mechanism of risk transfer between SIBs and non-SIBs has not been well
understood. In addition, compared with systemically important financial institutions, the
number of non-systemically important financial institutions is large, which is difficult to
focus on in the research process. In view of this, based on the perspective of risk contagion,
this paper measures the risk spillover effect among listed banks in China using the GCoVaR
method and Copula technology, and explores the role of non-SIBs in the formation and
accumulation of systemic risks in the banking sector. Different from the conventional
mode of analyzing systemic risks based on SIBs in previous studies, we focus on analyzing
the role and influence of non-SIBs in China’s banking system from two aspects–the risk
contribution of non-SIBs to systemic risk and the risk impact of the whole banking system
on non-SIBs–in order to test whether or not non-SIBs are unimportant.

3. Methodology

Risk spillover is the transmission of risk from one institution (industry or market) to
another institution (industry or market). This is because financial data, in reality, is usually
not normally distributed, and presents a “peak and thick tail” distribution. The traditional
parametric regression method based on mean estimation cannot accurately reflect the
relationship between different parts of the overall distribution. We consider using the tail
dependence relationship of stock price of related banks to establish connection matrix of
the network of China’s banking system, and the GCoVaR approach to identify risks that
are “extra” parts due to the presence of other banks in distress.

3.1. GCoVaR Model

The traditional method measuring the risk, value at risk (VaR), refers to the maximum
possible loss of a certain bank in a certain period in the future under a certain confidence
level. Let Ri represent the return rate of bank i, then the VaRi of Ri at a significance level α
can be expressed as:

P
(

Ri ≤ VaRi
)

= α, (1)

VaR can only measure the risk of a single bank. Based on this value, conditional value at
risk (CoVaR) proposed by Adrian and Brunnermeier [5] can be used to measure the risk
spillover between different banks. Let Rj represents the return rate of bank j, under the
condition of Ri having an extreme loss VaRi, at the confidence level of β, the extreme loss
of Rj would be CoVaRj|i, the mathematical expression is:

P
(

Rj ≤ CoVaRj|i
∣∣∣Ri = VaRi

)
= β, (2)

According to Girardi and Ergun [23], the GCoVaRj|i is the VaR of bank j conditional
on bank i being at most at its VaR (Ri ≤ VaRi) as opposed to being exactly at its VaR
(Ri = VaRi).

P
(

Rj ≤ GCoVaRj|i
∣∣∣Ri ≤ VaRi

)
= β, (3)

This change allows us to consider more severe distress events of bank i that are farther
along the tail (below its VaR) so as to more accurately reflect the characteristics of financial
time series: “volatility agglomeration, thick tail and nonlinear correlation”. This change also
improves the consistency of risk measurement with respect to the dependence parameter.

1. The risk spillover between bank i and j
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We define the systemic risk contribution of a bank as the change from its GCoVaR in its
benchmark state (defined as a one-standard deviation event) to its GCoVaR under financial
distress, so we can get the risk spillover effect of bank i to bank j when bank i in extreme
distress:

∆GCoVaRj|i = GCoVaRj|i −MCoVaRj|i, (4)

where MCoVaRj|i represent the financial distress in GCoVaR of bank j when bank i at a
normal state (i.e., α = 0.5), it meets:

P
(

Rj ≤ MCoVaRj|i
∣∣∣Ri ≤ 0.5

)
= β, (5)

Define risk spillover intensity γ, which is the change rate of GCoVaR with respect to
MCoVaR:

γj|i =
GCoVaRj|i −MCoVaRj|i

MCoVaRj|i , (6)

The risk spillover effect is usually bidirectional. Bank i may spill risks to bank j,
and conversely, bank j may spill risks to bank i. In addition to effectively measuring the
extreme risk spillover effect, another advantage of GCoVaR method is that it can measure
the asymmetry of this effect. Let ∆GCoVaRi|j represents the risk spillover of bank j on bank
i, the calculation formula can be similarly derived.

2. The risk contribution of bank i to the financial system

Let GCoVaRindex|i stands for the generalized conditional value at risk of the financial
system suffering from the impact of bank i in distress. Using the same logic above, we have

P
(

Rindex ≤ GCoVaRindex|i
∣∣∣Ri ≤ VaRi

)
= β, (7)

∆GCoVaRindex|i = GCoVaRindex|i −MCoVaRindex|i, (8)

γindex|i =
GCoVaRindex|i −MCoVaRindex|i

MCoVaRindex|i , (9)

3. The risk spillover of bank i suffered from financial system

Let GCoVaRi|index stands for the generalized conditional value at risk of bank i when
the whole financial system is in trouble. VaRindex is unconditional value at risk of the
financial system. It represents the risk level of the financial system as a whole, we have:

P
(

Rj ≤ GCoVaRi|index
∣∣∣Rindex

t ≤ VaRindex
α,t

)
= β, (10)

∆GCoVaRi|index = GCoVaRi|index −MCoVaRi|index, (11)

γi|index =
GCoVaRi|index −MCoVaRi|index

MCoVaRi|index
, (12)

3.2. To Measure GCoVaR Based on Copula Model

According to the definition of conditional probability, Equation (3) can be transformed
into:

P
(

Rj ≤ CoVaRj|i, Ri ≤ VaRi
)

= β·P
(

Ri ≤ VaRi
)

= αβ, (13)

