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Dynamic Systems Endowed with 1. Background and Building Systems

Impulsive Effects on Time Scales. Fractional differential equations (FDEs) and partial differential equations have been
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significantly facilitated by FDEs [1,2].

From several investigations, we can deduce that FDEs have a far higher prominence
than integer-order derivatives. As a result, fractional calculus attracted a lot of interest and
attention from experts and scholars. Additionally, it improved the sketch of the hereditary
characteristics of diverse materials and processes. As a result, numerous monographs, and
research articles have been published in this area [3-10].
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There are many phenomena in the real world that are exposed to short-term external
influences as they evolve. These external effects durations are incredibly short compared
to the overall period of the phenomenon being witnessed. Therefore, it is reasonable to
assume that these outside forces are genuine impulses. Now to investigate these abrupt
changes, impulsive differential equations play a key role in modeling physical real-world
problems. Such type of impulsive differential equations has argued concern to different
applications, including biological systems such as heartbeat, blood flow, and impulse
rate. Also, it has many applications in electrodynamics, population dynamics, viscoelastic,
radio physics, metallurgy, mathematical economy, electric technology, theoretical physics,
pharmacokinetics, control theory, and chemical engineering technology [17-23].

The core idea in mathematical control theory, controllability, was introduced by
Kalman in 1960. In general, controllability refers to the ability to use a proper control
function to steer the state of a control dynamical equation from an arbitrary initial state
to the desired terminal state. The controllability results have been studied by many au-
thors [24,25]. Additionally, the study of controllability findings on temporal scales is a
recent field with limited evidence [26,27]. The existence, controllability, and Ulam type
stability of the impulsive fractional dynamical system with respect to a mixed structure
have specifically been investigated in a few studies.

Based on the above contributions, in this manuscript, we consider a new class of
dynamic systems with mixed integral fractional delays and impulsive effects on time scales.
Also, fixed-point approaches are used to demonstrate the existence and originality of
solutions to the systems under discussion. Moreover, Ulam-Hyers stability is also proven
for the aforementioned mixed impulsive systems, as well as a generalized version of it.
Furthermore, the controllability of the aforementioned systems was then examined. Finally,
an illustrative example is used to explore the results from the earlier parts.

Now, we investigate the following mixed integral fractional dynamic systems on the
time scale 7, which are generalizations of the results of [28]:

¢TDPY(Y) = B(1919)1/(19) + Z(t‘/’,vw),é‘(ﬁ)g
+0 (ﬁ,v(ﬁ),é(ﬂ),f’Z1(t9,SIV(S),C(S))As,fZz(l?/SM(S),C(S))AS)f

% %

C,Tng(ﬂ) (19)6(19) +Z(l9 6(19>/V<l9))

+0 <l9 g(9),v fZ1 s, C(S)/V(S))AS,ZIZz(ﬁfsfé(s)rv(s))ﬁs>/ W
det = T\{l91,l92,191 - On}, p €(0,1), v(do) =10, £(0) = Go,
v(8F) —v(87) = Or(v(8,),8(8;)) + Dr(8;,v(8;),6(8,)), r=1,2,...,m,
(97) = ¢(8) = On(E(8, ), v(8,)) + Dr(d,,8(8 ), v(d ), r=1,2,...,m,
and
“TDfv(8) = B(?® )1;/(19) +Z(8,v(9), 6(19))191
+E (19 v(9),¢ fZ (8,s,v(s), & ))As,sz(s,s,v(s),g(s))As)
T Dog(9) = §%<ﬂ>+zw (8), (0 ))ﬂj
+E| 9,6(8),v le(19 s,8(s),v ))As,é Z5(8,5,8(s),v(s))As |, )
CAS (Suﬂz+1gﬁT i=1,2,...,np€(0,1), v(d) = vy, ¢(d) = Go,
v(®) = %g(ﬂ—s)p_ @i(s,&(s),v(s))As, ¥ € (0;,s]]Nt,i=1,2,...,n,
£00) = g [0 s 16, 05, 9 € (0500, 1= 1,2,
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Furthermore, we study the controllability of the following systems:

“TDfv(8) = B(® ) (9) +Z(9,v(9),5(9 ))

+0 <19 v(9),¢ é{Zl (8,5,v(s),&(s))As, 4Zz (9,s,v(s), gT(s))As) + H{(9),
“TDPE(0) = B(d ) (9) +2(9,8(8),v(9 )0) o

+0 <l9 é(o fZl 8,s,&(s),v(s))As 4Zz(19 s,é(s),v(s))As) + H{((9),
vet = T\{191,l92, 1., 0n}, p € (0,1), v(B) = vo, §(B0) = o,

v(87) —v(8;) = Or(v(8;),5(0,7)) + Dr(8;,v(8,),8(8,)), r=1,2,...,m,

g(8,") = ¢(d,) = Or(8(8,),v(8,)) + Dr(8,,8(8, ), v(8,)), r=12,...,n,

and

T Doy (8) = <ﬂ>(> 2(8,1(0),4(0)

+E (19 v(9),E(8 fo 1(8,5,v(s),&(s))As, 15£Z2 s,s,v(s), C(s))As) + H{(9),
“wDrg(e) = <ﬂ3<>+ (0,2(0)v <>g’

+-_a<l9 &(v) 4Z1 (9,s,8(s),v(s))As, é{Zz(ﬁ s,&(s),v(s ))As) + H{(9), @

196(81‘,191'_;,_}9](71', i=12,...,n,0€(0,1), v(d) = v, E() = o,
V() = 5 [(0 =) gils,v(s),8(5)) s, B € (85N, i=1,2,.
[

where “TDF denotes the Caputo derivative (CD) [1] of fractional order p on time scales T,
B(¥) represents a regressive square matrix, which is piecewise continuous, H : T — T is
a bounded linear operator. By assuming R as the real number, v, & € L?(I,R) are control
maps, 70 = [0, %]+, the pre-fixed numbers are 9y = 59 < ¥ <51 < O < --+ < O <
sn < 0,41 = 0 and the mappings Z : T x R" x R" — R", Z1,: T x 1% x R" x R" — R",
O : 10 x (R")* = R”, (where (R")* = R" x R” x R" x R"), ¢; : (8;,5] N T x R" x R" —
R", i =1,2,...,m,8: (s,01]Ntx (R) = R",i=12,..n0 :R xR" - R",
D, : ™ x R* x R" — R" are continuous. We also provide the right limit and the left
limit of the v(¢) and &(9) at ¢, as v(8,") = lim._,o+ V(& +¢€), v(8, ) = lim._,o- v(& —¢€),
E(0F) = lime_,p+ E(8y +€), E(0;) = lime_,o- (8, — €), respectively.

2. Definitions and Auxiliary Lemmas

In this part, we give some definitions, fundamental ideas, lemmas and hypotheses for
this study.

Assume that C(I,R) is the space of all continuous mapping from the interval I onto
R. Clearly, C(I,R) is a BS equipped with the norm ||v||- = supy..|v(?)|. The product
space (PS) Q = C4(I,R) (where C4(I,R) = C(I,R) x C(I,R) x C(I,R) x C(I,R)) is also
BS under the norm

(v, vz, v3,va)llc = llvallc + llvallc + llvallc + [|vallc-

Also, we define a BS C!(I,R) = {v € C(,R) : v® € C(I,R)} with the norm ||v||c1 =
max{ [|v||c, |[v*|| o1 }- Moreover, Q' = C}(I,R) is a PS with

I(vi,v2,v3,va)llcr = [lviller + [lvaller + [vsllcr + [lvallcr-
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A time scale T is a closed, nonempty subset of R. An interval on a time scale is defined
as[a, bl ={0e€t:a<9<beC(I,R)} The same is true for (a,b); and [a,b).
The operators for forward and backward jumps p : T — Tand v : T — T are described
as
p(9) =inf{s € T:s > ¢} and v(d) = sup{s € T:5s < 8},

respectively. To determine the existing distance between two consecutive points, the op-
erator Q) : T — [0, 0), which is defined as Q)(9) = p(8) — ¢ is applied. Along these lines,
the derived version 7" of T is

. T\(v,supt], if supT < oo,
Sl T if supt =0

For all ¢ € T/, the regressive (respectively positively regressive) function J: 7 — R is
described as 1+ Q(89)3(8) # 0 (respectively 1+ Q(8)3(8) > 0).

