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1. Introduction

Fractional functional differential equations (FFDEs) are a relatively new branch of
differential equations that have been developed intensively in recent decades. One can
find sound investigations in this area in monographs [1–5]. Initial and boundary value
problems for FFDEs are studied in [6–9]; also, there are many publications that studied the
unique solvability conditions of the functional differential equations and their properties
(see [10–14]). Also, the theory of FFDEs is often used in applied sciences. The model
with discrete memory effect is studied in [15–17]; the pantograph-type model from elec-
trodynamics is investigated in [15,18,19]; mathematical model for studying the COVID-19
infection described by piecewise fractional differential equations is considered in [20].
The present paper is motivated mainly by [11,13]. The precise conditions for the unique
solvability of FFDE related to the ς-positive operators can be found in [15–18].

The main interest of our investigations is the FFDEs related to the ς-nonpositive
operators with boundary value condition x(a) + αx(b) = c, on the interval [a, b], where
−∞ < a < b < +∞, α, c ∈ Rn. The objective of our investigation was to establish precise
conditions on the unique solvability of the FFDEs with the boundary value condition
that can be more easily used in application to concrete problems. Mainly, we obtained
conditions that do not require calculation of fractional derivatives. The second main aim
of our investigation was to obtain the condition on x(a) when the solution depends on
boundary value property x(a) + αx(b) = c. As an example, we study the pantograph
model from electrodynamics (see [19,21–23]).

The paper is organized in the following way. We give the necessary notation and
definitions in Section 1.1, formulate the problem in Section 2, auxiliary statements are
summarized in Section 3, a restriction on the initial value x(a) is obtained in Section 4,
the precise requirements on the unique solvability of the linear FFDEs are formulated and
proved in Section 5 (here, we used the a priori estimation method), and the example of
the pantograph-type model from electrodynamics on the results referred to earlier can be
found in Section 6.
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1.1. Notation

In the paper, we use the following notation:

• q ∈ (0, 1) is an order of the Caputo fractional derivative Dq
a ;

• The interval Iab = [a, b], accordingly Iat∗ = [a, t∗];
• R := (−∞, ∞); x := ‖x‖∞ := max1≤i≤n |xi| for x = (xi)

n
i=1 ∈ Rn;

• L1(Iab,Rn) is the Banach space of all Lebesgue integrable vector functions x : Iab → Rn

with the norm

L1(Iab,Rn) 3 x 7−→ ‖x‖L1 =
∫ b

a
‖x(s)‖ds;

• L∞(Iab,Rn) is the Banach space of all Lebesgue integrable vector functions x : Iab →
Rn with the norm

L∞(Iab,Rn) 3 x 7−→ ‖x‖L∞ = ess sup
t∈Iab

‖x(s)‖;

• AC(Iab,Rn) is the Banach space of absolutely continuous functions x : Iab → Rn with
the norm

AC(Iab,Rn) 3 x 7−→ ‖x‖AC :=
∫ b

a
‖x′(s)‖ ds + lim

t→a+
‖x(t)‖;

• For fixed σi ⊂ {−1, 1}, i = 1, 2, . . . , n,

ς =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σn

 (1)

we set
Rn

ς := σ1R+ × σ2R+ × · · · × σnR+.

2. Problem Formulation

We consider an FFDE

Dq
a
(

x(t)
)
= l(x)(t) + r(t), t ∈ Iab (2)

subject to the boundary condition

x(a) + αx(b) = c, (3)

where Dq
a is the Caputo fractional derivative of order q ∈ (0, 1), and l ∈ AC(Iab,Rn) →

L1(Iab,Rn) is a linear operator, function r ∈ L1(Iab,Rn) and α, c ∈ Rn.

Definition 1 (Sections 2.1 and 2.4, formulae (2.1.8), (2.1.9) and (2.4.4), (2.4.5) and Corol-
lary 2.3, [3]). For x(t) ∈ AC(Iab,Rn) the Caputo fractional derivative Dq

a x(t) exists almost
everywhere on Iab and

Dq
a
(

x(t)
)
=

1
Γ(1− q)

( d
dt

) ∫ t

a
(t− s)−q

(
x(s)− x(a)

)
ds, 0 < q < 1, (4)

where Γ(q) : [0, ∞)→ R is the Gamma function and

Γ(q) :=
∫ ∞

0
tq−1e−tdt. (5)
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Definition 2 (Formula (2.1.1), p. 69, [3]). The fractional integral Iq
at of order q, q ∈ (0, 1), for

x(t) ∈ L1(Iab,Rn), is defined by

Iq
at
(
x(t)