It can be seen from Equation (13) that the joint distribution of Rj and Ri need to be
known in order to calculate GCoVaR. A convenient method is to use Copula function
to construct joint distribution of multivariate random variables. Copula function is also
known as link function, which can describe the tail correlation between random variables.
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According to Sklar’s theorem, we can construct the joint distribution of random variables
by treating each one-dimensional distribution of multiple random variables as marginal
distribution. Equation (13) can be written in the following Copula form:

c
(

Fj

(
GCoVaRj|i

)
, Fi

(
VaRi

))
= αβ, (14)

where, c(·,·) is the Copula function, and Fi(·) and Fj(·) are the edge distribution functions
of Ri and Rj, respectively. According to the definition of VaR, Equation (1) means,

Fi

(
VaRi

)
= α, (15)

According to Equations (3) and (14), given the marginal distribution, the form of
Copula connect function, and the confidence level of α and β, the GCoVaRj|i can be solved.
Setting the α to 0.5, the same two equations above can be used to solve for the MCoVaRj|i;
According to Equations (4)–(6), the ∆GCoVaRj|i and γj|i could be calculated to measure the
risk spillover effect of bank i on j. Repeating the above process, we can obtain ∆GCoVaRi|j

and γi|j, the risk spillover effect of bank j on i. The marginal distribution, time-varying
Copula function and its parameter estimation methods are shown in Appendix B.

4. Empirical Analysis
4.1. Sample Selection

In this paper, 54 listed banks are selected to construct the banking system of China.
The selected banks and their total assets are shown in Appendix A. The sample period is
from 1 June 2021 to 30 June 2023. The selection of sample periods is mainly based on the
consideration that they have normal transaction data in the sample period, so as to make
the calculation of value at risk meaningful. All sample data are collected from the Wind
Database (https://www.wind.com.cn/portal/zh/WFT/index.html accessed on 30 June
2023). Additionally, R language software (R-4.0.2) is used for Copula function regression
analysis, and Python 3.5.0 (Networkx 3.1) is used for mapping.

In Figure 1, the size of the nodes are measured by the weighted degree centrality of
nodes. The larger the node’s size is, the nearer to the center the node tends to be in the
network.
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Figure 1. Visual representation of conditional tail risk networks for China’s banking system computed
on the periods June 2021–June 2023. Note: The nodes in the figure with background color red are
state-owned banks, with background color yellow are joint-stock commercial banks, with background
color purple are city commercial banks, and with background color green are rural commercial banks.
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4.2. Risk Spillover Effect Analysis
4.2.1. The Risk Spillover Effect between Banks

The risk spillover effect of bank i on j can be calculated by Equations (3)–(6) when bank
i is in distress. Considering that smaller quantile values are often used in risk management
to capture the characteristics of the peak and fat tail of financial time series, here we choose
β = 0.025. Since our research sample includes 54 banks, there should be 1431 different
combinations of banks, and there are 1431 risk spillover intensity measures. Table 1 gives
the results, which are listed in descending order of γj|i. Only the top 30 are listed in order
to save space.

Table 1. The risk spillover from bank i to j (Top 30) and ranking by γj|i.

Bank i Bank j

MCoVaRj|i GCoVaRj|i ∆GCoVaRj|i γj|i (%)
Bank Code Total Assets

(Billion Yuan) Bank Code Total Assets
(Billion Yuan)

1 CDB 652.43 CMBC 6950.23 8.14 12.36 4.22 51.84
2 BSZ 388.07 NJB 1517.08 7.45 11.26 3.81 51.14
3 ZYB 757.48 ZZB 561.64 9.4 13.19 3.79 40.32
4 CRC 1135.93 CHB 547.81 7.73 10.66 2.93 37.90
5 NJB 1517.08 CEB 5368.11 8.13 11.04 2.91 35.79
6 CSB 704.24 CIB 7894.00 9.72 13.16 3.44 35.39
7 CRCB 208.69 HZB 1169.26 8.11 10.8 2.69 33.17
8 JZB 777.99 HRB 598.60 7.45 9.70 2.25 30.20
9 CHB 561.64 SJB 1037.96 7.48 9.66 2.18 29.14

10 JRCB 200.36 JZB 777.99 8.17 10.51 2.34 28.64
11 QRCB 406.81 BQD 459.83 8.2 10.52 2.32 28.29
12 SPDB 7950.22 GYB 590.68 8.73 11.18 2.45 28.06
13 SJB 1037.96 PAB 4468.51 8.87 11.26 2.39 26.94
14 ZRCB 143.82 JSB 2337.89 7.64 9.66 2.02 26.44
15 CRCB 208.69 JSR 139.44 9.26 11.59 2.33 25.16
16 JJB 415.79 JXB 458.69 8.51 10.54 2.03 23.85
17 JSB 2337.89 ZSB 2048.23 9.15 11.33 2.18 23.83
18 GZB 456.40 HXB 6950.23 8.87 10.95 2.08 23.45
19 HSB 1271.70 CBH 3399.82 9.26 11.39 2.13 23.00
20 GYB 590.68 CITIC 1393.52 9.86 12.11 2.25 22.82
21 ZRCB 143.82 NJB 7511.16 9.83 12.00 2.17 22.08
22 JRCB 142.77 WRCB 547.81 9.14 11.13 1.99 21.77
23 JZR 217.66 JJB 415.79 9.78 11.81 2.03 20.76
24 CMBC 6950.23 GSB 342.36 9.36 11.29 1.93 20.62
25 TCC 687.76 BOB 2900.00 9.81 11.83 2.02 20.59
26 NBB 1626.75 JSR 139.44 10.76 12.97 2.21 20.54
27 NJB 1517.08 BSZ 388.07 9.72 11.71 1.99 20.47
28 CMBC 6950.23 CDB 415,79 9.56 11.51 1.95 20.40
29 WRCB 547.81 JRCB 757.48 9.86 11.87 2.01 20.39
30 ABC 28,132.25 CCB 27,205.05 9.62 11.57 1.95 20.27

Note: SIBs are highlighted in bold black.