Definition 1 ([29]). The delta derivative f®(8) of a mapping f : T — Ratapoint ¢ € T’ isa
number (assuming it exists) if for € > 0, a neighborhood V of ¢ exists if and only if

(f(e(9)) = £() = FA(B)(p(8) — )| < elo(8) —al, Yo € V.

The following results are very important in the sequel.

Theorem 1 ([29]). Assume that a,b € Tand h € C,4(T,R). Then

(i) T =Rleadsto
b b
| r@ne= [ f(ea0

(it)  If only isolated points make up [a,b), then

b Yociap) #()f(8), ifa<b,
NI

0/ lfﬂ = b,
— Loelap) #(0)f(8), ifa>b.
(iii) Ift=yZ = {yr:r €L}, y >0, weobtain

b

Z yflyr),  fa<b,

/bf(ﬁ)Aﬁ - ifa="b,

‘t‘@\ok:\s

-1

- Z yf(yr), ifa>b.

Theorem 2 ([30]). Let the function f : R — R be a continuous and nondecreasing, and a,b € T,

hen
t /abf(ﬂ)Aﬂ - /abf(ﬂ)dﬂ

Definition 2 ([30]). The delta fractional integral for the integrable mapping  : [a,b]r — R is
described as

0
1
AP 1
I, (o 71"(p / O —38)" " P(s)As.
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Definition 3 ([30]). For the mapping f : T — R, the fractional CD on the time scale is

9

T . 1 n—o— n
Df, f(8) = ﬁ/(19—5) P=1 A" (6)As,

n—p

Cc

where n = [p] + 1 and f® is the n-th derivative of f.

o IfT =UY[2i,2i 4 1], we have
0

Cc,T _ 1 ' n—o— n
Df(8) = Ixn_p)ZO9ﬂ P () s
1 i1 21 2i4+1
= _ )P A (VA )L pA () As
r(np)(rZOZ(ﬁ ) f()A+2[(19 ) f()A>,

ford € [2i,2i+1],i=0,1,....
o Ift=yZ y>0, weget

8
e f0) = F(nlp) / (8—3)" " ¥ (s)As
g1

e Ift={q":q>1,neZ}UZ, then

1 1 An
TP oo\l A
DLSO) = Forgy [ @) P (A
C
1 o1 An
= 2(s) (8 —s)" PLFA (5)As
f ) DO =9
Take into account the MLF as
0 r
O,n(8) = — forp,a > 0.
2= L o)
Ifo =1, we get
0 gr19pr
0p1(g8°) = Op(c¥*) = y_(;) For 7 1)’ c,0eC,
r=

has the fascinating property CDS+ Op(68°) = cOp(0°).
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|O(9, 01,02,03,04) — OB, wy, wa, w3, wy)|

|E(, 01, 09, 03,04) — E(P, w1, wa, w3, wy)|

Remark 1. Motivated by the results of [31], the solution of the problem (1) takes the form

]

Ap(B )0+ 10 =51y (B((0 —51)) 2(0,0(0), (008
o= o g, 809

X@<S'V(S)IC(S)ISJ:Z Z(s, P/V(P)IC(P))API:{I Za(s, p,v(p),g(p))Ap>, 9 € (8,%1],
A (B69) Wﬂ}; S A (B8 5))) Z(8,1(8),E(9)) s
+ j (85 App(B((8 —5)°))As

XG)(S/V(S)rC(S)r?Zl(SI P,V(P),é‘(p))AP,j Zs(s, PrV(P)rg(P))AP)

50

+Zi:1 Ot(v(ﬂt_)rg(l?t_)) +Dt<l9t_rv(l9t_)r€(l9t_))r LS (ﬁi/ﬁiJrl]/ i=12...,n

and

Ap(BOF) 0+7’ = )P Mg (B((8 = 5))) Z(9,(9),v(8))As
+ 7](‘9 =) Npp(B((9—5)))As

9

X®<s,C(S),V(S)jZl(S, pfé(p),V(p))Ap,:lez(s, p,C(p),V(p))AP>, 8 € (0, %1],

50

8
Ap(BO®) §O+f —5)" " App(B((8—5)°)) Z(8,6(8),v(9))As

%

+f 0 —s)f 1AP,J(B((ﬂ—s)p))As

51
X0 (s 6(s), f Zi(s,p,E(p)v(p)Ap, [ Za(s, PIC(P)/V(P))AP)
S0
+ X0 (éw ) (87)) + Di (87,687 ),v(87)), 8 € (B B1y], =12,
where Ap(BY) represents the matrix for the aforementioned MLF, which is given by

i Btﬁpt

Ap(BO) = Eom.

Now, in order to reach our results, we take into account the following assertions:

(1) For the mappings ©,& : ¥ x (R”)4 — R", there are positive constants Tg,, Tz,
i=1,2,3,4s0 that

IN
™=

I
—

T@i|0'i — wi|, foreachd € I, 0;, w; € R,

Tz, |o; — wjl, foreach ¢ € I, 0;,w; € R.

IN
-

I
—
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(2) The mappings ®,Z : 70 x (R")* — R" are continuous and there are positive constants
¢, hi,i=1,2,3,4 so that

|©(8,01,02,03,04)| co+ciloy| + c2|oz| + c3|lo3| + caloa|, foreach ¥ € I, 0; € R,

<
< hy +h1|0’1| +h2|0'2| +h3‘0’3| —|—h4|0'4|, foreach® € I, 0; € R.

|E(l9/ 01,02,03, 0-4)‘

(3) There is a bounded invertible operator (° §R§O )~! for the linear operator (NR;;‘O) :
L*(I,R) — R, which is described as
]
-1
PRAL = /(A — )P A, (B((8 — 5)°) ) HL(s)As, @)
%
these operators admit values in L?(I,R)\ ker(* §RA ).
(4) There exists a positive constant YP so that H PéRA H < Yp
(5) The operator H : T — T is continuous and there is Yy so that ||H|| < Y.
Equation (5) can be computed for various 7 using Theorem 1 as follows:

o Ift=yZ,y >0 wehave

“Ri, :/(A_S)pflAP,p(B((ﬂ— s)P))HL(s)As = 2 y(A —rsy)* HL(sy).

o Ift=UY,[2i,2i + 1] and ¢ € [4,5], we obtain

PRY L
171
= [(A=9)" R (B((®—5)")) HL(s)A s
%
1

= [(A=9" g (B((® —5)") HL(s)As + [ (A =) App(B((0 —5)7) HL()A 5
0
A

+ /<A —5)" " App(B((8—5)°) ) HL(s)s.
4

e Whent={g":9>1, meZ}UZ. Then

Ll
PRAL = [(A=9 " Npp(B((0—5)) HL(s)AS = 1 (A= 0y THL(0)
3 9€(0,A]

For simplicity, we consider the following:

up = supHAp Bo°)v up = sup||Ap o (B(®—9)F)|, us= (®—s)" 1,
= ver L
Ev =Y 1(To+Tp)d+w, Er=Y; 1(To+Tp),

ﬁt%qu(S(Si —191'), Es = Z;‘:1(TO+TD)5+M4I

Uy = supHAp B9*)¢&
19
= T(p) M3T(P(5( — ) +u;, Ei=

&:%ﬂﬂw( — ;) +uy,
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Sp(v,$)(8) =

lo(v(s”

Ji = uz(uTz 4+ usTe, + usTe, + uz(Te, Tz, + Te,Tz,) (51 — so0) + Y&) (% — do)
o = uz(uTz + usTe, + usTe, + tz(Te, Tz, + Te,Tz,) (51 —s0)) (8 — B)

i = us(uaTz +uzTs, +upTx, + up(Te, Tz, + To,Tz,) (s — so) + YH) (% — o),
J; = uz(u2Tz +usTs, + usTs, + uz(Te, Tz, + To,Tz,) (s1 — s0)) (% — Bo)

Js. = Ea+]o, J3 =E4+]5.