)
=

1
Γ(q)

∫ t

a
(t− s)q−1x(s)ds, t > a. (6)

Definition 3. For certain given σi ⊂ {−1, 1}, i = 1, 2, . . . , n, an operator l : AC(Iab, Rn)
→ L1(Iab,Rn) is ς-nonpositive operator, if the fact that the relation

ςx(t) ≥ 0, t ∈ Iab (7)

is true implies that
ςl(x)(t) ≤ 0, almost everywhere on t ∈ Iab, (8)

where ς is defined by (1).

3. Auxiliary Statements

The following statements are essential to the investigation.

Lemma 1 (Lemma 2.21 and Lemma 2.22, [3]). The next properties are true:

(i) Assume that 0 < q < 1 and x(t) ∈ L∞(Iab,Rn), then

Dq
a

(
Iq

at
(
x(t)

))
= x(t) almost everywhere on Iab,

where Iq
a and Gamma-function are defined by (6) and (5) correspondingly;

(ii) Assume that 0 < q < 1 and x(t) ∈ AC(Iab,Rn), then

Iq
at

(
Dq

a
(
x(t)

))
= x(t)− x(a) almost everywhere on Iab, (9)

where Iq
at is defined by (6).

Lemma 2. The set of absolutely continuous solutions to the FFDE (2) coincides with the set of
absolutely continuous solutions to the fractional integral equation:

x(t) = x(a) + Iq
at

(
l(x)(t) + r(t)

)
, t ∈ Iab, (10)

where Iq
at is defined by (6).

Proof. Assume that x ∈ AC(Iab, Rn). Let us integrate FFDE (2) from a to t taking into
account Definition 2:

Iq
at

(
Dq

a(x(t))
)
= Iq

at

(
l(x)(t) + r(t)

)
, t ∈ Iab.

Then, in view of Lemma 1 (Formula (9)) we obtain that

x(t)− x(a) = Iq
at

(
l(x)(t) + r(t)

)
, t ∈ Iab.

The last relation is Formula (10).

4. Conditions at the Initial Point x(a).

In the following theorem, we express x(a) in terms of (3), where |α| 6= −1.
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Theorem 1. The FFDE (2) has a boundary value property (3) if and only if

x(a) =
1

α + 1

(
c− αIq

ab
(
l(x)(t) + r(t)

))
. (11)

Proof of Theorem 1. We know from Lemma 2 that

x(b) = x(a) + Iq
ab

(
l(x)(t) + r(t)

)
; (12)

on the other hand, from the boundary value condition (3), we have that

x(b) =
1
α
(c− x(a));

then, we can replace (12):

c
α
− x(a)

α
= x(a) + Iq

ab

(
(lx)(t) + r(t)

)
.

Next,

x(a)
( 1

α
+ 1
)
=

c
α
− Iq

ab

(
l(x)(t) + r(t)

)
,

hence
x(a) =

α

α + 1

( c
α
− Iq

ab
(
l(x)(t) + r(t)

))
.

Therefore, (11) is true.

The next Lemma is an analogue to the Fredholm alternative.

Lemma 3 (The Fredholm alternative, Corollary from Theorem VI.14, [24]; and Sections 2.1
and 3.9, [25]). If the homogeneous boundary value problem

Dq
a(x(t)) = l(x)(t), t ∈ Iab, (13)

x(a) + αx(b) = 0, (14)

only has the trivial solution, then the nonhomogeneous initial value problem (2), (3) is
uniquely solvable.

5. Exact Conditions on the Unique Solvability of the Linear FFDE

Here, we consider a linear operator l : AC(Iab,Rn)→ L1(Iab,Rn) with the property

|ςl(x)(t)| ≤ η(t)‖x‖AC, a. e. t ∈ Iab, x ∈ AC(Iab,Rn), (15)

where function η ∈ L1(Iab,Rn
ς ).

α ≤ 0 (16)

and
ς(1− sign α)c ≥ 0. (17)

Definition 4 ([13]). We will say that the operator l with property (15) is a t∗-Volterra operator,
where t∗ ∈ Iab, if for arbitrary a1 ∈ [a, t∗], a2 ∈ [t∗, b], a1 6= a2, and x ∈ C(Iab, Rn) satisfying the
condition

x(t) = 0 t ∈ [a1, a2],

we have
l(x)(t) = 0 for almost all t ∈ [a1, a2].
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For further investigation, we need the following auxiliary Lemma. Note, that we
assume that the problem (2) and (3) has a nontrivial solution due to Theorem 3 and
Remark 2.1 in [13].