Table 1 shows that:
First, given bank i and j, the level of GCoVaRj|i is larger than that of MCoVaRj|i.

This suggests that when one bank gets into trouble, other banks are exposed to more
than their own level of risk. As shown in line No. 1 of Table 1, MCoVaRCMBC|CDB = 8.14,
GCoVaRCMBC|CDB = 12.36. Obviously, MCoVaRCMBC|CDB < GCoVaRCMBC|CDB.

Second, GCoVaRj|i 6= GCoVaRi|j. The reason is that for GCoVaRj|I, the conditional
event is bank i in distress, while for GCoVaRi|j, the conditional event is bank j in dis-
tress. Different directions of risk shocks might have different effects. Take the Table 1
line No. 2 as an example: when BSZ is in distress, NJB would suffer risk impact of
GCoVaRNJB|BSZ = 11.26; when NJB is in distress, as shown in line No. 27 of Table 1, BSZ
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would suffer risk impact of GCoVaRBSZ|NJB = 11.71; as such, apparently, GCoVaRBSZ|NJB

6= GCoVaRNJB|BSZ

Third, from Table 1 we can find that the non-SIBs’ risk spillover should never be
underestimated. For the first 30 strongest risk spillover effects, sixteen of them are from
non-SIB to non-SIB, eight are from non-SIB to SIBs, two are from SIB to SIB, and four
from SIB to non-SIB. The eight non-SIBs who transmit risk to SIBs should be paid special
attention. We take CDB, a city commercial bank among the non-SIBs, as an example in
order to analyze its risk spillover performance and determine who has the greatest risk
impact on SIB. Table 2 shows the banks affected by the risk impact of CDB and the banks
from which CDB receives risk spillover. As a relatively small sized city commercial bank
with total assets of 652.43 billion yuan, its risk spillovers mainly transmit to other related
city commercial banks (CHB, GZB, WHCB, BQD), joint-stock commercial banks (CMBC,
CIB, CBH, PAB, HXB), and state-owned commercial banks (BOC, BOCOM), and it received
risk spillover from other related city commercial banks (WHCB, SHB, CHB, JZB, JJB, JSB,
HSB, SJB), rural commercial banks (CRC, JRC, JSR, JRCB, JZR), and joint-stock commercial
banks (CMBC).

Table 2. CDB’s risk spillover relations.

No.

CDB Transmits Risk Spillover to

No.

CDB Receives Risk Spillover from

Bank Code Total Assets
(Billion Yuan) γi|CDB (%) Bank Code Total Assets

(Billion Yuan) γCDB|i (%)

1 CMBC 6950.23 51.84 1 CMBC 6950.23 20.40
2 CIB 7894.00 18.19 2 SHB 2462.14 19.91
3 CBH 1393.52 18.12 3 CRC 1135.93 18.79
4 BOC 24,402.66 14.49 4 JSB 143.82 13.69
5 PAB 4468.514 14.34 5 WHCB 267.602 11.45
6 CRC 1135.93 12.45 6 JSR 2337.89 8.28
7 BOCOM 10,697.62 12.05 7 CHB 561.64 7.64
8 HXB 3399.82 11.77 8 JZB 1169.26 7.32
9 CHB 561.64 7.57 9 JJB 2462.14 6.16
10 GZB 456.40 5.23 10 JRC 200.363 5.09
11 WHCB 267.60 1.56 11 HSB 1271.70 3.37
12 BQD 459.83 1.32 12 SJB 1037.96 1.57

13 JZR 139.44 0.44
14 JRCB 142.77 0.23

Note: SIBs are highlighted in bold black.

For the rural commercial banks among non-SIBs, we take CRC as an example to
analyze its risk spillover performance. As a rural commercial bank, CRC has the highest
risk spillover on other banks. Table 3 shows the banks impacted by CRC’s risk spillover
and the banks from which CRC receives risk spillover. We can see that its risk spillover
mainly affects related city commercial banks (CHB, WHCB, CDB, JZB, JSB, GSB, NBB) and
rural commercial banks (JSR, ZRCB, JZR, GRCB), while it mainly receives risks from other
rural commercial banks (JSR, GRCB, JZR, JRC).
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Table 3. CRC’s risk spillover relations.

No.

CRC Transmits Risk Spillover to

No.

