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Simple Summary: The fractional (q, q′)-information dimension for complex networks is introduce,
and a dual version of the (q, q′)-entropy, called (q, q′)-extropy, is proposed. Experiments reveal that
the fractional (q, q′)-information dimension is less than the classical one (based on Shannon entropy)
for both real-world and synthetic networks.

Abstract: This article introduces a new fractional approach to the concept of information dimensions
in complex networks based on the (q, q′)-entropy proposed in the literature. The q parameter measures
how far the number of sub-systems (for a given size ε) is from the mean number of overall sizes,
whereas q′ (the interaction index) measures when the interactions between sub-systems are greater
(q′ > 1), lesser (q′ < 1), or equal to the interactions into these sub-systems. Computation of the
proposed information dimension is carried out on several real-world and synthetic complex networks.
The results for the proposed information dimension are compared with those from the classic
information dimension based on Shannon entropy. The obtained results support the conjecture that
the fractional (q, q′)-information dimension captures the complexity of the topology of the network
better than the information dimension.

Keywords: complex networks; measures of information; fractional-order entropy

1. Introduction

Entropy—introduced by Clausius [1] in the context of thermodynamics—is a crucial
measure of the uncertainty of the state in a physical system, allowing for specification of
the state of disorder, randomness, or uncertainty in the micro-structure of the system. Due
to this fact, researchers in many scientific fields have continually extended, interpreted, and
applied the notion of entropy.

Several generalizations of the celebrated Shannon entropy, originally related to infor-
mation processes [2], have been introduced in the literature. For a deeper review of entropy
measures, the reader is referred to [3–8].

Given a probability distribution P = {p1, p2, . . . , pN} under a probability space
X = {x1, x2, . . . , xN}, the Shannon entropy under P (see [9]) is generated as:

I = lim
t→−1

d
dt

N

∑
i=1

p−t
i = −

N

∑
i=1

pi ln pi, (1)

where N is the total number of (microscopic) probabilities pi and ∑N
i=1 pi = 1.
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Similarly, the Tsallis entropy (also called q-entropy) [10–12] is generated by the same

procedure but using Jackson’s q-derivative operator Dt
q f (t) =

f (qt)− f (t)
(q− 1)t

, t 6= 0, [13] (see

also [9,14,15]), given by

IT = lim
t→−1

Dt
q

N

∑
i=1

p−t
i = −

N

∑
i=1

pilnq pi, (2)

where the q−logarithm is defined by

lnq(pi) =
p1−q

i − 1
1− q

, (3)

(pi > 0, q ∈ R, q 6= 1, ln1 pi = lnpi).
The Tsallis entropy is connected to the Shannon entropy through the limit

lim
q→1

IT = I, (4)

which is why it is considered a parameter extension of Shannon entropy.
Several entropy measures have been revealed following the same procedure above,

using appropriate fractional-order differentiation operators on the generative function
∑N

i=1 p−t
i with respect to the variable t and then letting t→ −1 (see, e.g., [16–23]).

A new measure of information, called extropy, has been introduced by Lad, Sanfilippo,
and Agrò [24] as the dual version of Shannon entropy. In the literature, this measure of
uncertainty has received considerable attention in recent years [25–27]. The entropy and
extropy of a binary distribution (N = 2) are identical.

In recent years, complex networks and systems have been extensively studied, as they
are helpful tools for modelling complex systems in various interdisciplinary fields, such as
mathematics, statistical physics, computer science, sociology, economics, biology, and so on
(see [28–36], to name just a few).

The dimension of a network is a crucial concept for understanding the underlying
architecture, complex topology, and dynamic processes of the network, which are difficult
to understand. The dependence of model behaviour on the dimension of the system leads
to the occurrence of critical phenomena.

For an updated survey on the fractal dimensions of networks and other related theo-
retical topics, we refer the reader to [37–44].

In the study of the structure of complex networks, the fractional-order information
dimension has been developed by combining the fractional order entropy and information
dimensio (see, for instance, Refs. [45,46] and the references given therein).

This article proposes a fractional (q, q′)-information dimension for complex networks
derived by applying the fractional order entropy introduced in [47]. This new information
dimension is computed on several networks, both those gathered from real-world fields
and synthetic complex networks. The results provide evidence that the fractional two-
parameter non-extensive information dimension describes the complexity of the topology
of the network better than the information dimension. This is corroborated by statistical
analysis and data mining techniques.