3. The Existence and Uniqueness Study

In this part, existence and uniqueness criteria are studied.

Theorem 3. Under the assertion (1), the mixed impulsive system (MIS) (1) possesses a unique
solution (US) provided that
lrg%)%{]i} < 0.5. (6)

Proof. Assume that U C Q and U = {(Ky,Ky,K3,Ky) € Q: ||Ky, Ky, K3, Ky || < 62}, where
dy = max{J,d1} and 6,91 € (0,1) so that

6 > max{Ey, Ep, E3} and § > max{Es, Ep, E3},

and the rest constants are presented in the sequel. Define an operator 3, : U x U — U by

Ap(BY)vg +ﬂf —5) T App (B((9—35)"))Z(9,v(9),E(9))As

+f =)' App (B((8 —5)°))As

><®<S v(s), fZ1 S, p,v (P)r‘f(P))AP/; Zz(S/PrV(P)Ig(P))AP) 0 € (8o, 01,
Ap(BO)g + ér = A (B((8 — 5))) Z(8, v(8),E(8))As 7
8 ’
—i-&f(ﬁ—s)p "App(B((8—5)"))As
<0 5,196, | Z1(5,pv(p), £, | zz<s,p,v<p>,¢<p>>Ap>,
+Yio Ot(v(ﬁf),cwt‘)) + D (9 ,v(87),E(97)), 8 € (8;,0:1], i =1,2,...,1,
Suppose that

1Z@,v, Ol < [12(8,v,8) = Z(8,0,0)[ + 12(8,0,0)|| < Tz(llvll + lIS]) + Yz,
), ¢ < To(llvll +1El),
Dy (87,v(97),8(87)) <

To(l[vll + lIS1D.

and

1©(8, K1, Ko, K3, Ky) | 1©(8, Ky, Ko, K3, Ky) — ©(8,0,0,0,0)|| — |©(8,0,0,0,0)|

To, [[K1[| + Te, [IKz || + To, [ Ks|| + To,[|Kal| + Yo,
where Yz = supy..[|Z(8,0,0)||, Yo = supy..[|®(8,0,0,0,0)|, and Y§ = Yz + Y. Addi-
tionally, Ky = v(s), K» = {(s),

Ks = [ Z(s,p,v(p), 6(p)Ap and Ks = [ Za(s, p,v(p), E(p)Ap.

S0
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1S, 08| < 21
2

S

(v,&)(8)]]

<

Now, we show that J;, : U x U — Uis a self-mapping. For ¢ € (8;,0;11],i =1,2,...,n,

we can obtain

0; (v(8;),5(67)) | + 21 D; (87,v(87),6(87)) | + [[ 40 (B o
£

]
+ [ =9 l1Ane (B8 = 1)) [11(Z(6,v(8), 5(8))
%

+0 (s,v<s>,§<s>, [ Zi6.p.v(p)er)ap, [ s p,v<p>,§<p>)Ap) ) s

50

< VTofus) + e+ iTDvaj) +2(87)| + (1A (B
£

j=1
9

+ [ =9 llae (BLE =51 (128, v(0), 20D
%

+ @(s,v<s>,§<s> [z, e ey, [ 2a(s,p v(p»é(p))Ap) 8s,

which implies that

iTovaj) +2(67) + iTDvaj) +E07) | + A (B
j= =

/i
+ [ =97 l1Ane (BB = 1D (T2 (vl + 121 + To, I(3)]] + T, |61
%

+ Yé) As

L/}
+ [ =97 l1Ane (BUE = 1D (T2l + 121 + To, Iv(3)]| + To, |61
10

+To, + To,

[ 2 p. v €8P + To,| [ Zals, pv(p),E()AY

iTovaj) +2(7)|| + iTDvaj) +2(07)| + [ Ap(BO)wo
= 7=

S] S]
+To,Tz, [ I(p) +8(p) 189 + To, Tz, [I1v(p) +¢<p>|Ap+Ye:)) s
S0 S0

hence
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[Se(w,O)@®)[ < (To+Tp) i ‘ ﬁf)H + [ Ap (B )wo|
+ / (8= | 00 (B® = ) [ (T2l + ) + To, Iv(s) |1+
+T®2HC(S)H + (Toy Tz, + To,Tz,) v(p) + E(p) |l (s1 —s0) + Y§)A s
< (To+1Tp) ZSUP 8 ) +¢(9; H +SUPHAP (B ol

] 1 %€t

5P 1H§;1pr|Ap,p<B<w SN (Tz <sup|v|| +3up|c||> + To, sup|[v(s)||
€T

det

+/sup

vet

+Te, ZUPHC(S)H +(To, Tz, + To, Tz,) ?9UP||V(P) +&(p) (st —s0) + YE:)) As
€T €T

which leads to

9
1Sp(v,8)(®)|| < (To+Tp) Z||V+C||oo+”1+/u2u3 Tz[[v + ¢l + To, [VIleo
= 8

+To, ¢l + (Tes Tz, + To, T2,) [V(P) + E(p) |l (51 — 50) + Y§) A s
i

< Z(TO + TD)(S + Uy +uz (5M2TZ + (SMQT@l + (SuzT@z

j=1
B
+5u2(T@3Tzl + T@4Tzz) (s; —sg) + 5Y(f)) X /A S
%

IN

i
Z To + Tp)d + uq + dus (usz +uyTe, + u2Tp,

+ 13 (To, Tz, + To, Tz,) (51 — s0) + Yg) (8 — Bo).

So
1S, 8)(9)|| < E1+ 61 <6+6]1 =61

Similarly, one can prove that
1Se@v)@)| < Bs + 0N <6+0) =4y,
where 61 = 0 + J];. This implies that
[Sp(v, ) ()| < 62 and [|Sp (&, v) (9| < 2. ®)

It follows from (8) that J(U x V) C U. Again for ¢ € (8;,9;41],i = 1,2,...,n, with
Vo = Vp and {o = Cp, one gets
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< Ylloi(ver)ater) o (vt aten) | + Xo|oy (o7 vt 20e)) ~ by (o5 wep .60 |

j=1 j=1
1

+ [[| @ =51 l1ane (B8 =51 [ Z(8,v(8), 5(9))
L)

+®(SIV(S),€(S),/21(S, PIV(P)/C(P))API/Zz(S/ PIV(P)IC(P))AP))

Bl S0

As

- (z (9.9(8),E(8)) +© (s,a“(s)f(s), / 21 (s, p,9(p),E(p)) Ap, / 2 (s, p,v<p>,5<p>)Ap)>

which yields that

[RAHIGESACRIG]

< 2 to((ut65) ~ 16 + etor) ~ 6 ) + K To [t - 70+ [ecer) - o))
= 7=
L1

+ /H(ﬁ —s)P! H | Ape (B((8—35)"))]| [TZ (||1/(19) — ()| + Hg(ﬁ) _ E(ﬁ)H)
o

51

+To, [[v(s) = V(s)|| + Te,

6(s) — &) + To, [

S0

265, p.v(p), 6(p)) = 21 (5,0, 7(p), E(p) ) [ A p

51

+T@4 /

50

|Za(s,p,v(p), E(p)) = 2 (5., 7(p), E(p) ) 8| s

Hence
|96 (n,2)(®) = 3,3, 8)(9)
>~ (To + 7o) ([v(6;) — w8 | + (o) — &6 )

j=1
9
+ [ @ =5 l1Ane (B8 = 1) [T2 (I(8) = 7@ + |2(8) = &) + To, Iv(s) ~ 7(s)]

%

IN

S

8() = 6| + Tos T [ (Iv(p) = 7)1+ &)~ Ep) )2 p

50

+Tp,

51

+To,Tz, [ (Iv(p) ~¥(p) | +

50

()~ &(p)||) ap | As
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<

IN

IN

Zl:(TO +Tp) (sup

j=1

v(07) — (8 )| +sup[e(0

det det

3l

+ / sp (9 | supl| A (B (0 =51 |

~o])

ﬂﬂ—&@NP%JZ(EQWW)—WMH+xﬂk@)—&wwya—%)

(p) - E(P) H) (s1 — 50)] As.