CRC Receives Risk Spillover from

Bank Code Total Assets
(Billion Yuan) γi|CRC (%) Bank Code Total Assets

(Billion Yuan) γCRC|i (%)

1 CHB 561.64 40.32 1 JSR 139.44 18.79
2 CDB 652.43 19.91 2 GRCB 1027.87 15.22
3 JSR 217.66 13.69 3 JZR 217.66 12.16
4 ZRCB 143.82 7.32 4 JRC 142.77 12.04
5 WHCB 267.60 19.91 5 CHB 561.64 9.25
6 JZB 777.99 4.49 6 CDB 652.43 8.12
7 JZR 217.66 4.34
8 JSB 2337.89 2.45
9 GSB 342.36 1.77
10 GRCB 1027.87 1.52
11 NBB 1626.75 0.22

Note: SIBs are highlighted in bold black.

Fourth, SIBs mainly are state-owned commercial banks and joint-stock commercial
banks. For the state-owned commercial banks among the SIBs, we take CCB as an example.
Table 4 shows the banks affected by CCB’s risk spillover when it is in distress and the banks
impacting CCB by risk spillover. All of them are joint-stock commercial banks and city
commercial banks, except ABC, which ranks No. 1 in risk outflow column and ranks No.
12 in risk inflow column. It should be noted that the same is true for other state-owned
commercial banks’ spillover relations, indicating that the six state-owned commercial banks
are relatively independent from each other and the risk spillover intensity between them is
generally small.

Table 4. CCB’s risk spillover relations.

No.

CCB Transmits Risk Spillover to

No.

CCB Receives Risk Spillover from

Bank Code Total Assets
(Billion Yuan) γi|ABC (%) Bank Code Total Assets

(Billion Yuan) γABC|i (%)

1 ABC 28,132.25 20.27 1 BOB 2900.01 18.86
2 HXB 3399.82 9.98 2 JSB 2337.89 8.04
3 CIB 7894.00 4.27 3 SJB 1037.96 7.80
4 SHB 2462.14 3.72 4 JJB 415.79 5.99
5 CMBC 6950.23 1.11 5 CHB 561.64 5.45
6 HRB 598.60 0.95 6 SHB 2462.14 5.00
7 CBH 1393.52 0.92 7 JZB 777.99 1.52
8 BOB 2900.01 0.83 8 WHCB 267.60 1.16
9 JSB 2337.89 0.44 9 JSBK 270.94 0.46
10 SJB 1037.96 0.27 10 ZYB 757.48 0.33

11 BSZ 388.07 0.21
12 ABC 28,132.25 0.18
13 HSB 1271.70 0.15
14 XMIB 285.15 0.14
15 XAB 306.39 0.11

Note: SIBs are highlighted in bold black.

For the joint-stock commercial bank among the SIBs, we take CMBC as an example.
Table 5 shows the banks affected by CMBC’s risk spillover when it is in distress and the
banks impacting CMBC by risk spillover. We can see that its risk spillover mainly affects
the related city commercial banks (GSB, CDB, SHB, NJB) and joint-stock and state-owned
commercial banks (ZSB, CBH, CIB, CCB, ABC), while it mainly receives risks from other
joint-stock commercial banks (SPDB, CIB) and city commercial banks (CDB, JSB, SHB, XAB,
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CHB, GYB, JSBK, ZYB, BSZ, HRB, HSB, XMIB, CSB). It should be noted that the same is
true for other joint-stock commercial banks’ spillover relations.

Table 5. CMBC’s risk spillover relations.

No.

CMBC Transmits Risk Spillover to

No.

CMBC Receives Risk Spillover from

Bank Code Total Assets
(Billion Yuan) γi|CMBC (%) Bank Code Total Assets

(Billion Yuan) γCMBC|i (%)

1 GSB 342.36 20.62 1 CDB 415,79 51.84
2 CDB 415.79 20.40 2 JSB 2337.89 18.04
3 ZSB 2048.23 14.27 3 SHB 1037.96 17.80
4 SHB 2462.14 3.72 4 XAB 415.79 15.29
5 NJB 1517.08 2.44 5 CHB 561.64 11.45
6 CBH 1393.52 0.95 6 SPDB 7950.22 9.20
7 CIB 7894.00 0.92 7 GYB 590.68 7.52
8 CCB 28,132.25 0.83 8 JSBK 270.94 3.16
9 ABC 27,205.05 0.55 9 ZYB 757.48 1.46

10 BSZ 388.07 1.33
11 HRB 598.60 1.18
12 HSB 1271.70 1.15
13 CIB 7894.00 0.78
14 XMIB 285.15 0.51
15 CSB 7042.35 0.48

Note: SIBs are highlighted in bold black.

The above analysis shows that the risk spillover of China’s banking system not only
has characteristics of contagious diffusion within the same level regional or local banks,
but also has a characteristic of hierarchical diffusion, that is, the diffusion from rural
commercial banks to city commercial banks to joint-stock commercial banks and state-
owned commercial banks. The coordination and cooperation between national banks’
branches and local banks often play a key role in such hierarchical diffusion. Non-SIBs
are intended to act as risk transmission intermediaries and transmit risks to SIBs, further
inducing systemic risks of the whole banking sector.

