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Abstract: In this manuscript, we find the numerical solutions of a class of fractional-order differential
equations with singularity and strong nonlinearity pertaining to electrohydrodynamic flow in a
circular cylindrical conduit. The nonlinearity of the underlying model is removed by the quasilin-
earization method (QLM) and we obtain a family of linearized equations. By making use of the
generalized shifted airfoil polynomials of the second kind (SAPSK) together with some appropriate
collocation points as the roots of SAPSK, we arrive at an algebraic system of linear equations to
be solved in an iterative manner. The error analysis and convergence properties of the SAPSK are
established in the L2 and L∞ norms. Through numerical simulations, it is shown that the proposed
hybrid QLM-SAPSK approach is not only capable of tackling the inherit singularity at the origin,
but also produces effective numerical solutions to the model problem with different nonlinearity
parameters and two fractional order derivatives. The accuracy of the present technique is checked
via the technique of residual error functions. The QLM-SAPSK technique is simple and efficient for
solving the underlying electrohydrodynamic flow model. The computational outcomes are accurate
in comparison with those of numerical values reported in the literature.

Keywords: collocation points; convergent analysis; electrohydrodynamic flow; Liouville-Caputo
fractional derivative; shifted airfoil polynomials; singular ODEs; strongly nonlinearity

1. Introduction

The present paper develops a (novel) hybrid and efficient computational procedure to
deal with the following class of strongly nonlinear and singular boundary value problems
(BVPs) with multi-order fractional derivatives given by [1,2]LCDθ

p Φ(p) +
1
p

LCDλ
p Φ(p) +H2

(
1− Φ(p)

1− δ Φ(p)

)
= 0,

Φ′(0) = 0, Φ(1) = 0,
p ∈ (0, 1), (1)

where θ ∈ (1, 2] and λ ∈ (0, 1] are the fractional orders of derivative operators LCDθ
p, LCDλ

p
are described in the sense of Liouville–Caputo. Here, Φ(p) stands for the velocity of fluid;
p denotes the radial distance from the center of cylindrical conduit; the parameterH2 is the
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Hartman electric number; and finally, the degree of the nonlinearity of the (1) is denoted by
δ. To be more precise, two parametersH2, δ are defined by [3]

H2 :=

√
r2 j0

µE0m2 , δ :=
m
j0
∇ · P− 1,

where r is the radius of the cylindrical conduit, j0 denotes the uniform electrical current
density at the inlet, the viscosity of the fluid is represented by µ, m signifies the mobility of
ion, and E0 represents the electrical field. Finally, by∇ · P, we denote the pressure gradient,
which is assumed to be constant.

Traditionally, for θ = 2 and λ = 1, the model problem (1) has been called the electrohy-
drodynamic (EHD) flow model. It was used to model the motion of ionized fluid particles
and their interrelationships with electric field and the surrounding fluid that controls the
transport phenomenon in the fluid flow [4]. The issues of existence and uniqueness of the
integer-order model are addressed in [5]. It is further shown that this unique solution is
monotonically decreasing on (0, 1) and is bounded by 1/(1 + δ). The non-fractional model
has been considered by many researchers due to its vast applications. Numerous numerical
and analytical procedures have been developed for θ = 2 and λ = 1. The homotopy analy-
sis and optimal homotopy asymptotic approaches were investigated in [6–8]. Additionally,
the spectral homotopy analysis method was presented in [9]. The authors in [10] devised
the pseudo-spectral collocation strategy for solving the EHD model. The least-square
method was proposed in [11]. This problem was solved by utilizing the Runge–Kutta
(fourth-order), collocation and Galerkin computational methods in [12]. The author of [13]
studied the application of (orthonormal) Bernstein functions for the integer-order EHD
flow equation. The discrete Adomian decomposition procedure was developed in [14]
for EHD flow model. The higher-order B-spline methods based on uniform and ononuni-
form meshes were investigated in [15,16]. A semi-analytical technique based on Green’s
function along with Picard’s and Mann’s fixed-point iteration were developed recently
in [17]. Additionally, the Haar wavelet solutions was obtained in [18]. Two other wavelet
solutions based on the Bernoulli and Jacobi polynomials were obtained in [19]. Ultimately,
an efficient and highly accurate numerical approach based on the Chebyshev polynomial
of the second kind was examined in [20].

However, there are only a few studies that have been devoted to fractional-order
EHD flow model (1) with two factional parameters θ ∈ (1, 2] and λ ∈ (0, 1]. Nowadays,
fractional derivatives are widely utilized as a powerful instrument for handling nonlinear
real-world phenomena in various disciplines of science and engineering; see [21,22]. Indeed,
they help us to understand the nature of the models more deeply than the integer-order
counterparts. Let us, however, emphasize that the exact solutions of (most) fractional
differential equations do not exist analytically. Therefore, many researchers attempt to
find the approximate solutions of differential equations of fractional order. Let us mention
the related available numerical methods for (1). The reproducing kernel scheme was first
investigated in [1] and recently reconsidered in [23]. The generalized differential transform
procedure designed in [2]. The spectral collocation strategies based on three different bases
such as Legendre, Chebyshev, and Jacobi polynomials considered in [24] for computing
the solutions of (1). Moreover, the analytical solution that relied on a power series formula
was constructed in [25]. Finally, the Galerkin and spectral collocation based on the Lucas
functions was employed in [4].

Our focus for this manuscript is solving the fractional-order counterpart of EHD flow
model numerically. To this end, a hybrid spectral collocation technique is devised using a
(generalized) shifted version of the airfoil polynomials of the second kind (SAPSK). Indeed,
we first applied the quasilinearization method (QLM) to the original nonlinear EHD flow
equation to arrive at a family of linearlized singular equations. Hence, the spectral SAPSK
collocation matrix scheme is utilized to solve the aforementioned family of quasilinear
equations. It should be stressed that the spectral collocation procedures have been suc-
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cessfully employed to deal diverse interesting mathematical models computationally by
utilizing of different basis functions such as clique, Fibonacci, Morgan-Voyce, Genocci,
Bernoulli, Jacobi, Legendre, Pell, and Vieta–Lucas polynomials; see references [26–36] for
more details. The proposed hybrid QLM-SAPSK solution technique leads to a (family of
linear) system of algebraic equations that determine the expansion functions in polynomial
form. This is the main advantage of our QLM-SAPSK technique in comparison with other
spectral collocation methods developed previously in [4,24] for (1). The other benefit is the
order of convergence, which shows the higher-order accuracy of the QLM-SAPSK. We also
establish the error analysis of the utilized airfoil basis functions compared with the Lucas
and Chebyshev, and Legendre polynomials in [4,24].

The organization of this manuscript is given as follows. A review of fractional calculus
is described in Section 2. Some facts on airfoil polynomials of the second kind is illustrated
in Section 3. The convergence analysis of SAPSK in both L2 and L∞ is established rigorously.
In Section 4, the details of the hybrid QLM-SAPSK technique based on the quasilinearization
and collocation technique is provided. Through the computation of the residual error
function, the accuracy of the proposed techniques is further estimated in Section 4. Several
numerical simulations using various model parameters are carried out in Section 5. The
performance of QLM-SAPSK is validated through comparisons with the outcomes of the
available existing computational schemes. The conclusion of the study is summarized in
Section 6.