Lemma 4. Assume that |α| ≤ 1, and operator l is ς-nonpositive (see Definition 3), and l is a
a-Volterra operator. Also, suppose that x is a nontrivial solution to the problem (2), (3), where
r ∈ L1(Iab,Rn

ς ) and c ∈ Rn is such that the inequality (17) holds, satisfying

min
t∈Iab

ςx(t) < 0. (18)

Then, there exist t∗ ∈ (a, b] and t∗ ∈ [a, t∗) such that

ςx(t∗) = min
t∈Iab

ςx(t), (19)

ςx(t∗) = max
t∈Iat∗

ςx(t) > 0. (20)

We remind you that Iat∗ = [a, t∗] is described in the Notation (Section 1.1).

Proof of Lemma 4. We set
m = −min

t∈Iab
ςx(t), (21)

J = {t ∈ Iab : ςx(t) = −m}, t∗ = sup J.

We see that

m > 0,

ςx(t∗) = −m. (22)

Taking in to account (2), (16), and (17), we have that

if a ∈ J, then |α| = 1, c = 0, and t∗ = b. (23)

So, t∗ ∈ (a, b].
Let us show that

max
t∈It∗

ςx(t) > 0.

Suppose the opposite, that

ςx(t) ≤ 0, t ∈ Iat∗ . (24)

Taking into account the fact that l is an a-Volterra operator and Lemma 2, the integra-
tion of (2) from a to t∗ gives that

ςx(t∗)− ςx(a) = ςIq
at∗

(
|(lx)(t)|+ r(t)

)
,

in view of (24) and the hypotheses that l is ς-nonpositive operator and r ∈ L1(Iab,Rn
ς ), we

obtain that
ςx(t∗)− ςx(a) = ςIq

at∗

(
|(lx)(t)|+ r(t)

)
≥ 0, (25)

where Iq
at∗

(
|l(x)(t)|+ r(t)

)
= 1

Γ(q)

∫ t∗
a (t− s)q−1|l(x)(s)|ds + 1

Γ(q)

∫ t∗
a (t− s)q−1r(s)ds.

From (21), (22), and (25) we obtain that a ∈ J and, thus, it follows from (23) that |α| = 1,
c = 0, and t∗ = b. According to (25) we determine r ≡ 0 and l(x) ≡ 0, i.e.,

ςx(t) = ςx(a) = −m, t ∈ Iab.
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Therefore, (25) indicates that

0 = ‖l(−m)(t)‖L1 = m‖l(1)(t)‖L1 .

Following this, as we suppose that the operator l is nontrivial for |α| = 1, the last
equality shows that m = 0, which is a contradiction.

Theorem 2. Assume that |α| ≤ 1 and linear operator l is ς-nonpositive operator (see Definition 3),
l is an a-Volterra operator, and let there exists a function β ∈ AC(Iab,Rn

ς ) satisfying

ςDq
a
(

β(t)
)
≤ ςl(β)(t), t ∈ Iab, (26)

ςβ(t) > 0, t ∈ [a, b). (27)

Then, the homogeneous problem (13), (14) only has a trivial solution and, for every
r ∈ L1(Iab,Rn

ς ) and c ∈ Rn satisfying (17), the solution to the nonhomogeneous boundary value
problem (2), (3) is unique and has property (7).

Proof of Theorem 2. Assume that x is a nontrivial solution to problem (2), (3), where
r ∈ L1(Iab,Rn

ς ) and c ∈ Rn is such that Inequality (17) holds. Now, let us prove that (7) is
fulfilled. Suppose the contrary, that Inequality (18) holds. According to Lemma 4, there
exist t∗ ∈ (a, b] and t∗ ∈ [a, t∗) such that (20) is valid. It is clear that there exists t2 ∈ (t∗, t∗)
such that

x(t2) = 0, and a ≤ t∗ < t2 < t∗ ≤ b. (28)

Put

ςυ(t) = ςpβ(t)− ςx(t), t ∈ Iab, where p = max
t∈[a,t2]

ςx(t)
ςβ(t)

.