4.2.2. The Risk Spillover Effect from Bank to Banking System

Based on Formulas (7)–(9), the individual bank’s risk contribution to the entire banking
system γindex|i are calculated when the individual bank is in distress. The calculated results
are shown in Figure 2.
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Figure 2. Single bank’s contribution to systemic risk γindex|i. Notes: The last digit in parentheses
of the bank code is the bank types, S stands for state-owned bank, J for joint-stock bank, C for city
commercial bank, and R for rural commercial bank.
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As it can be seen from Figure 2, the contributions of banks to systemic risk do not fully
positively correspond to their total assets. e.g., the top three biggest China’s banks based
on total assets in 2022 (ICBC (with total assets 33,345.10 billion yuan), CCB (28,132.25 bil-
lion yuan) and ABC (27,205.05 billion yuan)) have γindex|i 45.88%, 34.7%, 56%, respec-
tively, which are 6th, 17th, and 4th in the ranking of 54 banks’ contribution to systemic
risk, respectively. While the banks with the top three highest values of γindex|i (CMBC
(γindex|CMBC = 75%), NJB (69%) and CEB (63%)) have only 6950.23, 1517.08, and 5368.11 bil-
lion yuan in total assets, respectively, which rank 11th, 20th, and 13th among total assets,
respectively.

4.2.3. The Risk Spillover Effect from Banking System to Individual Banks

Figure 3 shows the calculated results of γi|index based on Equations (10)–(12). It can
be seen that the strongest shocks from the banking system hit non-SIBs rather than SIBs.
Non-SIBs are subject to relatively strong impact by the systematic risks. We find CDB,
ranking second, is not only subject to significant systemic risk impact, but also transmits a
strong risk spillover to SIBs (see Table 2). If a non-SIB is more vulnerable to the shocks of
systemic risk, and it is more likely to transmit risk to SIBs, it will be systemically important
because its risk transmission could increases the accumulation of systemic risk greatly. We
call it a key intermediary or a key non-SIB.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 11 of 19 
 

 

As it can be seen from Figure 2, the contributions of banks to systemic risk do not 

fully positively correspond to their total assets. e.g., the top three biggest China’s banks 

based on total assets in 2022 (ICBC (with total assets 33,345.10 billion yuan), CCB 

(28,132.25 billion yuan) and ABC (27,205.05 billion yuan)) have γindex|i45.88%, 34.7%, 56%, 

respectively, which are 6th, 17th, and 4th in the ranking of 54 banks’ contribution to sys-

temic risk, respectively. While the banks with the top three highest values of γindex|i (CMBC 

(γindex|CMBC = 75%), NJB (69%) and CEB (63%)) have only 6950.23, 1517.08, and 5368.11 bil-

lion yuan in total assets, respectively, which rank 11th, 20th, and 13th among total assets, 

respectively.  

4.2.3. The Risk Spillover Effect from Banking System to Individual Banks 

Figure 3 shows the calculated results of γi|index based on Equations (10)–(12). It can be 

seen that the strongest shocks from the banking system hit non-SIBs rather than SIBs. Non-

SIBs are subject to relatively strong impact by the systematic risks. We find CDB, ranking 

second, is not only subject to significant systemic risk impact, but also transmits a strong 

risk spillover to SIBs (see Table 2). If a non-SIB is more vulnerable to the shocks of systemic 

risk, and it is more likely to transmit risk to SIBs, it will be systemically important because 

its risk transmission could increases the accumulation of systemic risk greatly. We call it 

a key intermediary or a key non-SIB. 

As is shown in Figure 3, there is only one SIB -SHB, its γi|index is at the upstream level, 

ranks the eighth; nine SIBs’ γi|index are at the middle level, γCEB|index ranks the 11th, γCITIC|index, 

γBOCOM|index, γCMBC|index, γHXB|index, γBOB|index, γSPDB|index, γNBB|index and γJSB|index ranks the 21th, 23th 

to 28th, and 30th; other nine SIBs’ γi|index are at the lower level; the six state-owned com-

mercial banks are almost unaffected by systemic risks. That indicates that although the 

transaction scale and scope of banks are the basic determining factors of systemic im-

portance, the inter-bank correlation and its risk spillover characteristics in the network 

have a more structural influence on their systemic importance ranking in the financial 

system.  

 

Figure 3. The individual banks’ γi|index. Notes: The last digit in parentheses of the bank code is the 

bank types, S stands for state-owned bank, J for joint-stock bank, C for city commercial bank, and R 

for rural commercial bank. 

4.3. A Robustness Test 

In order to test the reliability of the GCoVaR method used in this paper, a robustness 

test is conducted by using the adjacency information entropy method. This method is also 

Figure 3. The individual banks’ γi|index. Notes: The last digit in parentheses of the bank code is the
bank types, S stands for state-owned bank, J for joint-stock bank, C for city commercial bank, and R
for rural commercial bank.

As is shown in Figure 3, there is only one SIB -SHB, its γi|index is at the upstream
level, ranks the eighth; nine SIBs’ γi|index are at the middle level, γCEB|index ranks the
11th, γCITIC|index, γBOCOM|index, γCMBC|index, γHXB|index, γBOB|index, γSPDB|index, γNBB|index

and γJSB|index ranks the 21th, 23th to 28th, and 30th; other nine SIBs’ γi|index are at the
lower level; the six state-owned commercial banks are almost unaffected by systemic
risks. That indicates that although the transaction scale and scope of banks are the basic
determining factors of systemic importance, the inter-bank correlation and its risk spillover
characteristics in the network have a more structural influence on their systemic importance
ranking in the financial system.