2. Liouville–Caputo Fractional Derivative

We provide the fundamental and basic facts from fractional calculus theory, which
is utilized in the following sections. For more information and applications, we refer
interested readers to the monograph [22] or a recently published expository article [37].

Let us consider Γ(·) as the classical Gamma function. We continue by recalling that the
fractional integral operator is of the Riemann-Liouville type. It is of order θ > 0, defined by

0Iθ
p s(p) :=

1
Γ(θ)

∫ p

0

s(r)
(p− r)1−θ

dr,

where we assumed s(p) ∈ Cκ , κ > −1. A given real function s(p), p > 0 is in the space
Cκ , κ ∈ R if there exits a real number γ ∈ R and a function h(p) ∈ C∞([0, ∞) such that
s(p) = pγ h(p). Moreover, for a n ∈ N, we call that s(p) ∈ Cn

κ if and only if s(n)(p) ∈ Cκ .
The definition of fractional Liouville–Caputo derivative is given next.

Definition 1. Suppose that, for a given n ∈ N, we have s ∈ Cn
−1 and n − 1 < θ < n. The

fractional derivative of the Liouville–Caputo type for the function s(p) of order θ is defined by

LCDθ
p s(p) := 0In−θ

p Dns(p) =
1

Γ(n− θ)

∫ p

0
(p− r)n−θ−1s(n)(r)dr, p > 0,

where D = d
dp .

It is remarked that the derivative operator LCDθ
p is linear. For a constant number C,

one obtains the following:
LCDθ

pC = 0. (2)

Let we have the function s(p) = px. With the aid of the following property, one can
calculate its Liouville–Caputo fractional derivative as follows:

LCDθ
p px =

 0, for x ∈ N0 and x < dθe,
Γ(x + 1)

Γ(x + 1− θ)
px−θ , for x ∈ N0 and x ≥ dθe or x /∈ N and x > bθc. (3)
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Here, N0 := N ∪ {0} and b·c denotes the floor function, which gives us the largest
integer number equal or less than θ. Additionally, d·e represents the ceil function that
produces the smallest integer number equal or greater than θ.

3. The Shifted Airfoil Polynomials and Their Convergence Results

We first review the definition of the original airfoil polynomials of the second kind.
The shifted version of these polynomial is then introduced. In particular, we investigate the
convergence analysis of shifted airfoil polynomials in detail below.

3.1. The Airfoil Polynomials: A Shifted Version

The pressure on an airfoil in steady and unsteady subsonic flow is computed by
means of the so-called airfoil polynomials. For an extensive list of formulae related to these
polynomials, we refer the readers to the monograph [38]. Alternatively, these polynomials
have also been named as the Chebyshev of fourth kind; see [39,40].

The definition of the airfoil polynomials of the second kind is given by

Ar(x) =
sin[(r + 1

2 )ψ]

sin ψ
2

, x = cos ψ, (4)

for −1 ≤ x ≤ 1. Clearly, we have A0(x) = 1. For r = 1, one may use the trigonometric
relation sin 3ψ = 4 sin ψ cos2 ψ− sin ψ to obtain A1(x) = 1 + 2x. The following recursive
identity will be used to generate the remaining airfoil polynomials as

Ar+1(x) = 2xAr(x)−Ar−1(x), r = 1, 2, . . . . (5)

The next two polynomials A2(x) and A3(x) via (5) are obtained as

A2(x) = −1 + 2x + 4x2, A3(x) = 8x3 + 4x2 − 4x− 1.

Based on these observations, the special values at x = 0,±1 are obtained as follows:

Ar(−1) = (−1)r, Ar(0) = ±1, Ar(1) = 2r + 1.

In the Sturm–Liouville form, they satisfy the following ordinary differential equation

d
dx

[
(1− x2)ω(x)A′r(x)

]
= −r(r + 1)ω(x)Ar(x), r ∈ N. (6)

where ω(x) :=
(

1−x
1+x

) 1
2 stands as the weight function. By exploiting the former relation (6),

it is not a difficult task to prove that the family of airfoil polynomials becomes orthogonal
with regard to ω(x) on (−1, 1). To be precise, we have

∫ +1

−1
Ar(x)As(x)ω(x) dx =

{
π, r = s,
0, r 6= s.

(7)

The explicit expansion form of the airfoil polynomials of the second kind (APSK) is
given by

Ar(x) =
1
2r

r

∑
`=0

(−1)`
(

2r + 1
2`+ 1

)
(1− x)`(1 + x)r−`, r ∈ N0. (8)

One can easily obtain the zeros of APSK by solving the equationAr(xj) = 0. The roots
of Ar(x) of degree r are all distinct and real on (−1, 1), given by

xj = − cos
[
(2j− 1)π

2r + 1

]
, j = 1, 2, . . . , r. (9)
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In this work, our goal is to employ the APSK on the unit interval [0, 1]. Thus, the
shifted airfoil polynomials are defined by the change in variable x = 2z− 1, as follows.

Definition 2. Let A?
r (z) represent the shifted airfoil polynomials on [0, 1] of degree r. It is defined

via the following relation:

A?
r (z) = Ar(2z− 1), z ∈ [0, 1]. (10)

By using the aforesaid transformation in (8), we derive the following explicit form:

A?
r (z) =

r

∑
`=0

(−1)`
(

2r + 1
2`+ 1

)
(1− z)` zr−`, r ∈ N0. (11)

In accordance with (7), one can obtain a similar orthogonality relation for the shifted
APSK {A?

r (z)}∞
r=0. It is straightforward to show that the related weight function is

ω?(z) =
√

1−z
z for z ∈ (0, 1). Thus, we obtain

∫ 1

0
A?

r (z)A?
s (z)ω?(z) dz =

π

2
δrs, (12)

where δrs is the well-known Kronecker delta function. We next specify the locations of roots
related to shifted APSK. The proof of the next result is straightforward using the relation (9)
and Definition 2.

Lemma 1. The zeros of the shifted airfoil polynomials A?
r (z) are within (0,1) and given by

zj =
1
2
(
1 + xj

)
, j = 1, 2, . . . , r, (13)

where xj are given in (9). These points will be used as the collocation points in the sequel.

Finally, we obtain a modified version of explicit form (11) as a powers of z. To this end,
we first employ the following binomial expansion:

(1− z)` =
`

∑
i=0

(−1)`−i
(
`

i

)
z`−i.

After substituting the forgoing relation into (11) followed by some manipulations, we
obtain the following representation form for the shifted airfoil polynomials:

A?
r (z) =

r

∑
`=0

c(r, `) z`, r ∈ N0, (14)

where

c(r, `) :=
`

∑
i=r−`

(−1)2i−r+`

(
2r + 1
2i + 1

)(
i

r− `

)
.