The remainder of this paper is structured as follows. Section 2 introduces a fractional
entropy measure and the information dimension of complex networks. Then, the proposed
fractional information dimension measure is introduced in Section 3. Section 4 focuses on
applying this new measure to various complex networks. Finally, the findings of this study
and our conclusions are given in Section 4.
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2. Preliminaries
2.1. Fractional (q, q′)−Entropy

Following the same procedure used to obtain the Shannon and Tsallis entropies, a
generalized non-extensive two-parameter entropy, named fractional (q, q′)−entropy, was
developed in [47], obtained by the action of a derivative operator previously proposed by
Chakrabarti and Jagannathan [48]:

Iq,q′ := lim
t→−1

Dt
q,q′

N

∑
i=1

p−t
i =

N

∑
i=1

pq′

i − pq
i

q− q′
, (5)

where Dt
q,q′ of a function f is given by Dt

q,q′ f (t) =
f (qt)− f (q′t)

(q− q′)t
.

Following the general idea that extropy is the complementary dual version of entropy,
we present the (q, q′)−extropy for a discrete random variable X as

Jq,q′ =
N

∑
i=1

(1− pi)
q′ − (1− pi)

q

q− q′
. (6)

An easy computation shows that Equation (5) can be expressed in terms of the Tsal-
lis entropy:

Iq,q′ =
(1− q′)IT − (1− q)IT

q− q′
. (7)

Note that Iq,q′ ≥ 0 ∀q, q′ and Iq,q′ =
W1−q −W1−q′

q′ − q
for pi = 1/W ∀i. Consider a

system composed of two independent sub-systems A and B with factorized probabilities
pi,A and pi,B; then,

Iq,q′ = IA
q,q′ + IB

q,q′ + (1− q)IA
q,q′ I

B
q,1 + (1− q′)IB

q,q′ I
A
q,1, (8)

where the I(q, 1) entropy resembles the Tsallis entropy in Equation (2) and I(1, 1) is the
Shannon entropy in Equation (1). Thus, I(q, q′) is non-additive for q, q′ 6= 1.

2.2. Information Dimension of Networks

The information dimension measuring the topological complexity of a given network
is sketched briefly in the following.

The definition of the information dimension was introduced in [49], considering the
Shannon entropy in Equation (1), as follows:

dI = − lim
ε→0

I(ε)
ln ε

= lim
ε→0

∑Nb
i=1 pi(ε) ln pi(ε)

ln ε
, (9)

where pi(ε) =
ni(ε)

n
, ni(ε) are the nodes into the ith box of size ε, n is the total number of

nodes in the network, and Nb is the number of boxes required to cover the network. The
reader may consult [50,51] for in-depth details on obtaining Nb.

Applying Equation (9), we can assert that

I(ε) ∼ −dI ln ε + β, (10)

for some constant β, where ε is the diameter of the boxes covering the network.
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3. Fractional (q, q′) Information Dimension of Complex

Now, we proceed to the primary goal of this article, which is to introduce the fractional
(q, q′)−information dimension of complex network, which is denoted by dq,q′ and given by:

dqq′ = − lim
ε→0

Iq,q′(ε)

ln ε
= lim

ε→0

∑
Nb
i=1 pq′

i (ε)− pq
i (ε)

q−q′

ln ε
, (11)

where pi(ε) =
ni(ε)

n
, ni(ε) are the nodes in the ith box of size ε, n is the total number of

nodes in the network, and Nb is the number of boxes required to cover the network. The
parameters q and q′ depend on the minimal covering of the network; thus, the maximal
entropy minimal covering principle was adopted, as in the previous research on complex
networks [45,46,52–54], for the computation of ε = [2, ∆], where ∆ denotes the diameter of
the network.

For some constant β, Equation (12) can be deduced from Equation (11):

Iq,q′(ε) ∼ −dq,q′ ln ε + β. (12)

Computation of q, q′

The computation of q relies on the idea that a network can be considered as a system
that can be divided into several sub-systems. This division is based on the formation of
minimum boxes by the box-covering heuristic. Hence, the number of sub-systems is equal
to the number of boxes Nb for a given size ε.