From (20), we know that
p > 0 (29)

and there exists t1 ∈ [a, t2) such that

υ(t1) = 0. (30)

Also, it holds that
ςυ(t) ≥ 0, t ∈ [a, t2]. (31)

Taking into account (2), (26), and (29), we get

ςDq
a
(
υ(t)

)
≤ ςl(υ)(t)− ςr(t), t ∈ Iab.

Hence, by virtue of (31), the assumptions that l is ς-nonpositive and r ∈ L1(Iab,Rn
ς ),

and the fact that l is an a-Volterra operator and property (4), we obtain

ςDq
a(υ(t)) ≤ 0, t ∈ [a, t2].

Accordingly, taking into account (30),

ςυ(t) ≤ 0, t ∈ [t1, t2],

next, in addition to (27)–(29), we find 0 < ςυ(t2) ≤ 0, a contradiction. We have established
that if x is a nontrivial solution to problem (2), (3), where r ∈ L1(Iab,Rn

ς ) and c ∈ Rn is such
that the inequality (17) is fulfilled, then the inequality (7) is true.
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Now, assume that the homogeneous problem (13), (14) has a nontrivial solution x0.
From the linearity of the operator l we have that −x0 is also a nontrivial solution to the
problem (13), (14), and, according to the findings above, we get

ςx0(t) ≥ 0, −ςx0(t) ≥ 0, t ∈ Iab, (32)

which is a contradiction, because from (32) we have that x0 = 0, but we assumed that x0 is
the nontrivial solution. So, homogeneous problem (13), (14) only have the trivial solution
and, in view of Lemma 3, the nonhomogeneous boundary value problem (2), (3) have a
unique solution.

Theorem 3. Assume that |α| ≤ 1, l is ς-nonpositive, l is an a-Volterra operator, and the inequality

Iq
ab|l(1)(t)| ≤ 1 (33)

is fulfilled, where Iq
ab|l(1)(t)| =

1
Γ(q)

∫ b
a (t− s)q−1|l(1)(s)|ds.

Then, the assertion of Theorem 2 is true for the nonhomogeneous problem (2), (3), and
homogeneous boundary value problem (13), (14).

Proof of Theorem 3. Assume that x is a nontrivial solution to problem (2), (3), where
r ∈ L1(Iab,Rn

ς ) and c ∈ Rn is such that Inequality (17) is fulfilled. Let us show that (7) is
true. Similarly to the proof of Theorem 2, we assume the opposite, that Inequality (18) is
satisfied. In view of Lemma 4, there exist t∗ ∈ (a, b] and t∗ ∈ [a, t∗) such that (20) is valid.
Taking into account Lemma 2 the integration of (2) from t∗ to t∗ provides

ςx(t∗)− ςx(t∗) = −ςIq
t∗t∗

(
l(x)(t) + r(t)

)
,

where Iq
t∗t∗

(
l(x)(t) + r(t)

)
= 1

Γ(q)

∫ t∗
t∗ (t− s)q−1l(x)(s)ds + 1

Γ(q)

∫ t∗
t∗ (t− s)q−1r(s)ds.

Therefore, according to (19), the assumptions that l is ς-nonpositive, r ∈ L1(Iab,Rn
ς ),

and the fact that l is an a-Volterra operator, we establish

ςx(t∗) < ςx(t∗) + |ςx(t∗)| ≤ ςx(t∗)Iq
ab|l(1)(t)|.

This inequality, together with (33), implies the contradiction ςx(t∗) < ςx(t∗).
We verified that if x is a nontrivial solution to the problem (2), (3), where r ∈ L1(Iab,Rn

ς )
and c ∈ Rn is such that the inequality (17) is true, then the inequality (7) is fulfilled. Now
let the homogeneous problem (13), (14) have a nontrivial solution x0. It is obvious, that
−x0 is also a nontrivial solution to the problem (13), (14), and, according to the findings
above, we obtain

ςx0(t) ≥ 0, −ςx0(t) ≥ 0, t ∈ Iab,

a contradiction.

6. Example of Pantograph-Type Model

Here, we study the Pantograph-type model arising in electrodynamics [21,23]. The
pantograph [22] is a device used in electric trains to collect electric current from the overload
lines. The equation was first introduced by Ockendon and Tayler in 1971 (see [21]).