3.2. Convergent and Error Analysis

One of the primary aims of this work is to analyze the convergence properties of the
shifted APSK rigorously. First, note that a function κ(z) ∈ L2,?([0, 1]) can be stated as a
linear of combination of SAPSK. Thus, we can write

κ(z) =
∞

∑
r=0

δrA?
r (z), z ∈ [0, 1]. (15)



Fractal Fract. 2023, 7, 94 6 of 22

In accordance with the orthogonality relation (12), the unknown coefficients δr are
obtained in the closed-form as

δr :=
2
π

∫ 1

0
A?

r (z) κ(z)ω?(z) dz, r = 1, 2, . . . . (16)

The following result is used to prove that the expansion series solution (15) is uniformly
convergent. For this purpose, we first estimate the coefficients δr in (15). Thus, we have

Theorem 1. Let a function κ ∈ L2,?([0, 1]) ∩ C(2)([0, 1]) be expressed as (15) and M2 :=
maxz∈[0,1] |κ′′(z)|. Then, the following upper bound for δr in (16) is obtained

|δr| < c1 r−4, r > 1, (17)

where c1 = 4
π M2.

Proof. We proceed by using the substitution z = 1
2 + 1

2 cos ψ =: h(ψ) in (16) to arrive at

δr =
2
π

∫ π

0
κ(h(ψ)) sin[(r +

1
2
)ψ] sin

ψ

2
dψ =

1
π

∫ π

0
κ(h(ψ))

{
cos[rψ]− cos[(r + 1)ψ]

}
dψ. (18)

By employing the integration by parts on (18) twice, we obtain

δr =
1

8π

∫ π

0
κ′′(h(ψ))ωr(ψ) sin(ψ) dψ, (19)

where

ωr(ψ) :=
1
r

(
sin((r− 1)ψ)

r− 1
− sin((r + 1)ψ)

r + 1

)
− 1

r + 1

(
sin(rψ)

r
− sin((r + 2)ψ)

r + 2

)
.

By our assumption, we know that the second derivative is bounded byM2. Addition-
ally, we always have that | sin(ψ)| ≤ 1. Thus, we conclude that

|δr| ≤
M2

8π

∣∣∣∣∫ π

0
ωr(ψ) dψ

∣∣∣∣. (20)

Our task is now to estimate the integral term in (20). We apply the change of variables
p = sψ, for s = r, r± 1, r + 2 to obtain

∫ π

0
ωr(ψ) dψ =

1− (−1)r−1

(r− 1)2r
+

(−1)r+1 − 1
r(r + 1)2 +

(−1)r − 1
r2(r + 1)

+
1− (−1)r+2

(r + 1)(r + 2)2 .

By an easy calculation, one shows that for each value of r > 1, two terms on the
right-hand side are zero. Using these facts, we obtain for r > 1

∫ π

0
ωr(ψ) dψ =


2

(r+1)(r+2)2 +
−2

r2(r+1) =
−8

r2(r+2)2 , if r odd,
2

(r−1)2r +
−2

r(r+1)2 = 8
(r−1)2(r+1)2 , if r even.

With the aid of simple inequalities r + 1 < r + 2 and r − 1 < r, we immediately
conclude that ∣∣∣∣∫ π

0
ωr(ψ) dψ

∣∣∣∣ ≤ 8
(r− 1)2(r + 1)2 .

Now, by using the inequality r− 1 ≥ r
2 , which is valid for all r ≥ 2, we obtain∣∣∣∣∫ π

0
ωr(ψ) dψ

∣∣∣∣ < 32
r4 . (21)
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By placing (21) into (20), we complete the desired result (17).

We practically consider a cut series solution to approximate κ(z) instead of the infinite
series solution given in (15). If (15) is truncated up to its first (R + 1) term, then it may be
written as

κ(z) ≈ κR(z) =
R

∑
r=0

δrA?
r (z). (22)

Let κR and κR+1 be two consecutive approximations of κ(z). By eR, we denote the
difference between these two expansion series, given by

eR(z) := κR+1(z)− κR(z). (23)

Moreover, by ‖g‖2,? we present the weighted L2,? norm on [0, 1] with regard to weight
function ω?(z). In the weighted L2 norm, an upper bound for the error eR is obtained in
next Theorem.

Theorem 2. Let suppose that the assumptions of Theorem 1 are valid. Then, the following error
estimate holds:

‖eR(z)‖2,? < c2 R−4, c2 :=
√

π

2
c1 =

√
8
π
M2.

Here, the constants c1,M2 are given in (17).

Proof. On account of definition of error (23) and using (22), we have

‖eR(z)‖2,? = ‖κR+1(z)− κR(z)‖2,?

=
∥∥∥ R+1

∑
r=0

δrA?
r (z)−

R

∑
r=0

δrA?
r (z)

∥∥∥
2,?

= ‖δR+1A?
R+1(z)‖2,?

= |δR+1| ‖A?
R+1(z)‖2,?

With the help of orthogonality condition (12) and the result of Theorem 1, we have

‖eR(z)‖2,? = |δR+1|
√

π

2

< c1(R + 1)−4
√

π

2

< c1

√
π

2
R−4.

Our next goal is to find an upper bound for (global) error between the infinite series
form in (15) for κ(z) and its truncated series solution κR(z) in (22). Therefore, we define

ER(z) = κ(z)− κR(z). (24)

The first result is devoted to the weighted L2,?([0, 1]) norm given next.

Theorem 3. Let suppose that the hypotheses of Theorem 1 hold. Then, the (global) error ER(z) in
the L2,?([0, 1]) norm satisfies

‖ER‖2,? < c3R−
7
2 , c3 :=

√
π

14
c1 =

√
8

7π
M2,

where the constantM2 is given in (17).
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Proof. By following (15) and (22), we obtain

‖ER‖2
2,? =

∥∥∥ ∞

∑
r=0

δrA?
r (z)−

R

∑
r=0

δrA?
r (z)

∥∥∥2

2,?
=
∥∥∥ ∞

∑
r=R+1

δrA?
r (z)

∥∥∥2

2,?
.

Now, we employ the orthogonality condition (12) to arrive at

‖ER‖2
2,? =

π

2

∞

∑
r=R+1

δ2
r .

It is now sufficient to employ the inequality (17), which was already proved in
Theorem 3. Applying it to the preceding relation, one obtains the following:

‖ER‖2
2,? ≤

π

2
c2

1

∞

∑
r=R+1

1
r8 . (25)

The direct application of the Integral Test from calculus gives us [41]

∞

∑
r=R+1

1
r8 ≤

∫ ∞

R

ds
s8 =

1
7R7 .

To obtain the desired result, we put the forgoing inequality into (25). The proof is
finished by taking the square root.

Still, we are interested in obtaining a bound for the global error (24) in the L∞ norm.
To pave the way, the next Lemma will be is first proved:

Lemma 2. The shifted APSK satisfies the following inequality (for all r ≥ 0)

|A?
r (z)| ≤ 2r + 1, ∀z ∈ [0, 1]. (26)

Proof. In order to prove the result, we first recall that airfoil polynomials of the second
kind (4) satisfies [38]

Ar(x) = Tr(x) + (1 + x)Ur−1(x), x ∈ [−1, 1].

where Tr(x) and Ur(x) represent the Chebyshev polynomials of the first and second kinds,
respectively. For these classical polynomials, the following relations hold [42]:

|Tr(x)| ≤ 1, and |Ur(x)| ≤ r + 1, ∀ |x| ≤ 1.