For a given box size ε, the value of q is determined as the average of qε, denoted by
qε, where

qε :=
(∆− 1)Nb(ε)

∑∆
ε=2 Nb(ε)

. (13)

Note that qε = (q2, q3, . . . , q∆).
This approximation measures how far the number of sub-systems (for a given size ε)

is from the mean number of overall sizes, which is the baseline.
Now, to quantify the interactions among the elements that form the sub-systems (nodes)

and among these sub-systems (boxes), the parameters α and β were introduced in [46]:

αε,i = 1− |Si|indeg(Si)

n ∑Nb
i=1 indeg(Si)

, (14)

βε,i = 1− outdeg(Si)ε

∆ ∑Nb
i=1 outdeg(Si)

, (15)

where |Si| is the number of nodes in Si, n is the number of nodes of the network, indeg(Gi)
are the edges among the nodes that are in Si, outdeg(Si) are the edges among the sub-
networks Si, ε is the diameter of the box that covers the sub-network Si, and ∆ is the
diameter of the network.

Finally, q′ is defined by

q′ =
βε,i

αε,i
, (16)

where βε,i, αε,i are the mean of βε,i and αε,i, respectively, as they are vectors of type
(aε,1, aε,2, . . . , aε,Nb). Equation (16) defines the interaction index [46], which indicates
whether β is equal to (q′ = 1), greater than (q′ > 1) or less than (q′ < 1) α. Hence, it
reflects which type of interaction is stronger, that is, either inner sub-system interactions (α)
or outer interactions (β) are stronger, or both are balanced.

Figure 1 shows examples of how α and β are computed. Once a box covering is
obtained (using the approach in [51]) for ε = 2, see Figure 1a, the re-normalization ag-



Fractal Fract. 2023, 7, 702 5 of 14

glomerates the nodes in the boxes into super-nodes (sub-systems) S1 and S2, as shown
in Figure 1b. As ∆ = 2, in the example, q = qε = q2 = 1. Furthermore, indeg(S1) = 3,
indeg(S2) = 1, outdeg(S1) = 1, and outdeg(S2) = 1, which reflect the degrees of the nodes
of the re-normalized network in Figure 1b.

Figure 1. (a) Box covering of a network and (b) network re-normalization for ε = 2.

As n = 5, the results for Equation (14) are α2,S1 = 0.550 and α2,S2 = 0.900, whereas
those from Equation (15) are β2,S1 = 0.50, and β2,S2 = 0.500; thus, q′ = 0.689. The
included networks have a diameter greater than the example shown above and, so, the
steps to estimate qε and q′ε are repeated for each box size ε, resulting in two vectors that are
averaged to obtain q and q′. Once q and q′ have been obtained, then dq,q′ can be computed
by approximating Equation (12) to ε vs. Iq,q′(ε) through non-linear regression [55].

4. Results
4.1. Real-World Networks

The fractional (q, q′)−information dimension Equation (11) and the classical infor-
mation dimension Equation (9) were computed for 28 real-world networks gathered
from [46,56] (see Table 1 for the diameter, source, and number of nodes and edges for each
network). These networks cover several fields, such as biological, social, technological, and
communications fields, and so, they can be considered to be representative.

Table 1. Diameter, number of nodes, source, dI , and dq,q′ of real-world networks.

Network Full Name Source Diameter Nodes Edges

ACF American college football [46] 4 115 613

BCEPG Bio-CE-PG [46] 8 1692 47,309

BGP Bio-grid-plant [46] 26 1272 2726

BGW Bio-grid-worm [46] 12 16,259 762,774

CEN C. elegans neural network [46] 5 297 2148

CNC Ca-netscience [46] 17 379 914

COL SocfbColgate88 [56] 6 3482 155,044

DRO Drosophilamedulla1 [56] 6 1770 33,635
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Table 1. Cont.