4.3. A Robustness Test

In order to test the reliability of the GCoVaR method used in this paper, a robustness
test is conducted by using the adjacency information entropy method. This method is also
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a network analysis approach and works well for investigating the direct and indirect con-
nection effects in the network, which helps to reflect the full view of systemic importance
of financial institutions in the financial system (Jamil and Yukongdi, 2020; Allen and Gale,
2000 [32,33]). The basic idea of the adjacency information entropy method is that it regards
each bank as a node in the banking network and computes the adjacency information
entropy of every node by calculating its degree of adjacency. Subsequently, the importance
of each node in the banking network is identified in line with the size of adjacency infor-
mation entropy. We calculate the adjacency information entropy H of each bank for the
54 public offered banks by referring to Equations (A8)–(A13) in Appendix C (For simplicity,
we assume λ = 0.5, means pay equal attention to the in-degree and out-degree). Then,
rankings of banks are obtained and demonstrated in Figure 4. Please refer to Appendix C
for specific calculation procedures.
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The ranking of banks in Figure 4 are basically consistent with that in Figure 2 in terms
of the bank types. For some small and medium-sized city commercial banks e.g., NJB, JSB,
NBB, their risk features are much higher than those of SIBs. It shows that the GCoVaR
method used in this paper is robust and can provide useful measurement of the non-SIBs’
risk spillover effects and rankings of systemically risky banks.

5. Conclusions

In the banking system, banks are closely connected and interact with each other, thus
forming a financial network. Since the individual extreme risks of banks could be reflected
by tail risks, it is necessary to scientifically reveal the correlation mechanism of banks’ tail
risks and its heterogeneous characteristics. There is important theoretical and practical
significance to scientifically identifying the systemic importance of banks for effectively
preventing and controlling systemic risks of banking system.

In this paper, the GCoVaR method is used to measure the risk spillover intensity
between any two banks of China’s banking system. The results show that:

1. Compared with SIBs, the non-SIBs are weaker to resist systemic risk impact. Figure 3
ranks the individual banks based on the intensity of systemic risk impact in descend-
ing order. Most of the SIBs have a stronger ability to withstand the impact of systemic
risks in the banking sector, especially the state-owned SIBs are almost unaffected
by systemic risk in terms of γi|index. On the contrary, non-SIBs are mostly severely
affected by systemic risks.

2. China’s banking risk spillover has characteristics of hierarchical diffusion from rural
commercial banks to city commercial banks to joint-stock commercial banks and
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state-owned commercial banks. It is mainly from non- SIBs that SIBs receive large
risk impacts. It can be seen that in China’s banking system, some non-SIBs, especially
some city commercial banks, are more vulnerable to the shocks of systemic risk than
SIBs, and they are more likely to act as key intermediaries to transmit risk to SIBs,
in turn to trigger systemic risk. So, if the risk prevention and control efforts for the
key intermediary are insufficient, the seemingly small risk shocks are likely to be
transmitted from non-SIBs to SIBs, thus generating the ‘butterfly effect’ of risk shocks
and inducing systemic risks in the banking sector.

In view of this, we propose that the supervisory authority should not only pay close
attention to the SIBs, but also needs to strengthen the identification and regulation of the
key intermediaries in the process of preventing and controlling systemic risks. Taking CDB
(with a total asset of 652.43 billion yuan) as an example, its contribution to the systemic
risk of China’s banking sector is much higher than that of other banks with larger total
assets (see Appendix A). The reason is that total asset size and risk spillover are two
dimensions to determine the importance of banks. That is, in addition to SIBs officially
being designated, it should be based on different perspectives, e.g., risk spillover intensity
to identify and pay attention to the key intermediaries. For these kinds of banks, a dynamic
management scheme should be established for real-time supervision of their transaction
scale and frequency of business operations, and focusing on reducing the possibility and
scope of risk spillover, so as to reduce the systemic risk accumulation. The use of risk
spillover intensity to distinguish key intermediaries will help regulators not only pay
attention to banks that are too big to fail, but also treat seriously the key intermediaries of
“risk spillover too strong to fail” in the financial network, so as to avoid missing real SIBs
and ensure the stability of the banking system.
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Appendix A.

Table A1. Sample of China listed banks in June 2022–June 2023 (total assets for the quarter ending,
30 June 2023).

Institution Code Short Name Total Assets
(Billion Yuan)

Attributes of
Banks

1 Bank of China BOC 24,402.66

Six state-owned
banks

2 Industrial and Commercial Bank of
China ICBC 33,345.06

3 Bank of Communications BOCOM 10,697.62
4 China Construction Bank CCB 28,132.25
5 Agricultural Bank of China ABC 27,205.05
6 Postal Savings Bank of China PSBC 11,353.26

7 Ping An Bank PAB 4468.51

Ten joint-stock
commercial

banks

8 Shanghai Pudong Development Bank SPDB 7950.22
9 China Minsheng Banking CMBC 6950.23
10 China Merchants Bank CMB 8361.45
11 Hua Xia Bank HXB 3399.82
12 Industrial Bank CIB 7894.00
13 China CITIC Bank CITIC 7511.16
14 China Zheshang Bank ZSB 2048.23
15 China Everbright Bank CEB 5368.11
16 China Bohai Bank Co., Ltd. CBH 1393.52

https://www.wind.com.cn/
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Table A1. Cont.