By changing variable x = 2z− 1 and then taking the absolute values, we conclude that

|A?
r (z)| ≤ |Tr(2z− 1)|+ |2z Ur−1(2z− 1)| ≤ 1 + 2(1)(r) = 1 + 2r, ∀z ∈ [0, 1],

which completes the proof.

Theorem 4. Let suppose that the assumptions of Theorem 1 are valid. Then, the (global) error
ER(z) = ∑∞

r=R+1 δrA?
r (z) in the L∞([0, 1]) norm satisfies

‖ER‖∞ < c4R−2, c4 :=
3
2

c1 =
6
π
M2, (27)

where the constantM2 is given in (17).
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Proof. By employing the inequality (26) obtained in Lemma (2), we have

|ER(z)| ≤
∞

∑
r=R+1

|δr| |A?
r (z)|

≤
∞

∑
r=R+1

(2r + 1)|δr| ≤
∞

∑
r=R+1

3r|δr|.

We now use the inequality (17) in Theorem 3 to obtain

|ER(z)| < 3c1

∞

∑
r=R+1

1
r3 .

Again, we utilize the Integral Test [41] for the last inequality to show that

∞

∑
r=R+1

1
r3 ≤

∫ ∞

R

ds
s3 =

1
2R2 .

To arrive at the desired inequality, the supermum is taken over elements of
z ∈ [0, 1].

4. The Hybrid QLM-SAPSK Procedure

Basically, one may apply the spectral collocation scheme based on the SAPSK to the
original nonlinear model (1) in a direct manner. However, the main shortcoming of this
approach is that we have to solve a non-linear system of equations and it is very time-
consuming as the number of SAPSK basis functions, R, is increased. In this respect, the
procedure of quasilinearization is adopted to transform the nonlinear EHD flow model (1)
into a family of linearized equations. Starting from a rough first approximation, the method
converges with quadratic order to the solution of the original problem (1).

In what follows, we describe the fundamental fact about the quasilinearization method
(QLM). Once the nonlinear EHD flow model problem (1) is transformed into a family of
linear problems, we employ the direct SMV matrix collocation procedure to each linearized
equation. Below, this combined technique is called QLM-SAPSK. For more detailed infor-
mation and a recent applications of QLM, we refer to [43–45].

Let us begin by reformulating the nonlinear EHD flow model (1) as

Lθ,λ[Φ](p) = F(p, Φ(p)), (28)

where the linear operator Lθ,λ and the nonlinear function F are defined as

Lθ,λ[Φ](p) := LCDθ
p Φ(p) +

1
p

LCDλ
p Φ(p), F(p, Φ(p)) := −H2

(
1− Φ(p)

1− δ Φ(p)

)
.

Assume that Φ0(p) is the rough first approximation to Φ(p). Then, the process of
QLM for (28) can be stated as

Lθ,λ[Φn+1](p) ≈ F(p, Φn(p)) + FΦ(p, Φn(p))
(

Φn+1(p)−Φn(p)
)

, n = 0, 1, . . . .

Note that, along with former equations, we have the same initial conditions as in (1).

Φ′n+1(0) = 0, Φn+1(1) = 0. (29)
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Performing some calculations, the applied QLM gives rise to the following representa-
tion for the model (28) as

Lθ,λ[Φn+1](p)− H2

(1− δ Φn(p))2 Φn+1(p) = −H2

(
1 +

δ Φ2
n(z)

(1− δ Φn(p))2

)
, n = 0, 1, . . . . (30)

To remove the denominator, let us multiply both sides of (30) by (1− δ Φn(p))2 to
arrive at(

1− δΦn(p)
)2Lθ,λ[Φn+1](p)−H2 Φn+1(p) = −H2

(
1 + δ(1 + δ)Φ2

n(p)− 2δΦn(p)
)

. (31)

Finally, we introduce the following notations

κ3,n(p) :=
(
1− δΦn(p)

)2, κ2,n(p) :=
κ3,n(p)

p
, κ1,n(p) := −H2,

νn(p) := −H2
(

1 + δ(1 + δ)Φ2
n(p)− 2δΦn(p)

)
, n = 0, 1, . . . .

to write the former Equation (31) in a convenient form as

κ3,n(p) LCDθ
p Φn+1(p) + κ2,n(p) LCDλ

p Φn+1(p) + κ1,n(p)Φn+1(p) = νn(p), n = 0, 1, . . . . (32)

We now are in a position to find the solution of the linearized equations (32) through a
matrix collocation procedure relied on the SAPSK. In view of (22), we let the approximate
solution of (32) be expressed as a cut series with (R + 1) bases as

Φn+1(p) ≈ χ
(n+1)
R (p) =

R

∑
r=0

δ
(n)
r A?

r (p), (33)

for n = 0, 1, . . .. We then put the unknown coefficients δ
(n)
r in a vector form as

∆∆∆(n)
R =

[
δ
(n)
0 δ

(n)
1 . . . δ

(n)
R

]T
.

By forming the vector of SAPSK

AAAR = [A?
0(p) A?

1(p) . . . A?
R(p)]T ,

one can rewrite the approximate solution χ
(n+1)
R (p) in (33) as compact form as

χ
(n+1)
R (p) = AAAR ∆∆∆(n)

R . (34)

The following result represents AAAR as a product of a vector by a constant matrix. The
proof of this Lemma is straightforward in view of relation (11) in Definition (2).

Lemma 3. The vector of SAPSK can be rewritten as

AAAR(p) = PPPR(p)MMMR, (35)

where PPPR(p) =
[
1 p p2 . . . pR] contains the powers of p, the structured matrix MMMR =

(mij)
R
i,j=0 is defined by (14), and its elements are given as

mij :=

{
0, i < j,
c(i, j), i ≥ j.
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One can obtain the following corollary by combining two relations (34) and (35)
immediately:

Corollary 1. The approximate solution χ
(n+1)
R (p) in (33) is reformulated as

χ
(n+1)
R (p) = PPPR(p)MMMR ∆∆∆(n)

R . (36)

Remark 1. When we have the fractional-order derivatives θ ∈ (1, 2] and λ ∈ (0, 1] in (1), it is
beneficial to use the generalized SAPSK (GSAPSK) by introducing the local parameter α > 0.
Thus, we obtain Aα

r (z) := A?
r (zα). This methodology have been successfully applied to some

other fractional model problems such as the Brusselator chemical model [26], and the Bratu and
Lane–Emden equations [46] by the authors. To be more precise, in our proposed algorithm, we need
the monomial vector PPPR(p) to be replaced by its generalization:

PPPR,α(p) :=
[
1 pα p2α . . . pRα

]
.

It should be emphasized that the matrix representation (36) is very useful especially
if one has to compute the higher-order derivatives of the unknown solutions. For this
purpose, we require a calculation the derivatives of the vector PPPR(p). In this work, we need
to compute the first derivative of the solution. Thus, we have the following:

Proposition 1. The integer-order derivative of χ
(n+1)
R (p) in (33) is computed as

d
dp

χ
(n+1)
R (p) = PPPR(p)DDDR MMMR ∆∆∆(n)

R , (37)

where the so-called differentiation matrix DDDR is a zero matrix except for entries di i+1 = i for
i = 0, 1, . . . , R.