Using the fact [lv — 7], < v~ 7 + [~ &]_and [l¢ =& _ < [l¢&]_ + v -7l
[ee] [e¢] [ee]
one can write

o0 -5.500)

Xyaem%aw<> U(8)]] + supper||
+To, SuPge. v(s) wan

+Tg, sup
det

+To,Tz, (SUPHV(P) —v(p)
det

iT@Hb@wwm+k &) +uama [Tz (v = 9lo + 6= ]| ) + Torllv =7l

j=1

+ T@)2

e8|+ ToTa (Iv—vllo+ e -] ) 51— 50)

+Toy Tz, (v =l + |2 = &]_) (51 = 50)] /As
i

Y (To+ Tp) +uz[usTz +usTe, + usTe, + uzTe, Tz, (51 — so) + u2Te, Tz, (51 — 50)] (8 — Do)
j=1

x(Iv =7l + ||z -] )
B+ ) (v =l + |5 =] ) = B (Iv =Pl + ¢ = &) ©)

Analogously, we obtain that

H%p(v,g)( ) —So(7, &) (9 H <]3(|1/—1/||00+H§ gH ) (10)

From (6), (9) and (10), we conclude that the operator S, is strictly contractive. As a
result, using the Banach principle, the MIS (1) hasa US. O

We now have the following conclusion for the MIS (2):
Theorem 4. Via the assertion (1), the MIS (2) admits a US provided that
fga<x3{]1 } <05 (11)

Proof. Assume that 0 C Q and U = {(K3,Ky,K3,Ky) € Q: ||K1, Ky, K3, Ky|| < 85}, where
Jy = max{4,d1} and 4,4, € (0,1) so that

0 > max{Ej, Ey, E3} or § > max{Es, Ep, E3}.

Describe g, : 6 x U — U as
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Pp(v,$)(8) =

[0 (v, )(8)

Ap(BOF) vo—i—j 9 =) Ao (B((8—5)F))Z(9,v(9),E(8))As

%

+f —8) Ao (B((9—5)"))As

xE(S v(s), ¢ fZ1 s,p,v(p), ¢ P))Apf7Zz(S/PrV(P)/C(P))AP>r e (¥,s|nT

Ap(BOF) vﬁj’ 8 — )P Apo(B((8—5)))Z(9,v(8),E(8))As
%

+f —5)P T Ap 0 (B((9 —s)P))As

xE<&V@L§@%7ZM&nVWLCWDAn7ZﬂanVWLCWDAP>,

50 50
5

% (8 — )" Lgi(s,v(s),&(s))As, O € (s;,0i31] NT, i=1,2,...,0

191
Also, let
12, v,0) < [Z(8,v,8) = Z(8,0,0)|| + [[Z2(8,0,0)[| < Tz(|[v][ + [IS]) + Yz,
lo(s,v(s), eI < Te(lvll + 111,
and

IE(8, K1, K, K3, Ky) | < ||E(8, Ky, Ko, K3, Ky) — E(8,0,0,0,0)]| — [|2(8,0,0,0,0)
< TgllKall + Ta, || Kal| + Tz, [|Ks[| + Tz, [ Kal| + Ye,

where Yz = supy..[|[Z(8,0,0)[|, Yz = supye.[|E(,0,0,0,0), and Yz = Yz + Yz. Addi-
tionally, Ky = v(s), Ko = ¢(s),

Ks = /Zl(s, p,v(p),&(p))Ap and Ky = /Zz(s, p.v(p).¢(p))Ap.

50 S0

Now, we claim that p, : U x U — U is a self-mapping. For ¢ € (¢;,9;,1]NT
i=1,2,...,n,we have

d;!’ 5,0(5),2(5))As| + || Ap (B |
19! l

+ [ =980 (B =51)) 1 Z(6,v(8), 5(8))
0

As

+E (s,V(S),C(S),/Zl(s, PrV(P)fﬁ(P))APf/Zz(Sr p,V(p),é‘(p))AP))
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0o (v, &) (9) ]|

IN

IN

L

< r(p/ 09" llgi(s,v(s), &) l1As + [ 4o (B o

9;
+ / (@ =90 7|| 800 (B((8 = 9)*)) [ (112 (8, v(8),&(8))]
%

[x]

+

(SIV(S)rg(S)//Zl(Sr P:V(P)fC(P))APr/Zz(S/ PIV(P)fﬁ(P))AP)

) As,

which implies that

IN

/H (8= )P | Tl (s) | + 1() )85 + || Ap (BS# Yo

+ / 8= Apo (B(® = )N [Tzl + 1211) + T, [lv(s) | + T, 1 (5)
%
+ Yg) As
L1

+ [0 =517 l1apo (BB = 1)) | (Tzllv + &l + Tz, (o)) + T, [12(6)]

%

+ Tz, + Tz,

/21 (s,p,v(p),¢(p))Ap

/ Za(s, p,v(p), &(p))Ap

IN

1 —
mH(ﬂ —5)F 1HT¢||1/+ Ell(si — %) + || Ap(BE g |

S S|
+Toy Tz, [Iv(p) + E(p) 189+ To, Tz, [IIv(p) +E(p) AP+ Y) s,

50 50

hence

[0, 8) (@)
r(lme =) 7| Ty llv(s) + ()l (s — ) + [ Ap(BO")wo|

L/
+ [0 =9 00 (BU® =) [ (Tzllv + 2l + T, [v()] + Tes 1E6)
%

To, Tz |lv(p) +E(p)II(s1 — s0) + Te, Tz, llv(p) + E(p)Il(s1 —s0) + Yz)A s

sup| (¢ —s)°~ lHT<pSUP||V( ) +¢(s)I(si — 8) +suPHAp (Bo)wo|

1
F(P) vet

+ / sup|[(9 — )| sup|| A, (B((8 —5)°)) | <Tz supl[v + &[| + Tz, sup|[v(s) | + Tz, sup||&(s)|
vet vet vet vet vet

To; Tz, ZUPIIV(P) + ()l (s1 = 50) + To, Tz, ?9UP||V(P) +8(P)l (s = s0) + Yé) As,
€T €T
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which implies that

1 7
< riaTell 4 Elules = )+ + s (Tl + €l + T2, ol + T2
%o
Tos Tz IV + Elleo (51 = 50) + T, Tz, |V + Elloo(s1 — 50) + YE) A's
1
< mlng(p(S(Si - 191‘) +uy +us (Msz(s + M2T315 + M2T525
0
+uxTe, Tz, (s; —sg) + T®4T225(Sl —50) + YE) /A s
%
1
< muﬂ"@&(si — 191‘) + uq + dus (uzTZ + uzTE] + UZTE‘Q

+M2(T@3Tzl -+ T®4TZ2)(SI — So) + YE) (191 — 190).

Thus
|9p(v,8)(9)| < E3+6]7 = é1.