Network Full Name Source Diameter Nodes Edges

DS Dolphins social network [46] 8 62 159

ECC E. coli cellular network [46] 18 2859 6890

EM Email [46] 8 1133 5451

IOF Infopenflights [56] 14 2905 30,442

JM Jazz-musician [46] 6 198 2742
JUN Jung2015 [56] 16 2989 31,548

LAS Lada Adamic’s network [46] 8 350 3492

LDU Labanderiadunne [56] 6 700 6444

MAR Marvel [56] 11 19,365 96,616

MIT SocfbMIT [56] 8 6402 251,230

PAIR Pairdoc [56] 14 8914 25,514

PG Power grid network [46] 46 4941 6594

PGP Techpgp [56] 24 10,680 24,340

POW Powerbcspwr10 [56] 49 5300 13,571

PRI SocfbPrinceton12 [56] 9 6575 293,307

TC Topology of communications [46] 7 174 557

USAA USA airport network [46] 7 500 2980

WHO TechWHOIS [56] 8 7476 56,943

YEAST Protein interaction [46] 11 2223 7046

ZCK Zachary’s karate club [46] 5 34 78

Next, the models of Equations (10) and (12)—which correspond to the classical infor-
mation dimension and the (q, q′)−information model, respectively—were approximated
by carrying out non-linear regression [55] in MATLAB R2022a. The best model was selected
according to the summed Bayesian information criterion with bonuses (SBICR) [57]. The
SBICR penalizes overly complex models (which were estimated independently) and the
size of the data set employed to approximate the parameters; hence, the model with the
largest SBICR score should be selected.

Table 2 shows the fit values for the information model Equation (10) and fractional
(q, q′) model Equation (12) with respect to the information and (q, q′)−information, respec-
tively. The results of SBICR, dI , dq,q′ , q, and q′ computations are also provided. The columns
SBICRI and SBICRq,q′ indicate that Equation (12) performed better than Equation (10) for
all networks except PG and POW (in bold). Additionally, q > 1 indicates that the number
of sub-systems for a given ε was higher than the baseline (i.e., mean sub-systems found
for all ε). On the other hand, for 12 networks, the interaction between sub-systems (q′ > 1;
in bold) was stronger; furthermore, for 16 networks, the inner interactions between the
elements of the sub-systems (q′ < 1) were higher than those between sub-systems (i.e.,
outer interactions).



Fractal Fract. 2023, 7, 702 7 of 14

Table 2. The SBICR, dI , dq,q′ , q, and q′ values obtained for the information model Equation (10) and
the fractional (q, q′)−information model Equation (12).

Network SBICRI SBICR(q,q′) dI dq,q′ q q′

ACF −10.135 −7.348 1.913 0.930 2.976 0.442

BCEPG −35.380 −20.988 1.828 1.004 6.109 1.814

BGP −95.919 −95.442 1.591 1.037 3.558 0.817

BGW −64.525 −42.927 1.949 1.006 2.437 1.219

CEN −13.897 −12.103 1.822 0.988 3.253 0.805

CNC −58.166 −49.747 1.835 1.014 3.606 0.733

COL −25.187 −18.343 2.679 1.001 3.655 1.364

DRO −23.34 −18.202 1.443 0.998 5.856 0.662

DS −17.868 −14.616 1.498 0.989 3.959 0.788

ECC −87.426 −66.706 1.625 1.029 5.044 1.442

EM −34.459 −31.15 1.547 1.001 4.663 0.915

IOF −65.328 −51.656 1.736 1.028 4.846 1.112

JM −19.449 −13.532 2.805 0.986 2.659 0.726

JUN −63.643 −58.511 2.485 1.006 5.95 1.105

LAS −30.269 −21.898 2.103 1.020 3.459 0.365

LDU −20.750 −20.091 1.850 0.998 2.879 0.864

MAR −52.612 −46.428 1.644 1.003 3.976 0.900

MIT −39.208 −25.351 2.295 1.006 4.353 1.165

PAIR −68.947 −57.065 1.582 1.004 2.726 0.670

PG −186.322 −199.049 1.463 0.999 5.221 1.324

PGP −117.159 −100.827 1.573 1.013 2.930 1.666

POW −186.721 −206.691 1.589 0.994 5.176 0.489

PRI −45.866 −27.325 2.533 1.016 6.338 1.234

TC −22.759 −22.025 1.57 0.991 5.494 1.143

USAA −26.655 −18.497 1.678 0.996 2.358 0.626

WHO −36.125 −29.873 1.675 1.002 4.751 1.280

YEAST −48.576 −43.622 1.533 1.006 6.500 0.594

ZCK −9.77 −3.672 1.500 0.950 5.094 0.696

Figure 2a shows the results for the SocfbPrinceton12 network, where the fractional
(q, q′) model (dotted line) is closer to the fractional (q, q′)−information (+) than the in-
formation model (solid line) to information (*). This is rather difficult to appreciate in
Figure 2b, making the SBICR a valuable tool for analysis. The opposite scenario can be
seen in Figure 2c, where the information model performed better than the fractional (q, q′)
model as the value of SBICRI was higher than the value of SBICR(q,q′) for the Power grid
network (PG) (see Table 2).