Example 1. Let us consider the Pantograph-type model related to FFDE:

Dq
0
(
x(t)

)
=

m

∑
i=1

κi(t)x(τit) + r(t), t ∈ [0, 1], (34)
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subjected to the boundary value condition

x(0) + αx(1) = c (35)

where α, c ∈ Rn, r ∈ L1([0, 1],Rn),

κi(t) =


ki

11(t) ki
12(t) . . . ki

1n(t)
ki

21(t) ki
22(t) . . . ki

2n(t)
...

...
. . .

...
ki

n1(t) ki
n2(t) . . . ki

nn(t)

 (36)

have summable components and |∑m
i=1 ςκi(t)x(τit)| ≤ η(t)‖x‖AC, η ∈ L1([0, 1],Rn

ς ), τi ∈
(0, 1].

Here, the interval [a, b] = [0, 1] and the FFDE (34) is a special case of the FFDE (2) with
the operator

l(x)(t) =
m

∑
i=1

κi(t)x(τit) for a. a. t ∈ [0, 1]. (37)

We will need the following Lemmas.

Lemma 5. The boundary value problem (34), (35) are equivalent to the FFDE

x(t) = Iq
0t
( m

∑
i=1

κi(t)x(τit) + r(t)
)
+ x(0),

where

Iq
0t

( m

∑
i=1

κi(t)x(τit) + r(t)
)
=

1
Γ(q)

∫ t

0
(t− s)q−1

( m

∑
i=1

κi(s)x(τis) + r(s)
)

ds (38)

and

x(0) =
1

1 + α

(
c− α

Γ(q)

∫ 1

0
(t− s)q−1

( m

∑
i=1

κi(s)x(τis) + r(s)
)

ds
)

. (39)

Proof of Lemma 5. To prove Lemma 5, we use Lemmas 1 and 2, Theorem 1 with operator
l defined by (37), the fractional integral Iq

0t defined by (38), and x(0) defined by (39).

Lemma 6. If the inequality

ς
m

∑
i=1

κi(t)ς ≤ 0 for almost all t ∈ [0, 1] (40)

is fulfilled, then the operator l defined by (37) is ς-nonpositive.

Proof of Lemma 6. Assume that vector function x ∈ AC([0, 1],Rn
ς ) satisfies condition (7).

In view of (8), where operator l is defined by (37), we have that

ςl(x)(t) = ς
m

∑
i=1

κi(t)x(τit) = ς
m

∑
i=1

κi(t)ςςx(τit), t ∈ [0, 1], (41)

where ς is defined by (1) and κi, i = 1, 2, . . . , m are defined by (36). From (8), (40), and (41)
we obtain that

ςl(x)(t) = ς
m

∑
i=1

κi(t)x(τit) ≤ 0 for a. a. t ∈ [0, 1].

Thus, operator l given by formula (37) is ς-nonpositive (see Definition 3). So, Lemma 6
is proven.
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Theorem 4. Let |α| ≤ 1, the condition (40) be fulfilled, τi ∈ (0, 1], t ∈ [0, 1] and

Iq
01

( m

∑
i=1

κi(t)
)
≤ 1. (42)

Then, the homogeneous problem

x(0) + αx(1) = 0

with FFDE

Dq
0
(
x(t)

)
=

m

∑
i=1

κi(t)x(τit), t ∈ [0, 1],

only has the trivial solution and, for every c ∈ Rn and r ∈ L1([0, 1],Rn
ς ) satisfying (17), the

solution to the nonhomogeneous problem (34), (35) has the property (7).

Proof of Theorem 4. To prove Theorem 4, we use Theorem 3 with the operator l defined
by (37) and the fractional integral

Iq
01

( m

∑
i=1

κi(t)
)
=

1
Γ(q− 1)

∫ 1

0
(t− s)q−1

( m

∑
i=1

κi(s)
)

ds.

In such notation, we have that the inequality (33) from Theorem 3 is the inequality (42)
from Theorem 4.

7. Conclusions

In this paper, we studied the boundary value problem for FFDEs related to ς-nonpositive
operators. The precise conditions on the unique solvability of the problem were obtained.
The results represent improvement, because they extend the class of considered FFDEs
expressed by ς-nonpositive operators to the boundary value problem x(a) + αx(b) = c,
in contrast to the initial value problems described in [15,17,18]. The calculated results
can be easily applied to various problems, because these conditions do not require the
calculation of fractional derivatives (Theorem 3). We expect that, in the future, there will
be considerable interest in applying similar methods to the boundary value problem for
nonlinear FFDEs.
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