Similarly, one can write
lop (&) ()| < o+ 875 = 1.

where 01 = § 4 J];. Hence

|90V, &)(8)]| < 62 and ||p, (&, v)(9)]| < b (12)

Therefore, from (12), we get p(UOx V) CU.Also, for 9 € (s;,011]NT,i=1,2,...,n,
with vy = 7 and ¢y = ¢o, we get

0o, 0)(®) = 9@

Si

1 _
w/(ﬁ—s)fo 1[goi(s,1/(s),é(s)) — @i(s,v(s),8(s))]As

i

+/H PlHMW (B((6 — 1)) [ (Z(6, v(8), £(8))
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< 7 / |@=s1 || @it vs), 66)) = 9uts, 7(s), Es)) | s
0;

L/}
+ [[[@ = llana (B =) [Tz (Iv(®) ~ @)l + [[e(@) - E@)])
%

S

+Tz, [v(s) —v(s)]| + T,

&(s) = &(s) | + T,

(5,2, v(p),E(p)) — 21 (5,2, T(p). E(p) ) | A1

50

+Tz,

(5,2, v(p), 6(p)) = Za (5, 7(p). E(p) ) || 61 | 25,

S0

hence

|00 0, )(9) — 0o @, (9)|

< 0 ! |@=sp|[Lo[lvis) =) + e(s) — &6s) 2 s
+ ij )7 [[1400 (B(@® =) [ [Tz (Iv(®) = 70| + |[6(8) = &®)|) + Tz, Iv(s) ~ 7s)]
+Ts, |6(s) = 8(6) || + Tz, T, / (Iv(p) = #(p)ll + e (p) — )| )& p
+T=,Tz, / () =PI+ [ep) = &(p) | ) ap| A 5

< 0 ! supl[ (8 =) Ly sup[llv(s) ~ 7)1 + [665) ~ &) |

)

L]
+ Z‘QEH“’SWHZ‘;EHAp,p(B(WSW”[ ’ (Supﬁanﬁ) gl

+Tz, sup
S

det

5(5) = &) + T T, (;ipnv(p) —(p) | +sup|e(p) - 5@)“) (51 = 50)

+Tz,Tz, (f;lpIIV(P) —v(p)| +sup
€T

det

2(p) —E(p) H) (s - 50>] s,
it follows that

00 (v, )(8) = 0o @, 9)|

IN

I,(lp)u3Lrp [HV — V|| + Hf: - EHOJ (s; — 0;) + usup [ Ty <|V—i_—TZTV‘i’1‘7§|; 5”00)

+1z,

g8+ Te T (v =l + |5 - ]| )sl %)

+T~3Tzz(”v VHoo""HC gH Sl SO /AS
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< 1_(1p)u3L<p(Si - %)+ u3{ +u2T@3Tl;??gi —i__ Zsfilut;;sj%z 51— 50) } (9, — o)
(v =lle+ [z -2].)
= B+ (vl + e =8|) =5 (v -7le+|c -] )- 3)

Analogously, we can write

H%p(%@)( ) — So(7, &) (9 H < ]3<||v—1/||oo+ Hg (;‘H ) (14)

It follows from (11), (13) and (14) that the impulsive problem (2) has a US based on the
Banach principle. O

The existence of at least one solution is next examined for both the MISs (1) and (2) us-
ing the Leray-Schauder alternative fixed point (FP) method and the weaker stipulation (2).

Theorem 5. Assume that the assertion (2) holds. If there is 1 > 0 so that
u +uy+231 <3, (15)
then the MIS (1) has at least on solution.

Proof. In the beginning, we demonstrate that the operator 3, defined by (7) is completely
continuous (CC). We can see that it is a continuous operator due to the continuity of the
mappings O, D, Z, and ©. Moreover, suppose that U1 C Q and by using the fact O, D, Z,
and © are bounded operators. Then there are positive constants T7, 1>, Y7 and Y> so that

Y 0,(0(8),(8)), S O,E(@),v(8)) < T, " Dy(6,u(0 ZD (8,6(8),u(8)) < T,

j=1 j=1 j=1
Z(9,v(8),8(9)),Z(8,5(8),v(#)) < Yrand ||@(l9,K1,Kz,K3,K4)|| <Y,

where K; = v(s), Kp = &(s), Kz = 7Z1(s, p,v(p),¢(p))Ap and K4 = 7Z2(s, p,v(p), E(p))Ap.

S0 S0
Consider 1 + Th+uy = 1L, 1+ +uy = T V1+Y, = (19—5)'0_1H <, T+
T Y (9 — 8) <N, and T* + Tup Y (8 — %) < N.
Foranyv,¢ € Uy and ¢ € (9;,9;11],i =1,2,...,n, we get

[Se(v,8)@®)]| < 2|1oj<v(ﬁj)'§(ﬁj)) |+ ﬁIIDj(ﬁjfv(ﬁj>/€<ﬁf>) [+ [[ A0 (B o |
= =

L/
+ [0 =5 l1Ane (BlE = 1) [11(Z(5,v(6),2(5))
%

0 (s,v<s>,¢<s>, [ s pv(p)e()ap, [ Za(s, p,v<p>,¢<p>>Ap>) s
50 ) 50
< T+ T +up+ Thua(Yr+ Y2) /AS
%

= T+ -Ilu2Y(l91 — ). (16)
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Sp(v,8)(9) =

IN

Similarly
]

||§p((;‘,1/)(l9)|| <Ti+ T+ ug+ _Ilu2(Y1 + Yz) /AS ="+ _[1M2Y(l91 — 190). (17)
%o

From (16) and (17), we have
18w, &) (@) = Rand [|S, (&, v) ()] < .

Therefore, & is uniformly bounded.
Now, we establish that & is CC. For this regard, we discuss the following options:
Option 1. Consider that time scales T are made up of distinct points, with each point on T
being isolated. Based on Theorem 1, 3, takes the form
Ap(BOP)vg + zﬁer(la — )" App (B((9 —5)P)) Z(8,v(9),E(8))As
+ Loer(d — 5)p_ App(B((8—5)°))As
51
><@<S v(s le s,pv(p).&(P))AP, [ Za(s, P/V(P)rC(P))AP) 9 € (do, 01,
S0 S0
Ap(BI)vo + zﬁag )7 Ao (B((O —)°))Z(8,1(9), £(9)s (18)
+ Loer (B —5)'07 App( (4 ))
><®<s v(s), le s, pv(p) &( )APerZ (s, p,v (P)/C(P))AP>r
+ i O (v(8; >,§<l9 )) + Di (8, v(9; ),5(19 ), 8 € (8;,0;,11], i=1,2,...,n

It is obvious that (18) is a collection of summing operators on a discrete finite
set. Furthermore, it is implied from the continuity of 0j, O, Dt, Z and © that A,
is CC.

Option 2. Suppose that T is continuous and ¢;,, 9, € (8;,%;11],i =1,2,...,nso that 9, <
9;,, then

||%p( C)(ﬁlz) \’p(Vg 1911 ||

L0,(vt0p)200) -0y (v16;).567)

j=1
9,
+ /(1912 — s)p_lAp,p (B((1912 - s)p>)(Z(s,v(s),Ej(s))
%
+®( /Z1 s,p,v(p),¢ ))AP,/Zz(s,P,V(P),C(P))AP))AS)
o,
| /@ - App( ((8,=9)") ) (Z(s,0(5),8(5))
do

it follows that
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+

+

x@(s,ws),@(s), [ zip.ve)enap, [ 26 w(p),@(p)mp) as|.

Option 3.

/ [(1912 - s)p_lAp,p (B((ﬂlz - s)p)ﬂ Z(s,v(s),&(s))

S0

It is easy to see that the above inequality tends to 0 as ¢, — 9,. The operator 3,
is hence equicontinuous. Finally, we come to the conclusion that 3, is CC using
the Arzela-Ascoli theorem.

Suppose that T contains isolated points along with dense ones, that is T is contin-
uous and discrete. In light of Theorem 1, we can represent 3, as the summation
operator, which is CC (analyzed in option 1). Also, one may establish that S, is a
CC operator for the dense points (analyzed in option 2). Therefore, for isolated
and dense points, 3, can be expressed as the sum of two operators. Since the two
operators are CC, we can infer that their sum is also CC. As a result, the opera-
tor S, is CC. Thus, by adding together the three aforementioned scenarios, we
determine that 3 is a CC operator.