Fractal Fract. 2023, 7, 702 8 of 14

Figure 2. Fit of Equations (10) and (11) of (a) SocfbPrinceton12, (b) E. coli cellular, and (c) Power
grid network.

4.2. Synthetic Networks

A similar procedure was followed on the networks generated using the Barabasi–Albert
(BA) [58], Song, Havlin, and Makse (SHM) [59], and Watts and Strogatz (WS) models [60]. First,
dI and dq,q′ were computed, following which the best models using Equations (10) and (12)
were chosen based on the SBICR. There were 225 BA–based networks, 211 SHM networks,
and 216 WS networks. Table 3 summarises the nodes, edges, dI , dq,q′ , and the information
model selected between Equations (10) and (12). See the Supplementary Materials for details
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on the parameters of each model used to generate the networks, as well as the specific SBICRI ,
SBICR(q,q′), dI , dq,q′ , q, and q′ values.

Table 3. The nodes (max–min), edges (max–min), dI (max–min), dq,q′ (max–min), and the percentage
of the information model for synthetic networks. I = Equation (10) and q, q′ = Equation (12).

Network Model Nodes Edges dI dq,q′ Model

BA 2000–4500 2685–40,455 3.930–7.412 0.864–1.729 q, q′ (100%)

SHM 10–36,480 9–880,475 0.831–12.689 0.005–2.432 q, q′ (70.83%)

WS 2000–4000 4000–40,000 0.955–7.363 0.015–1.540 q, q′ (100%)

A remarkable finding on the real and synthetic networks was that dq,q′ < dI . The
fractional (q, q′) model fitted all BA and WS networks and about 71% of the SHM networks
better. Table 4 summarises the parameters of the SHM model that produced 29%(153)
networks for which the information model fit better (see the Supplementary Materials for
the meaning of each parameter). The values of the SHM parameters are influenced by the
assortativity (MODE = 1) and hub repulsion (MODE = 2), such that the only conditions
that intersected on MODE = 1 and MODE = 2 were G = 2 M = 3 IB = 0 BB = 0.400,
G = 3 M = 2 IB = 0 BB = 1, and G = 3 M = 2 IB = 0.400 BB = 0.800.

Table 4. The parameters of the SHM model that produced networks for which the information model
fit better.

G M IB BB MODE

2 2 0 0.400 1

2 2 0.400 0.400 1

2 3 0 0.400 1

2 3 0.400 [0, 1] 1

2 4 0 0.800 1

3 2 0 [0, 1] 1

3 2 0.400 [0.200, 0.800] 1

3 3 [0, 0.400] ≤0.800 1

3 4 0 1 1

4 [2, 3] 0 0.400 1

2 2 0 [0, 0.200, 0.800] 2

2 2 0.400 [0, 1] 2

2 2 1 ≤0.800 2

2 3 0 ≤0.400 2

2 3 0.400 0.200 2

3 2 0 [2, 0.600, 1] 2

3 2 0.400 0.800 2

3 4 0 0.400 2

4 2 0 ≤0.200 2

4 2 0.400 [0.400, 0.200] 2

4 3 0 0.800 2

Additionally, for BA, setting the average node degree (ad) equal to 1 produced net-
works with stronger outer interactions than inner ones (q′ > 1). This occurred regardless
of the number of initial nodes (n0) and total nodes (n) (see Table S1 in the Supplementary
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Materials). On the other hand, three SHM networks (SHM_G–3 M–4 IB–0.400 BB–0.000
MODE–2, SHM_G–4 M–3 IB–0.000 BB–0.400 MODE–2, SHM_G–4 M–3 IB–0.400 BB–0.000
MODE–2) and one WS network (WS–2000–2–0.400) obtained q′ > 1; (see Tables S2 and S3).
These results suggest that the fractional (q, q′)−information dimension captures the com-
plexity of the network topology, as the SHM model tunes the links between nodes into the
boxes (IB) and the connections between boxes through BB. The BA and WS models do not
possess this capability.