Proof. We first differentiate (36) with regard to p to obtain

d
dp

χ
(n+1)
R (p) =

(
d

dp
PPPR(p)

)
MMMR ∆∆∆(n)

R .

Therefore, our task will be accomplished by just differentiating PPPR(p) once. An easy
calculation reveals that

d
dp

PPPR(p) = PPPR(p)DDDR.

After combining two former relations, we obtain the desired result.

In addition to the integer-order derivative of χ
(n+1)
R (p) in (34), one needs the fractional

derivatives of order θ and λ as they are in the original Equation (1). To this end, the
properties (2) and (3) are essential. Inspired by previous work [46] (Algorithm 1), a simple
algorithm can be utilized to compute the θ- and λ-derivatives of PPPR(p). The cost of this
algorithm is linear with respect to R. From now on, we let vector forms of these derivatives
be

PPPθ
R(p) := LCDθ

p PPPR(p), PPPλ
R(p) := LCDλ

p PPPR(p).

From these notations, we obtain the following results:

Proposition 2. The fractional-order derivatives of LCDγ
p χ

(n+1)
R (p) in (33) for γ = θ, λ are

calculated as
LCDγ

p χ
(n+1)
R (p) = PPPγ

R(p)MMMR ∆∆∆(n)
R . (38)
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We are now ready to substitute the SAPSK nodes (13) into the vector representation
forms of the unknowns and its derivatives. To do so, we use the roots of A?

R+1(p) labeled
as p0, p1, . . . , pR. By utilizing the following matrix forms:

PPP :=


PPPR(p0)
PPPR(p1)

...
PPPR(pR)

, PPPθ :=


PPPθ

R(p0)
PPPθ

R(p1)
...

PPPθ
R(pR)

, PPPλ :=


PPPλ

R(p0)
PPPλ

R(p1)
...

PPPλ
R(pR)

, (39)

we arrive at the following results:

Lemma 4. In the matrix formulation, the approximate solution χ
(n+1)
R (p) and its fractional γ-

derivatives LCDγ
p χ

(n+1)
R (p) for γ = θ, λ evaluated at the roots of SAPSK can be rewritten as

XXXn+1 = PPP MMMR ∆∆∆(n)
R ,

XXXγ
n+1 = PPPγ MMMR ∆∆∆(n)

R ,
(40)

where the vectors of PPP and PPPγ are already defined by (39) and

XXXn+1 :=


χ
(n+1)
R (p0)

χ
(n+1)
R (p1)

...
χ
(n+1)
R (pR)

, XXXγ
n+1 :=


LCDγ

p χ
(n+1)
R (p0)

LCDγ
p χ

(n+1)
R (p1)
...

LCDγ
p χ

(n+1)
R (pR)

. (41)

We now turn to the quasilinear model Equation (32) and place the SAPSK nodes into
it. In the matrix formats, we obtain the following representation based on the relations (41)
as

KKK3,n XXXθ
n+1 +KKK2,n XXXλ

n+1 +KKK1,n XXXn+1 = VVVn, (42)

where we have used the following notations

VVVn :=


νn(p0)
νn(p1)

...
νn(pR)

, KKK`,n :=


κ`,n(p0) 0 . . . 0

0 κ`,n(p1) . . . 0
...

...
. . .

...
0 0 . . . κ`,n(pR)

, ` = 1, 2, 3.

With the aid of relations (40), one arrives at the following fundamental matrix equation
at each iteration n as {

KKK3,n PPPθ +KKK2,n PPPλ +KKK1,n PPP
}

∆∆∆(n)
R = VVVn. (43)

This can be equivalently rephrased as follows:

YYYn ∆∆∆(n)
R = VVVn, or [YYYn;VVVn], YYYn := KKK3,n PPPθ +KKK2,n PPPλ +KKK1,n PPP, n = 0, 1, . . . . (44)

One still requires the incorporation and implementation of the boundary condi-
tions (29) into the matrix format and then it should be entered into the fundamental
matrix Equation (44). We begin by considering the first boundary condition Φ′n+1(0) = 0.
To this end, we use the relation (37) followed by tending p to zero. The resulting matrix
form is

YYY0
n ∆∆∆(n)

R = 0, YYY0
n := PPPR(0)DDDR MMMR, or [YYY0

n; 0].
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For the endpoint boundary condition and in accordance to Corollary 1, it is sufficient
to use (36). By approaching p→ 1, we obtain the matrix format

YYY1
n ∆∆∆(n)

R = 0, YYY1
n := PPPR(1)MMMR, or [YYY1

n; 0].

By utilizing these two row matrices [YYY0
n; 0] and [YYY1

n; 0], we can replace two rows of the
matrix equation [YYYn;VVVn] in (44). Let us used the resulting modified system denoted by

[ŶYYn; V̂VVn], n = 0, 1, . . . . (45)

By solving (45), for r = 0, 1, . . . , R and n = 1, 2, . . . in (33), we obtain the unknown
coefficients δ

(n)
r . It is remarked that, to attain the desired level of accuracy, usually taking

n = 5 is sufficient to solve the system (45) via the QLM-SAPSK technique.

Testing Accuracy via REFs

Typically, closed-form solutions to (1) are practically intractable in particular when we
have the fractional orders 1 < θ ≤ 2 and 0 < λ ≤ 1. In these cases, usually the technique of
residual error (REFs) will help us to compute the accurateness of the present QLM-SAPSK
strategy. The key of this technique is that the obtained approximate solution in the series
form (33) is substituted into (1) to arrive at the following REFs

R(n)
R (p) :=

∣∣∣LCDθ
p χ

(n)
R (p) +

1
p

LCDλ
p χ

(n)
R (p) +H2

(
1− χ

(n)
R (p)

1− δ χ
(n)
R (p)

)∣∣∣ ∼= 0,

for n = 1, 2, . . ., or we write the REFs more conveniently as

R(n)
R (p) :=

∣∣∣(1− δ χ
(n)
R (p)

)[
p LCDθ

p χ
(n)
R (p) + LCDλ

p χ
(n)
R (p)

]
+ pH2

(
1− (1 + δ)χ

(n)
R (p)

)∣∣∣ ∼= 0, (46)

which is obtained from the former one by multiplying it by p ·
(

1− δ χ
(n)
R (p)

)
. Next, we

calculate the maximum values of the residual error norm (for a fixed n) by defining

E∞ ≡ ER
∞ := max

p∈[0,1]
R(n)

R (p). (47)

To show the high-order accuracy of our method and in order to justify our theoretical
findings, the numerical order of convergence (ord∞

R ) is defined via the following relation:

ord∞
R :=

ln ER
∞ − ln E2R

∞
ln 2

. (48)

5. Experimental Results and Simulations

The aim would be to apply two proposed matrix algorithm based on the SAPSK to
the EHD flow model (1). Numerical simulations and MATLAB plots have been sketched
to describe the main outcomes derived in this manuscript. Different values of parameters
(θ, λ,H2, δ) are considered to show the performance of the QLM-SAPSK technique. The
platform of simulations is Matlab software version 2021a on a personal laptop computer
with a 2.2 GHz Intel Core i7-10870H processor and 16 GB of RAM.