Ultimately, let & € [0,1] and there are v and ¢ so that v(¢) = 3, (v,$)(9) and {(9) =
(&, v)(9). Hence for ¢ € (8;,8;41],i =1,2,...,n, one can write
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ISl
= [la(Sp(&v)(8)]
0; (u(ﬁ,;),gwl;)) + i%Dj (ﬁg,v(ﬁ;),g(ﬁp) + Ao (B8P)vg
=

i
14

j=1

9
[ (0= (BB = ))) (2(5,v(5),E())

10

+ 0 (s,V(SLC(S),/Zl(s/ PIV(P)/‘E(P))AF%/ZZ(S/ P,V(P),C(p))AP> ) AS]

i
Lollv+&lles + 12 Lllv + Elles + 11 + || (9 = ) |2 (Lz|lv + Elleo + Lo, [Vl
=1 j=1

+Lo, 1& ]l + Loy Lz, [V + Elloo (51 — 50) + Lo, Lz, ||V + &l (51 — 50)) (8 — Bo)
Yi Lo+ X Lp ]

i

+u3(usLz + upLe, + usLe, + 1z (Le,Lz, + Le,Lz,) (s1 — s0)) (8 — %)

X[V +Clleor

which yields that
1€llee < 11+ [E2 + T2]llv + €l = 1 + 3]V + &l o- (19)
Similarly, we have
Vlleo < ua+ [E2+ Dfllv+ Clle = ua + J3[[v + Ello- (20)
Combining (19) and (20), we obtain that
1€+ Vil < I8l + Vil = 1 + g +2]3][v + &l -
Hence

E+vle .
up +ug +2J3llv+ 8l ~

From (15), we have J > 0 so that || + v||, # J. Let us consider the set

d={Cver |[l+v|, <3}

Consequently, the operator 3, : @ x ® — T is both continuously and CC. Therefore
from the choice of ® there are no ,v € U;(®) provided that § = a(S,(¢,v)(9)) and
v =a(S,(v,&)(¥)), « € [0,1]. Due to the nonlinear Leray-Schauder alternative, S has a
coupled FP, which is a solution to the MIS (1). O

Theorem 6. Assume that the assertion (2) is true. If there is 7* > 0 so that
U+ ug + 2];:[* < J*,
then the MIS (2) has at least on solution.

Proof. It is comparable to the earlier defense of g, in Theorem 5. [
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4. Stability Study
We begin this part with the inequalities below:

[T DPv(9) — B(g’) v(8) + Z(9,v(8),¢(8 39)

—@(191/(19 fZlﬁsv() &(s Asz2l95v()§(s))As <g vet

%

(

¢(s))
1TDPE(8) — (19)(2‘( Z(8,8(8),

(

,19) o
L}
—@(19(;‘ )fZlé‘s(,‘)vs)Asfzzﬁsg(s) ())As) <g vet
[v(8) —v(8,) — O( (9,),6(8,)) — (19 V(07), 60 ) <er=12,...,n
18(8;7) = ¢(8;) = Or((8; ), v(8;)) — Dr(d,5(0, ), v(d, )l <& r=1,2,...,n,

and

19T DPv(9) — B(l‘f’)V(l?) Z(8,v(8),8(8))

Ll
<19 v(9),2(9) fZ1 9,s,v(s),&( ))As,ﬂf Zz(s,s,v(s),(j(s))As> <e
[TDPE(9) — B(ﬁ)é( ) —2(9,8(9 )/V(ﬂ)ﬁ)
(19 c(0)(0), | 20055000 >>As,fzm,s,a(s),v(sms) <c
L0 (22)

% e (Sirﬂi—&-l] ﬂ 7,i=1,2,..n,

fore > 0.

Definition 4. We say that the MIS (1) is UH stable on T, if for every ¢, v € Uy (T, R") satisfy-
ing (21), there are &,V € Q'(t,IR") as a solution of (1) so that

|2(5) = &) + () = 7(s)| < Fe, pr F> 0, s e .

Definition 5. We say that the MIS (2) is UH stable on 7, if for every ¢, v € Ql(t, R") fulfill-
ing (22), there are &,V € Q! (t,R") as a solution of (2) so that

|e(@) = E@) +1v(®) ~9(®)]| < Fe, for F* >0, s e 7.

Remark 2. The solutions {,v € Ql(T, R™) fulfill (21), if there is | € Q(t, R™) with the sequence
Iy so that ||I;|| < eand

C'TDPV(19) B(ﬂ) (19)+Z(19 (19)/6<l9))

9, 4,
+0 (19 v(9) fZl 8,s,v(s), é(s))As,ﬂf Zz(ﬂ,s,v(s),é(s))As> +1(9),
TDPE(9) = <19°>¢<19> +Z(,20),1(0)
+0 <19 Z(o fZl ,5,E(s), (s))As,éflZﬁﬂ,s,é(s),v(s))As) +1(9),

det, 1/(190) =1, &(0) = Co,
v(8F) —v(9,) = Oy (v(8;,),8(8;)) + Dr (9, v(8;,),8(8,)) +1r, r =1,2,...,1n
§(07) —¢(07) = Or (G (87 ), v(87)) + Dr(87,6(87 ), v(87)) +1r, r=1,2,...,m
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Lemma 1. Every functions &,v € Q'(t,R") that fulfill (21) also satisfy the inequalities shown
below:

v(9) — Ap(BI)wo — X2 (O (v(8;),E(87)) + Di(8;, v(9;),E(8;)))

5

- j:ws)P‘lAp,p(B(wsf))Z(s (s), 6(5))s - zwsr"lAp,p(B(ws)P))
x@(w( ?zwsvmc >As,§zzw,s,v<s>,¢<s>>>As <
Hc Ap<w>coo—g (O E(#; (07 ) + DL (87,207, (67))

0= A (B((0 )20 (5435 (0 = g (B((0 =)
x@( fOZMsé ) >As,zzzw,s,é<s>,v<s>>>As =

for 9 € (8, 9,11] C T, where ||App(B((8—5)°))|| < Jupand 6 = (n+ Luzun (¢ — %)).

Proof. When ¢&,v € Q'(t,R") justify (21), then by Remark 2, we have

“*DPv(9) = B(® ) V() +Z(8,v(8),8(8 )19)
+0 <19 v(9) fZl 8,s,v(s), C(s))As,éf Zﬁﬁ,s,v(s),@(s))As) +1(9),
“*Drg(8) = <5>¢<19> +Z(0,20),1(0)
+0 <19 Z(9),v(9) fZl ,5,E(s), v(s))As,éf’Zﬁﬁ,s,{,‘(s),v(s))As) +1(9),
det, v )—Vo ¢(%) = o, 0
v(d; ) ( ) =0Or(v ( r ):6(87)) +Dr(8,,v(8,),8(9,)) + 1, r=1,2,...,mn
E(87) — £(8) = OWE(8, ) v(8; ) + Dy(8r/E(8 ),v(8 ) + 1 r =12, m
yields

t=1
¥ L
(0= Mo (B —5))) Z(5,v(), 685 + [(8—5) " Ay (B((85)"))
% %
9, 8
x@(s v(s),&(s) /Z1(19 s,v(s),&(s))As /Zz(ﬁ s, v(s) g(s))) As
d do
]
+ [0 =9 A (B8 —5))) Fls)As
%
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rfl t=1
& L/
+/(l9—s)p_1App(B((l9 $)))Z(s é‘(s),v(s))As+/(19—s)p_1App(B((l9—s)p))
% %

9, 8
><®(s,@'(s),v(s),/Zl(ﬁ,s,g(s),v(s))As,/Zz(ﬁ,s,g(s),v(s)))As

do B
0
/ (8 — )" App (B((8—5)°)) f(5)As
%

v(8) — Ap(BO)vo — 3 (Or(v(9,),8(8,)) + Dr (8, v(8,),8(9,)))

r=1

0 0
. /(19 — )P Ao (B((8 = 5)°)) Z(s, v(s), &(s)) As — /(19 — ) A, (B((8 —5)°))
% L0

0, 8
@(s,v<s>,¢<s>, [ 2105, v(s),86))s, [ zzw,s,v(s),as))) As

%

/Hl9 7 1800 (B((® = 5)")) [11£65) ()1As+ Y] < o

Similarly, we can show that

n

&(8) — Np(BY)Go — ) (O (E(87),v(87)) + Dr (87, 8(87 ), v(9;)))

r=1
& b
_/(ﬂ_S)p_lAp,p(B((ﬂ_5)p))z(sf§(5)/v(5))As_ /(ﬂ—s)p_lAp,p(B((ﬂ—s)p))
B0 i
( /Z1l95(§ As/Zzz‘}sg)())>As
/H Cab 1H”APP DS () ]1As + ;lt < Je.