Next, a Kruskal–Wallis test was conducted on dI and dq.q′ . The results demonstrated that,
for α ≤ 0.001, a significant difference was found (H(2) = 112.568, p < 0.0001). However, a
deeper analysis conducted using the Mann–Whitney U test revealed no difference between
the dI of SHM (mdn = 3.401) and WS (mdn = 4.190); see Figure 3a. On the other hand, a
significant difference (H(2) = 216.667, p < 0.0001) was found between SHM (mdn = 1.102),
WS (mdn = 0.577), and BA (mdn = 1.451) for dq.q′ ; see Figure 3b. The detailed pairwise
comparison results of the Mann–Whitney U test are presented in Tables S4 and S5.

Figure 3. (a) dI and (b) dq.q′ of BA, SHM, and WS networks. Mann–Whitney U test revealed a
significant difference in dq.q′ for all types of networks. The * symbol indicates no statistical difference
between them.

Additionally, a C4.5 decision tree, implemented in WEKA [61] as J48, was constructed
using three data sets: (1) dI , (2) dq.q′ , (3) dq.q′ , q, and q′. Each model obtained from these
data sets was trained and tested using 10-fold cross-validation. The accuracy (ACC) and
Matthew’s correlation coefficient (MCC) were used as metrics to evaluate the classification
performance. The model built from dq.q′ obtained an ACC = 0.682 and MCC = 0.632; both
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higher than those (ACC = 0.653 and MCC = 0.514) obtained by the model built using dI .
Additionally, the models constructed using dq.q′ , q, and q′ obtained the best performance
(ACC = 0.915, MCC = 0.960), as can be seen from Figure 4. These results suggest that the
fractional (q, q′)−information dimension and the q and q′ parameters better describe the
complex topology of the synthetic networks than the information dimension dI .

Figure 4. Accuracy (ACC) and Matthew’s correlation coefficient of decision trees built on data sets:
(1) dI , (2) dq.q′ , and (3) dq.q′ , q, and q′.

5. Conclusions

This article introduced a new fractional (q, q′)−information dimension for complex
networks. The rationale of the proposed definition is that a network can be divided into
several sub-systems. Hence, q measures how far the number of sub-systems (for a given
size ε) is from the mean number of overall sizes, which is treated as the baseline. On the
other hand, q′ (interaction index) measures whether the interactions between sub-systems
are greater (q′ > 1), lesser (q′ < 1), or equal to the interactions into these sub-systems
(q′ = 1).

Starting from experimental results on real and synthetic networks, a glance at the
interactions between sub-systems indicates that clear interconnection patterns emerge,
especially in the networks generated using the SHM model, the parameters of which play
a crucial role in obtaining networks that the information model best fit. The initial node
parameter of the BA model led to the generation of networks where the outer interactions
were stronger than inner ones (i.e., q′ > 1), no matter the values of the remaining parameters.
Finally, our experiments revealed that dq,q′ < dI in both types of network.

Additionally, the dq,q′ values differed between the synthetic networks generated using
the BA, SHM, and WS models. The dq,q′ value, the mean number of sub-systems of
the network (q), and the interaction index (q′) capture the complex topological features
of synthetic networks, allowing for their classification with a good performance, even
outperforming the classic information dimension dI . For future work, extending the

network’s classification using a long short-term memory fed with I(ε), qε, and
βε,i
αε,i

might
allow us to achieve better results.

There is evidence that the fractional (q, q′)−information dimension of complex net-
works based on (q, q′)−extropy seems to be a complementary dual statistical index of the
fractional (q, q′)−information dimension. It is an exciting area for future research, and we
hope to prove the extent to which these new formulations will be helpful.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fractalfract7100702/s1, Table S1: The SBICR, dI , dq,q′ , q, and q′ values
for the information model Equation (10) and the fractional (q, q′) information model Equation (12) on BA
networks; Table S2: The SBICR, dI , dq,q′ , q, and q′ values for the information model Equation (10) and
the fractional (q, q′) information model Equation (12) on SHM networks; Table S3: The SBICR, dI , dq,q′ ,
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q, and q′ values for the information model Equation (10) and the fractional (q, q′) information model
Equation (12) on WS networks; Table S4: Mann–Whitney U test using adjusted alpha ∗α = 3.333× 10−4

for dI ; Table S5: Mann–Whitney U test using adjusted alpha α = 3.333× 10−4 for d(q,q′).
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