The QLM parameter n = 5 is chosen in the computational results below. In the
QLM-SAPSK, we use the initial approximation Φ0(p) = 0 or we take it as Φ0(p) = 1

1+δ .
The latter case is usually employed when we have a largeH2. Some comparisons are also
performed with the available existing numerical models, i.e., the Lucas spectral collocation
method (LSCM) [4], the Galerkin method (GM) based on the Lucas polynomials [4], the
least square method (LSM) [11], the cubic B-spline (CBS) function of six order [16], the
Haar wavelet (HW) [18] and the discrete Adomian decomposition scheme (DADS) [14], the
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generalized differential transform method (GDTM) [2], and the reproducing kernel Hilbert
space method (RKHSM) [1,2].

Let us consider the integer-order cases. Thus, we set the following parameters in the
model EHD flow model (1)

θ = 2, λ = 1, δ = 1, H2 = 1.

Using the QLM-SAPSK collocation matrix technique with R = 7, one obtains

χ
(5)
7 (p) = −0.0002357 p7 + 0.00170448 p6 − 0.000712281 p5 − 0.0178739 p4 − 0.000166102 p3

− 0.186131 p2 + 0.203415.

The above approximation is plotted in Figure 1. To show that our proposed approach
converges numerically and to justify the theoretical findings, we also use larger values of
R = 14, 21. The results of REFs associated to these number of basses are shown in Figure 1,
right panel.
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Figure 1. Graphics of numerical solution obtained via QLM-SAPSK approach (left) and related REFs
(right) using δ,H2 = 1, R = 7, and with integer-orders θ = 2, λ = 1.

We also validate our numerical results obtained by the above parameters by comparing
the solutions with the outputs of well-established computational procedures, as shown
in Table 1. These approaches are the LSCM [4] with Nc = 7, the GM based on the Lucas
polynomials [4] with NG = 5, and the LSM [11] with N = 10. Our presented results are
obtained by using R = 7 and R = 14. The resulting REFs are further displayed in this table
for justification.

Table 1. A comparison of numerical outcomes/REFs in QLM-SAPSK with θ = 2, λ = 1, δ,H2 = 1,
R = 7, 14, and various p ∈ [0, 1].

QLM-SAPSK LSM [11] GM [4] LSCM [4]

p χ
(5)
7 (p) R(5)

7 (p) χ
(5)
14 (p) R(5)

14 (p) N = 10 NG = 5 Nc = 7

0.0 0.20341502 0.0000× 10−0 0.203415795896659 0.0000× 10−00 0.20343243 0.20343574 0.20342786
0.1 0.20155175 1.8830× 10−6 0.201552363573421 2.3386× 10−13 0.20156532 0.20157001 0.20155941
0.2 0.19593971 1.5963× 10−8 0.195940129562329 2.9106× 10−14 0.19594756 0.19594122 0.19593886
0.3 0.18651339 3.0982× 10−7 0.186513678715622 5.3721× 10−14 0.18651760 0.18651537 0.18654911
0.4 0.17316508 1.5520× 10−7 0.173165302575071 4.7990× 10−14 0.17316801 0.17317053 0.17316782
0.5 0.15574680 1.5535× 10−7 0.155746961727708 4.0416× 10−14 0.15574958 0.15574892 0.15573556
0.6 0.13407288 1.6136× 10−7 0.134073001192206 3.6251× 10−14 0.13407547 0.13407591 0.13408008
0.7 0.10792349 8.2611× 10−8 0.107923574051674 3.9266× 10−14 0.10792535 0.10792460 0.10792695
0.8 0.07704865 2.1210× 10−7 0.077048701459288 5.2063× 10−14 0.07704953 0.07704912 0.07705274
0.9 0.04117284 1.9348× 10−7 0.041172865563138 3.4394× 10−14 0.04117309 0.04117301 0.04118162
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Using the above parameters, we also investigate the behavior of the achieved errors
E∞ in the QLM-SAPSK and compute the associated order of convergence, ord∞

R , in Table 2.
In this respect, we utilize R = 2, 4, 8, 16, and exploit the relation (48). For each R, the
required CPU times (in seconds) are also tabulated in Table 2. It should be remarked that
the spent CPU time is for solving the last modified system of equations [ŶYYn; V̂VVn] in (45).
For comparison, the results of maximum absolute errors (MAE) together with the related
rate of convergence (ROC) and the needed CPU time obtained via the cubic B-spline (CBS)
function of six order [16] are reported in Table 2. By looking at Table 2, one can clearly
observe that our proposed QLM-SAPSK with a lower computational complexity produces
more accurate results in comparison with the CBS approach.

Table 2. The outcomes of E∞ error norms, the related ord∞
R , and the spent CPU time with δ,H2 = 1,

θ = 2, λ = 1, and different R.

QLM-SAPSK CBS [16]

R E∞ ord∞
R CPU(s) n MAE ROC CPU(s)

2 5.4729× 10−1 − 0.49927 16 1.7062× 10−11 − 0.1745
4 8.4250× 10−3 6.0215 0.62609 32 3.5011× 10−13 5.6068 0.4577
8 1.9782× 10−7 15.378 0.89085 64 5.8009× 10−15 5.9154 1.0182

16 9.6751× 10−14 20.963 1.47224 128 9.1434× 10−17 5.9874 2.8513

In addition to the results presented at Table 2, we also perform a comparison between
our outcomes and the results of the spectral collocation procedures based on the classical
polynomials such as Jacobi, Legendre, and Chebyshev reported in [24] with N = 10 bases.
The results are shown in Table 3 in which we used a fixed δ = 0.5, R = 10, andH2 varies
as 0.5, 1, 2, 4. Moreover, the outcomes of two other well-established methods, i.e., the
Haar wavelet (HW) [18] and the discrete Adomian decomposition scheme (DADS) [14]
are further tabulated in Table 3 for comparison. It can be evidently observed that the
QLM-SAPSK produces more accurate results than other available approaches.

Figure 2, left plot, shows graphical representations of numerical solutions associated
with the results reported in Table 3. Note that the numerical solution with H2 = 10 is
also depicted in this figure. To see the impact of the nonlinearity parameter δ on the
numerical solutions, we also consider δ = 2, which is greater than unity. The right picture
on Figure 2 presents the obtained results with various parameterH2 = 0.5, 1, 2, 4, 10, but
with δ = 2. One should emphasize that for plotting the later figure, we have used the initial
approximation 1/(1 + δ) rather than the zero function. For the larger values of H2, this
initial guess is more effective and gives rise to a higher accuracy.
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Figure 2. Graphics of numerical solution obtained via QLM-SAPSK approach with δ = 0.5 (left) and
δ = 2 (right) using R = 10, variousH2 = 0.5, 1, 2, 4, 10, and with integer-orders θ = 2, λ = 1.
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Table 3. A comparison of E∞ error norms utilizing R = 10, δ = 0.5, θ = 2, λ = 1, and differentH2.