Thus, we get the desired result. [
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Remark 3. The mappings ¢,v € Q' (t,R") verify (22), if there is a map | € Q(t,R") and

bounded sequences {l,,r = 1,2,...,n} provided that |[I,(8)|| <&, 0 € T,r = 1,2,...,1 50 that
“TDPy () = B(l9) (8) + Z(9, 1/(19),6(19)0?
+~<19 v(8), fozl (8,5,0(5),£(6))85, | zzw,s,v(s),@(s)ms) +1(9),
TDRE(0) = BO)Z(6) + 2(0,E(0),v(8))
+~<19 £(8) le (8,5,6(5), v(5))As, JZz (8,5,&(s), v(s >>As> +1(9),

CAS (51,191“] ﬂ'r i=1,2,..
p)f 9 —s)P 1 @i(s,&(s),v(s))As + 1,
8,

_rllj @i(s,v(s),E(s)As+1;, 9 € (%;,s]) N1, i=1,2,..

1

Lemma 2. Every mappings &,v € Q'(t,R") that fulfill (22) also fulfill the inequalities shown
below:

)
v(9) — Ap (B9 )1 —Spr,p (B((8—5s)"))Z(s,v(s),E(s))

9 9
pr,p(B(é‘s)p)_,(s v(s), 19f21 (9,s,v(s), i;’(s))As,l9f Zz(ﬁ,s,v(s),g(s))>As

[
_ﬁ f(ﬁ_s)pilq)i(srg( ), v(s))As|| < (uzux (9 — ;) +n)e,

9

E(0) = Ap(B8)G0 = [ Aoy (B((8=5))) Z(5,8(5) ()

9 4 )

_!Ap/P (B(l9— S)P)E<S,§(S),U(S),l§f Zl(ﬁ,s,g(s),v(s))Aslﬂf 22(19,5,6(5),1/(5))>As
_r(lp)j(ﬂ —5)° L gi(s,§(s), v())As|| < (uzua(® — 0;) +n)e,

g e (Sir l9i+l] Nnt,i=1,2,..n,

and

0
‘ 6= ﬁ S8 =5)i(s, &(s),v(s))As|| < e,
19;9 ve (O,s|nt, i=12,...,n,
v(s) =ty ﬁf (8 — )P Lgi(s,v(s),&(s))As|| < ne

in which || Ape (B((8 —s)°))|| < Jua.
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Si

__1
I(p)

<J

Si

e

(-

20) = 1y

1/(190) =1, 6(190) Co, ¥ € (Sirﬂi-‘rl] Nnt,i=12,...,n,

v(®) =y (O =) pi(s, 85D vs)As + by, 5 € (5N T =12, m,

(% =) Li(s,v(s),E(s))As + i, 8,5 € (%,5] N7, i=1,2,.

5?%%50%¢

Obviously, Equation (23) leads to

4
Ap(BﬂP)uo+pr,p(B((19—s)P))Z(s v(s), &(s) As+f — ) App (B((8—5)"))

l 191

xE <s v(s), fZ1 (s,p,v(p). ¢ P))Al’/sfZZ(S/PIV(P)/C(P))AP> As

50

]

+%p)g" 9i(s,v(s),&(s))As, O € (s, 0:1] N T, i =1,2,...,1,
']

ﬁﬂf_(ﬁ—s)ﬂ Loi(s,v(s),E(s))Ds +1;, O € (8,81 N, i=1,2,.

and

0 0
Ap(BO)vp + f App(B((8—5)))Z(5,E(5),v(s))As + [ (9 — )P Ap,p(B((8 —5)°))

1 l9i

fZ1 (s,p.¢(p)v )API7Z2(S,P,§(p),1/(p))Ap> As

50 S0

&(s)
0
+ﬁl{(l9 — S)p71¢i(5,§(s),v(s))AS, ve (s;, %Nt i=12,...,n,

For ¢ € (s;,%;1)N1,i=1,2,...,n, we have

9
v(9) — Ap (B9 )vp —!Ap,p(B((ﬁ —5)"))Z(s,v(s),&(s))

9 9
—f(ﬂ—S)p_lAp,p(B(ﬂ—S)p)E<SIV(S)I§(S)/fZl(ﬁ,s,V(S),C(S))ASrfZz(ﬂ,SIV(S),é(S))>AS

% %

(8 —5) " 9ils,8(s),v(s))As

S)p_lHHAPrP(B((”—S)p))llllf )[|As + Z”ltH <( Usita (8 — 8;) + )g

and

25 of 42
Proof. If &, v € Q!(t,R") justify (21), by virtue of Remark 3, we get
D) = BEW(E) + 2(0,4(9),2(0)
+u<ﬁ v(®),¢ le 8,5,v(5),&(s))Ass sz 8,5,0(s), (s ))As) +1(9),
“TDPE(8) = <0> £(0) + 2(9,(9),v(6 >°>
+~<ﬁ¢ leﬂscsws) As{zzﬂsm <>>As>+l<ﬁ>, o)
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9
¢(8) — Ap(BY)Go —szplp(B((ﬁ —5)"))Z(s,8(s),v(s))

o 9,
—f —s)f” 1App(B(19—s)p)E<s,v(s),§(s),fZl(19,s, (s),v(s))As,fZz(ﬁ,s,é(s),v(s))>As

190 19O

4
— iy J(8 =) gil5,5(s), v(s))As
9

gsj“(ﬂ—s)f’*lHHAp,p(B((&—s)P))y|||f( 1As + 2||lt|\<(u3u2(19 &) +n)e,

with a similar approach, we obtain

0
‘ (5) — s J (0 — 51 s, (), v(s)) | < e,
191"9 ve (¥,s|nt,i=12,...,n
v(s) — %p){?f(ﬁ — )P gi(s,v(s),E(s))As|| < ne,

Consequently, the debate is over. [

Currently, we present a sufficient stipulation for the UH stability of MISs (1) and (2).
Theorem 7. If both inequality (6) and assumption (1) are true, the MIS (1) is UH stable.

Proof. Assume that ¢ and v are a solution of the MIS (1) and E and v are a solution of (21).
Using Theorem 3, one has

Ap(BOF)vg + 191 =) App(B((8—))) Z(8,v(8),E(8))As

+f — )" App (B((8 —5)°))As

><®<s v(s), le S, P,V (P)rC(P))AP/?ZZ(SI P,V(p),r;‘(p))AP>, 8 € (0, %],

50 50

Ap(BOP) 1/0+f — ) Ap o (B((8 —5)P))Z(9,v(9),E(8))As

L0

0
+@f(19 — ) Ap o (B((8 —5)P))As

xO|s,v(s le s,p,v(p). ¢ p))Arb7Zz(s,pIV(P),€(rJ))AP>,

S0 S0

+Yioo Ot(v(ﬁf),é‘(ﬂ;)) + D (87 ,v(0,),E(97)), 0 € (8;,0:41], i =1,2,...,1,

where A, (B9) is the matrix form of the MLE. In a manner similar to Theorem 3, we obtain




Fractal Fract. 2023, 7,92 27 of 42

IA
L]

+ [[[ @ =97 l1Aane (B8~ 1) 1 Z(6,v(0), 5(0))

%

®(s,V(S),C(S),/Zl(s, PIV(P)IC(P))API/Zz(SI P,V(P),C(M)AP))
~(z(v,79), 5@9))

( /Z1 s, p,V( AP /Zz s, p.v(p), E(P))AP>)

(8~ >e+13(||v<19> - 5(8)] + e - E@))- 4

As

IN

Similarly, we can obtain

[e®) &) < Jusa(er — 8+ 15 ([[a00) ~E@)|| + vi®) ~ 7)) @9)

From (24) and (25), we get

€

Iv(®) (0| + [[a(®) - &) < wsma(er — 80757 = Ve,

where V = %ﬁ’]) It follows that the MIS (1) is UH stable. In addition, if V(e) =
V(0) = 0, once this happens, our considered system (1) becomes generalized UH stable. [

Theorem 8. If both inequality (11) and assumption (1) are true, the MIS (2) is UH stable.