Institution Code Short Name Total Assets
(Billion Yuan)

Attributes of
Banks

17 Bank of Ningbo NBN 1626.75

Twenty-eight
city commercial

banks

18 Bank of Nanjing NJB 1517.08
19 Bank of Beijing BOB 2900.01
20 Bank of Jiangsu JSB 2337.89
21 Bank of Guiyang GYB 590.68
22 Bank of Hangzhou HZB 1169.26
23 Bank of Shanghai SHB 2462.14
24 Bank of Jinzhou JZB 777.99
25 Bank of Gansu GSB 342.36
26 Bank of Chendu CDB 652.43
27 Weihai City Commercial Bank WHCB 267.60
28 Xiamen International Bank XMIB 285.15
29 Jin Shang Bank JSBk 270.94
30 Bank of Chongqing CHB 561.64
31 Bank of Changsha CSB 704.24
32 Bank of Qingdao BQD 459.83
33 Zhongyuan Bank ZYB 757.48
34 Bank of Suzhou BSZ 388.07
35 Bank of Xi’an XAB 306.39
36 Bank of Guizhou GZB 456.40
37 Huishang Bank HSB 1271.70
38 Bank of Zhengzhou ZZB 547.81
39 Tianjin City CommercialBank TCC 687.76
40 Bank of Jiujiang JJB 415.79
41 Luzhou City Commercial Bank LCC 118.89
42 Jiangxi Bank JXB 458.69
43 Shengjing Bank SJB 1037.96
44 Harbin Bank HRB 598.60

45 Jiangyin Rural Commercial Bank JRC 142.77

Ten rural
commercial

banks

46 Wuxi Rural Commercial Bank WRCB 180.02
47 Changshu Rural Commercial Bank CRCB 208.69

48 Jiangsu Suzhou Rural Commercial
Bank JSR 139.44

49 Jiutai Rural Commercial Bank JRCB 200.36
50 Chongqing Rural Commercial Bank CRC 1135.93
51 Qingdao Rural Commercial Bank QRCB 406.81
52 Guangzhou Rural commercial Bank GRCB 1027.87
53 Rural Commercial Bank of

Zhangjiagang ZRCB 143.82
54 Jiangsu Zijin Rural Commercial Bank JZR 217.66

Appendix B. Edge Distribution, Time Varying Copula Model and Its Parameter Estimation

Since financial return series often have empirical stylized facts, such as volatility
clustering, price reversals, asymmetric distributions, fat tails, GARCH model can effectively
model time series with conditional heteroscedasticity. Therefore, ARMA(p, q)-GARCH(1,
1) model driven by a generalized error distribution (GED) is chose to fit return series Ri

t

of bank i and Rj
t of bank j, respectively. The mean value equation of this model can be

described by the following ARMA(p, q) process:

Rτ
t = ϕ0 +

p

∑
ρ = 1

ϕjRτ
t−ρ + ετ

t +
q

∑
ρ = 1

θρετ
t−ρ = µτ

t + ετ
t , τ = i, j, (A1)

Here, p and q are non-negative integers. ετ
t = στ

t zτ
t , zτ

t follows the GED distribution
with the mean of 0 and degrees of freedom of υ, and στ

t is the conditional standard deviation,
satisfying the variance equation as follows:

στ
t

2 = ω + α1ετ
t−1 + β1στ

t−1
2, (A2)

Here, ω, α1, and β1 are the parameters to be estimated. In order to ensure the station-
ality of the series, α1 and β1 must satisfy α1 + β1 < 1. After estimating all model parameters



Fractal Fract. 2023, 7, 735 15 of 19

with maximum likelihood estimation method, the marginal distribution function of the
return series of bank i and bank j can be obtained:

Fτ(Rτ
t ) = P(ετ

t ≤ Rτ
t − µτ

t ) = P
(

zτ
t ≤

Rτ
t − µτ

t
στ

t

)
= GEDυ

(
Rτ

t − µτ
t

στ
t

)
, (A3)

Here, GEDυ(·) is the distribution function of the generalized error distribution, and its
expression is:

GEDυ(x) =

x∫
−∞

Γ
(

3
υ

) 1
2
Γ
(

1
υ

)−1
2

exp

−|x|υ
 Γ
( 3
υ

)
Γ
(

1
υ

)
 υ

2
dx, (A4)

Copula is a function that connects edge distributions to construct joint distributions.
It can capture the nonlinear and asymmetric relations between variables. There are many
forms of Copula function. In order to accurately describe the dependent structure between
bank i and bank j, Gaussian Copula, t-Copula, Clayton Copula and SJC Copula with
different tail characteristics are selected for modeling respectively. By using AIC values of
different models, the Copula function type with the best fitting effect is selected to further
measure generalized CoVaR (GCoVaR).

We use two-stage stepwise estimation method to estimate its parameters, and the
specific steps are as follows:

First, all parameters θ in the margin distribution function of the return series of bank i
and j fitted by ARMA(p, q)-GARCH(1, 1) model are estimated. The estimated values of the
parameters are:

θ̂τ = argmax
T

∑
t = 1

ln f τ
t (R

τ
t ; θτ), τ = i, j, (A5)

Here, T is the sample size, and f τ
t (·) is the density function of the edge distribution.