QLM-SAPSK Jacobi [24] Legendre [24] Chebyshev [24] HW [18] DADS [14]

H2 R = 10 N = 10 N = 10 N = 10 K = 16 N, n = 5

0.5 2.2246× 10−11 2.4881× 10−9 1.3623× 10−10 6.4622× 10−10 − 1.6287× 10−8

1.0 9.8648× 10−10 6.0006× 10−9 3.1226× 10−9 3.3842× 10−9 4.189× 10−5 9.4029× 10−7

2.0 3.4171× 10−8 3.3174× 10−7 1.7631× 10−7 1.1158× 10−7 2.421× 10−7 4.5114× 10−5

4.0 9.9502× 10−7 8.2384× 10−6 4.5498× 10−6 2.9458× 10−6 6.733× 10−6 1.4724× 10−5

Next, we fix (a large value of) H2 and vary the parameter δ = 0.1, 0.3, 0.6, 1, 2 to
investigate the influence of the nonlinearity on the computations. Firstly, let us takeH2 = 2.
Figure 3 shows the results of approximations in accordance with these values of δ. The
achieved REFs are further shown on the same figure and on the right part. Obviously, the
magnitude of the REFs is an increasing function when we increase the value of δ as the
strength of nonlinearity. In the other words, the quality of the approximation deteriorates
as one increases δ. The same situation is also happened if one increases the value of the
Hartmann electric number H2. In these cases, the remedy is to increase the number of
basis functions accordingly. ForH2 = 25 andH2 = 100, we plot the approximate solutions
related to different values of δ in Figure 4. Here, we utilized R = 20 in the computations.
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Figure 3. Graphics of numerical solution obtained via the QLM-SAPSK approach withH2 = 2 (left)
and the associated REFs (right) using R = 10, various δ = 0.1, 0.3, 0.6, 1, 2, and with integer-orders
θ = 2, λ = 1.
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Figure 4. Graphics of numerical solution obtained via QLM-SAPSK approach with H2 = 25 (left)
andH2 = 100 (right) using R = 20, various δ = 0.1, 0.3, 0.6, 1, 2, and with integer-orders θ = 2, λ = 1.

Note that it was shown by Paullet [5] that all approximate solutions are bounded by
1

δ+1 . This fact can be seen from the plotted Figures 2–4. For more discussions on using
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different large values of the nonlinearity parameters δ andH2 in the case of integer-order
derivatives, we refer to a recent work [20]. Next, we consider the fractional-order cases.

The Fractional-Order Cases

In the second part, our concentration is based on using the fractional-order derivatives
θ and λ. The aim is to examine the influences of utilizing the simultaneous employment of
nonlinearity parameters δ,H2 and θ, λ on the computed approximate solutions. We show
these effects through tables and figures. We first pay attention to the following parameters
for the multi-order model (1), as previously considered by [1,23]

θ = 1.9, λ = 0.9, δ = 0.5, H2 = 1.

We first make a comparison between three different choice of the local parameter α
as λ, 1, θ. By taking R = 10, the numerical solutions using these parameters and via the
QLM-SAPSK/GSAPSK are presented in Figure 5, left picture. Clearly, a good alignment
between two approximate solutions obtained by α = 1 and α = θ is observed. To choose
which α gives us a better resolution, we plot the associated REFs in the same figure and
on the right panel. One obviously notices that applying α = θ yields a smallest absolute
values of residual error compared with α = 1 and α = λ. On the other hand, by increasing
the number of basis functions R, we gain more accurate results.
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Figure 5. Graphics of numerical solutions obtained via the QLM-GSAPSK technique (left) and related
REFs (right) with R = 10, α = 1, λ, θ, δ = 0.5,H2 = 1, and with fractional-orders θ = 1.9, λ = 0.9.

Therefore, in the next experimental results, we use R = 20 in the QLM-GSAPSK
approach. We fix δ = 0.5 and employ various H2 = 1, 2, 5, 10 in the computations. The
results of approximate solutions with α = θ together with the achieved REFs for the
aforesaid parameters are shown in Figure 6. It can be obviously observed that by increasing
R, we obtain the desired level of accuracy. In terms of the achieved E∞ error norm, our
results presented in Figure 6 can be compared with those graphical plots shown by the
generalized differential transform method (GDTM) with M = 140 terms in [2] (see Figure 3).
The maximum absolute errors achieved by the GDTM are 1× 10−13, 4× 10−11, 1.2× 10−7,
5× 10−5 for using H2 = 1, 2, 5, 10, respectively. It is evident that our results with R = 20
are more accurate than those obtained via GDTM with M = 140 terms.

Some precise comparisons are also performed in Table 4 for the fractional-orders
θ = 1.9 and λ = 0.9. Here, we utilize R = 10, δ = 0.5, and H2 = 2. The outcomes of
the previously published method, namely the reproducing kernel Hilbert space method
(RKHSM) [1,2] are reported in this table for validation. As illustrated before, using the
parameter α as the fractional order θ gives rise to a better accuracy.
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Figure 6. Graphics of numerical solutions obtained via the QLM-GSAPSK technique (left) and related
REFs (right) with R = 20, α = θ, δ = 0.5, and with fractional-orders θ = 1.9, λ = 0.9.

Table 4. A comparison of numerical outcomes/REFs in QLM-GSAPSK with θ = 1.9, λ = 0.9,
δ = 0.5,H2 = 2, R = 10, α = 1, 1.9, and various p ∈ [0, 1].

QLM-SAPSK

p α = 1.9 REFs α = 1 REFs RKHSM [1] RKHSM [23]

0.0 0.368955980597229 0.0000× 10−00 0.3687331653 0.0000× 10−0 0.381236310 0.3825201644
0.1 0.365172617552478 2.6995× 10−10 0.3650687781 5.7028× 10−5 0.374950080 0.3754454339
0.2 0.354724901744587 1.9371× 10−10 0.3546658303 9.9371× 10−6 0.359968470 0.3600500656
0.3 0.337827276925944 1.5404× 10−11 0.3377883382 1.0603× 10−5 0.342105510 0.3434211029
0.4 0.314292044298967 1.2527× 10−11 0.3142653985 9.2000× 10−6 0.315723980 0.3158370163
0.5 0.283712502798752 7.4387× 10−12 0.2836938281 4.7247× 10−6 0.284128540 0.2874089253
0.6 0.245509789495880 4.2012× 10−12 0.2454968764 2.1833× 10−7 0.244546771 0.2475168041
0.7 0.198955842096497 2.7814× 10−12 0.1989472632 3.2885× 10−6 0.197105564 0.2007161568
0.8 0.143189521840292 2.6542× 10−12 0.1431843235 4.3863× 10−6 0.141053509 0.1443651864
0.9 0.077231456051811 1.7987× 10−12 0.0772290694 4.8701× 10−6 0.075613972 0.0777826865

It should be emphasized that only one to two digits agreements between our results,
and the outcomes of the RKHSM are seen in Table 4. Since the authors in [1,23] did not
report the related errors, it is not clear how many digits of accuracy they have. To show that
our method delivers more accurate results compared to the previous RKHSM, we consider
the case α = 1.9 and use different R = 5, 10, 15. The numerical results are tabulated in
Table 5. It should be remarked that the results obtained using R = 15 and R = 20 are
the same up to 16 digits of accuracy. By looking at Table 5, we infer that by increasing R,
the number of repeating decimal digits is increased, which indicates that the proposed
QLM-GSAPSK technique is convergent.

Table 5. A comparison of numerical outcomes/REFs in QLM-GSAPSK with θ = 1.9, λ = 0.9,
δ = 0.5,H2 = 2, R = 5, 10, 15, 20, α = 1.9, and various p ∈ [0, 1].

p R = 5 R = 10 R = 15 R = 20

0.0 0.368913634324475 0.368955980597229 0.368955980703425 0.368955980703425
0.1 0.365132468934994 0.365172617552478 0.365172617645275 0.365172617645275
0.2 0.354690183822644 0.354724901744587 0.354724901811129 0.354724901811129
0.3 0.337799646966645 0.337827276925944 0.337827276969954 0.337827276969954
0.4 0.314271598052510 0.314292044298967 0.314292044328889 0.314292044328889
0.5 0.283698182319713 0.283712502798752 0.283712502819713 0.283712502819713
0.6 0.245500072203232 0.245509789495880 0.245509789510364 0.245509789510364
0.7 0.198949413418262 0.198955842096497 0.198955842106158 0.198955842106158
0.8 0.143185607077043 0.143189521840292 0.143189521846127 0.143189521846127
0.9 0.077229663096623 0.077231456051811 0.077231456054508 0.077231456054508
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Next, we consider the fractional-order parameters as [2]

θ = 1.5, λ = 0.5.

By using R = 10, δ = 0.5, and variousH2 = 1, 2, 5, 10, the results of approximations
are plotted in Figure 7. As expected, by increasing the nonlinear Hartmann parameterH2,
the achieved errors increase. The L∞ error norms (47) along with the associated order of
convergences computed via (48) are also tabulated in Table 6 for these values ofH2. The
high-order accuracy of the proposed QLM-GSAPSK technique applied to the model (1) is
evidently seen.
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Figure 7. Graphics of numerical solutions obtained via the QLM-GSAPSK technique (left) and related
REFs (right) with R = 10, α = θ, δ = 0.5, and with fractional-orders θ = 1.5, λ = 0.5.

Table 6. The outcomes of E∞ error norms and the related ord∞
R with δ = 0.5,H2 = 1, 2, 5, 10,

θ = 1.5, λ = 0.5, α = θ, and different R.

H2 = 1 H2 = 2 H2 = 5 H2 = 10

R E∞ ord∞
R E∞ ord∞

R E∞ ord∞
R E∞ ord∞

R

2 8.2045× 10−01 − 3.1534× 10+00 − 1.7334× 10+01 − 5.6053× 10+01 −
4 2.6454× 10−03 8.2768 3.4686× 10−02 6.5064 3.0398× 10−01 5.8335 3.6669× 10+00 3.9345
8 2.5453× 10−08 16.665 7.9286× 10−06 12.095 1.5185× 10−03 7.6452 7.4638× 10−02 5.6181
16 8.3563× 10−16 24.860 1.9781× 10−13 25.256 2.7494× 10−08 15.753 5.5263× 10−06 13.721

Similarly, we next examine the influence of the nonlinearity term δ for a fixedH2 in
the case of fractional-order derivatives θ = 1.5, λ = 0.5. In this respect, we fix H2 = 0.5
and vary δ = 0.5, 1, 2, 5. The outcomes of error norms E∞ together with related ord∞

R are
displayed in Table 7. Clearly, the degree of achieved accuracy decreases if one increases the
factor of nonlinearity in the model under consideration.

Table 7. The outcomes of E∞ error norms and the related ord∞
R with H2 = 0.5, δ = 0.5, 1, 2, 5,

θ = 1.5, λ = 0.5, α = θ, and different R.

δ = 0.5 δ = 1 δ = 2 δ = 5

R E∞ ord∞
R E∞ ord∞

R E∞ ord∞
R E∞ ord∞

R

2 2.0904× 10−01 − 2.1260× 10−01 − 2.2009× 10−01 − 2.4592× 10−01 −
4 1.7041× 10−04 10.2606 1.3556× 10−04 10.6150 1.0364× 10−03 7.7304 1.8625× 10−02 3.7229
8 1.8749× 10−11 23.1157 3.4860× 10−09 15.2470 1.3152× 10−07 12.944 1.8081× 10−04 6.6866

16 2.7613× 10−16 16.0511 2.7841× 10−16 23.5779 1.7266× 10−15 26.183 7.9406× 10−09 14.475

In the ultimate stage, our aim is to investigate the impact of utilizing diverse values
of the factional-order derivatives θ and λ while two other nonlinearity parameters are
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assumed to be fixed. To this end, we take different pair of orders (θ, λ) as (1.2, 0.6),
(1.4, 0.7), (1.6, 0.8), and (1.8, 0.9) and the integer-order (2, 1) as a reference. The numerical
results using H2 = 0.5 and a relatively large δ = 4 are presented in Figure 8. To use
H2 = 50 and δ = 0.5, we utilize R = 30 in the last experiment. Figure 9 presents the results
for different values of (θ, λ). In both figures, the associated REFs are also depicted.
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Figure 8. Graphics of numerical solutions obtained via the QLM-GSAPSK technique (left) and related
REFs (right) with R = 10, α = θ, δ = 4,H2 = 0.5, and various fractional-orders θ, λ.
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Figure 9. Graphics of numerical solutions obtained via the QLM-GSAPSK technique (left) and related
REFs (right) with R = 30, α = θ, δ = 0.5,H2 = 50, and various fractional-orders θ, λ.

6. Conclusions

Generalized shifted airfoil polynomials of the second kind (GSAPSK) along with the
quasilinearization method (QLM) are utilized to acquire the approximate solutions to a
class of fractional-order differential equations with singularity and strong nonlinearity per-
taining to electrohydrodynamic (EHD) flow in a circular cylindrical conduit. The fractional
operators are considered as the Liouville–Caputo derivative. Besides two fractional orders
θ, λ, the solutions of the EHD flow model depend strongly on the nonlinearity parameters
H2 and δ and, together with the existence of singularities, make handling the underlying
model numerically difficult. From a practical point of view, we remove the intrinsic nonlin-
earity by employing the technique of QLM, which leads to a family of linearized singular
equations of fractional order. Then, the GSAPSK collocation matrix technique solved this
family using diverse small as well as large model parameters θ, λ,H2, and δ. In particular,
we have shown that the SAPSK expansion series is convergent in the L∞ and weighted L2
norms. Numerical simulations by employing different model parameters are given to show
the utility and applicability of the presented QLM-GSAPSK. For validation, our results
were compared with those obtained via recently developed analytical and computational
techniques in the literature to validate our proposed technique. Overall, the numerical
outcomes justify the high accuracy and efficiency of the QLM-GSAPSK method in solving
strongly nonlinear EHD flow equations with multi-order derivatives. Furthermore, the
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achieved numerical orders of convergence indicate that the proposed has an exponential
rate of convergence.
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