Second, put the marginal distribution estimated in the first step into the time-varying
Copula model. The maximum likelihood method is also used to estimate all parameters θC
in the time-varying Copula model, the estimated values are:

θ̂c = argmax
T

∑
t = 1

lnct(Fj (R
j
t; θ̂ j), Fi

(
Ri

t; θ̂i
)

; θc), (A6)

where, ct(·, ·) is the time-varying Copula density function.
To estimate the parameters for different time-varying Copula models respectively, and

calculate AIC values of different models. AIC values are calculated as follows:

AIC = 2k− 2
T

∑
t = 1

lnct(Fj (R
j
t; θ̂ j), Fi

(
Ri

t; θ̂i
)

; θc), (A7)

Here, k is the number of model parameters. The smaller AIC value is, the higher fitting
degree model is. Therefore, the time-varying Copula model with the minimum AIC value
is selected as the optimal model, and the GCoVaR between bank i and j is measured on
that.

The following R program are used to give probability density functions of Gaussian
Copula, t-Copula, Clayton Copula, and Gumbel Copula functions respectively, and the
four copula functions are used to synthesize the joint distribution for any distribution, and
their simulated data.
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library(copula)
library(psych)
library(VineCopula)

X_1 <- runif(100, 0, 100)
X_2 <-X_1+ runif(100, 0, 50)

plot(X_1,X_2)
abline(lm(X_2~X_1),col=‘red’,lwd=1)
cor(X_1,X_2,method=‘spearman’)

#u <- pobs(as.matrix(cbind(X_1,X_2)))[,1]
#v <- pobs(as.matrix(cbind(X_1,X_2)))[,2]
#selectedCopula <- BiCopSelect(u,v,familyset=NA)
#selectedCopula

gaussian.cop <- normalCopula(dim=2)
set.seed(500)

m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(gaussian.cop,m,method=‘ml’)
coef(fit)
rho <- coef(fit)[1]

cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)
copula_dist <- mvdc(copula=normalCopula(rho,dim=2), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)
#################################################
t.cop <- tCopula(dim=2)
set.seed(500)
m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(t.cop,m,method=‘ml’)
coef(fit)
rho <- coef(fit)[1]
df <- coef(fit)[2]
persp(tCopula(dim=2,rho,df=df),dCopula)

u <- rCopula(3965,tCopula(dim=2,rho,df=df))
plot(u[,1],u[,2],pch=‘.’,col=‘blue’)
cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)

copula_dist <- mvdc(copula=tCopula(rho,dim=2,df=df), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)
##############################################################
clayton.cop <- claytonCopula(dim=2)
set.seed(500)
m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(clayton.cop,m,method=‘ml’)
coef(fit)
alpha <- coef(fit)[1]

persp(claytonCopula(dim=2,alpha),dCopula)

u <- rCopula(3965,claytonCopula(dim=2,alpha))
plot(u[,1],u[,2],pch=‘.’,col=‘blue’)
cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)
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copula_dist <- mvdc(copula=claytonCopula(dim=2,alpha), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)
#############################################################
gumbel.cop <- gumbelCopula(dim=2)
set.seed(500)
m <- pobs(as.matrix(cbind(X_1,X_2)))
fit <- fitCopula(gumbel.cop,m,method=‘ml’)
coef(fit)
alpha <- coef(fit)[1]

persp(gumbelCopula(dim=2,alpha),dCopula)

u <- rCopula(3965,gumbelCopula(dim=2,alpha))
plot(u[,1],u[,2],pch=‘.’,col=‘blue’)
cor(u,method=‘spearman’)
X_1_mu <- mean(X_1)
X_1_sd <- sd(X_1)
X_2_mu <- mean(X_2)
X_2_sd <- sd(X_2)

copula_dist <- mvdc(copula=gumbelCopula(dim=2,alpha), margins=c(“norm”,”norm”),
paramMargins=list(list(mean=X_1_mu, sd=X_1_sd),
list(mean=X_2_mu, sd=X_2_sd)))
sim <- rMvdc(3965,copula_dist)
plot(X_1,X_2,main=‘relation’)
points(sim[,1],sim[,2],col=‘red’,pch=‘.’)
legend(‘bottomright’,c(‘Observed’,’Simulated’),col=c(‘black’,’red’),pch=21)

Appendix C. Algorithm for the Adjacency Information Entropy of the Bank

Following Hu et al. [34] and Zhao et al. [35], the calculation steps for the adjacency
information entropy of bank j are as follows:

1. calculate the weight (Eji) of effect on bank j by bank i.

Eji =
eji

∑i eji
, (A8)

where eji denotes the extent of the risk connection effect by bank i on bank j, can be
obtained by Granger causality test between the return rate offered by banks’ stocks.

2. calculate the in-degree of bank j (sin
j ), which denotes the risk spillover received by

bank j,
sin

j = ∑
i∈j

Eji, (A9)

where j is the set of banks connected with bank j.
3. calculate the out-degree of bank j (sout

j ), which denotes the risk spillover transmitted
by bank j,

sout
j = ∑

i∈j

Eij, (A10)

4. calculate the total risk spillover of bank j (sj),

sj = λsin
j + (1− λ)sout

j , (A11)

where λ is the relative importance effect coefficient.
5. calculate the adjacency degree (Qi),

Qi = λ ∑
k∈i

sik + (1− λ)∑
k∈i

ski (A12)
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6. calculate the adjacency information entropy of bank j (Hj),

Hj = ∑
i∈j

∣∣∣∣(− sj

Qi
log

sj

Qi

)∣∣∣∣, (A13)
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