Proof. Assume that ¢ and v are a solution of the MIS (1) and 5 and v are a solution of (22).
From Theorem 4, we have

Ap(B )+ (2 — )~ A (B(@ —5)7)) Z(8,1(0), E(@))0s

XE<s,V(S),é(s),flzl(sf PrV(P)rC(P))APr?ZZ(S/ PrV(P)rC(P))AP)r 8 € (05N

So

1]
6= $)' " A (B((8 —5))) s

X8 s,v<s>,§<s>,sf'zl<s,p,v<p>,é<p>>Ap,jz2<s,p,v<p>,é<p>>Ap>,

Sj
+L) CE s)Pflqoi(s,v(s),C(s))As, ve (s, V4]NT,i=12,...,1,
Y
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and
/]
wwm+g (8—=9)" " App(B((9—5)")) Z(9,E(9), v(8))As

x& (s,é(s),V(S), f Z1(s,p,¢(p),v(p))Ap, } Zs(s, PIC(P)/V(P))AP) 0 € (8,s]NT,

o 0
g() = (Bl?lo 0 +l§f —s)P” 1App(B((l9—S)p))z(ﬂ,g(ﬂ),V(ﬂ))As
9, ’
+l9f(l9 —5)" T App (B((8 —5)°))As

xE(&C(S)IV(S)jZl(S/ P/C(P)IV(P))API:flzz(SI PfC(P)rV(P))AP>/

50

—1—%’)) f](z‘} - s)p71¢i(s,§(s),v(s))As, ve (s, 84Nt i=1,2,...,n,
]

where Ap (BY?) is the matrix form of the MLF. In a manner similar to Theorem 4, we get
[v(®) —v(8)|

i flo=r°
+jﬂw—wfﬂwmww«ﬂ—ﬂﬂwmzwmw»am>
+E(aﬂ@@@%}%@mm@LQMMn]Zﬂ&nww£@DMJ)

_ (2(19,17(19),5(19)) +_(s (s /21 s, p,7(p), & Ap, Zz 5, P,V (p)f(p))Ap>)

< qusna(6y — di)e+ 3 (v(8) — 7(6)

IN

i(s,v(s),E(5)) — 9ils, U(s), W“

As

). =

Analogously, we can obtain that

Hé(ﬁ) H < M3M2(19 €+]3(

—E@O)| + @) -v@)). @)
Adding (26) and (27), we find that

€
1-2]3

[v(®) = 7)1 + &(8) ~ £(0)]| < (waua(8s — 8))) = A,
where A = %ﬁz};ﬁ). Therefore, the MIS (2) is UH stable. Further, if A* = A*(0) = 0, once
this happens, our supposed system (2) becomes generalized UH stable. [

5. Controllability Study

The third part of the article analyzes the controllability of given impulsive systems.
We start by providing some definitions in this line.
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Definition 6. The MIS (3) has a solution (v,&) € T x Tif v(0) = vy, &(0) = o and the pair

(G, v) is a solution to the integral equations below:

Ap(BOP) 1/0+f —8) T Ao (B((9 —5)P))Z(9,v(9),E(9))As

%
/1
+l§f(z9—s)P "App(B((8—5)P))As
x@( le s,p.v(p). ¢ API:f[Zz s, p.v(p) E(P))AP),

Ap(BﬂP vo+f —8) T Ao (B((9 —5)P))Z(9,v(9),E(9))As

%

+f —8) Ao (B((9—5)"))As

X@)(S v(s fZ1 s, p, v (P)rC(P))AP17zz(Sr w(p)fff(p)MP),

50 50

+f —5)" A (B((8—5)°) ) HU(8)As

+Z, f(v(8;),6(8;,)) + D (07 ,v(87),8(97)), 8 € (8;,841), i =1,2,...

and

9

Ap(BOP) go+f — )P A (B((9 —5)P)) Z(8,E(9),v(8))As

L0

+f —5)P " A0 (B((9 —5)P))As

><®< fZ1 (s,p,G(p)v )API:fIZZ(S/PfC(P)/V(P))AP>/
0
+J(ﬂ—s)9*1Ap,p(B((ﬂ—s) )V HL(8)As, © € (8, %1,

Ap(BOP) §0+f — ) T App (B((8 —5)P))Z(9,E(9),v(8))As
+f —5)P T Ap 0 (B((9 —s)P))As
><®<s ¢(s) fZ1 (s,p,&(p)v )AP/:fIZz(sfng(P)/V(P))AP>/

+f —5) T Ao (B((9 —5)°) ) HE(8)As

+yi 1Ot(c< F)v(07)) +Di(8;7,5(9),v(8;)), 0€ (8;,014], i =1,2,...,m,

where Ap(BO) is the matrix form of the MLF.

(28)

(29)

Definition 7. We say that the MIS (3) is controllable on T, if for each vy, Co,va,Ca € T where
8;y1 = A is any arbitrary point, there is an rd-continuous function ¢ € L?(I,R) so that the

relevant solution of (3) fulfills v(0) = vy, §(0) = o and ((A) = L 4.
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For convenience, we choose to use:

Ja = uj (uzTZ + uzT@)l + uzT@)z + up (T@3Tzl + T®4T22) (Sl — S()) + YE:))

x (8 — o) (1 + THTH (8 — 190))/
Js = uj (uzTZ +uxTz, +upTs, +usz (TE3T21 + TE4TZ2) (s; — So)) (8 — ),
Jo = (1 TuTho — ) x <Z(To +Tp)

j=1
+ (MQTZ + uzT@1 + uzng + uz(TG)STZl + T®4TZZ) (Sl — So)) (191 — 1.90)),
1
_ ° _ 9.

o= (1 Tumho - o) x (T 6)

+ (a2 Tz + upTs, + upTs, + p (T, Tz, + Tx, Tz,) (51 — 50)) (91 — %)),

i
E, = <1+THT§E> (Z(TO+TD)5+u1> + Ty Th|vall,
j=1
i
Eg = (1+THT§E)< (TO+TD)5+M4>+THT£1”§A|
j=1
0 1 " " 0
Ey = (1+THT§R) mMBT(p& (si =) + w1 + Yo +THTH||VAHI
0 1 " " 0
Eo = (1+TuT}) Ty e Ted (5= 80) s Y8 ) + TuTh a1

Lemma 3. Assume that the hypotheses (1), (3) — (5) are trueand v, € T where 9;11 = A'is
any chosen point. Then the pair (v, &) € T X T, which is defined in (28) and (29) is a solution to the
MIS (3) with the control function

(PR4 ) [VT — Ap(BP)vp — 7[(19 —8) " App (B((9 —5)P)) Z(8,v(9),E(8))As
%

—f —s)” lApp(B((ﬁ—s)p))As

x@ (s,V(S),é‘(S),j Z1(s, P/V(P)/g(P))API:f] Zs(s, P/V(P)/C(P))AP> , 0 € (8o, 1],

Ll
W) [VT — A (BO%)uy — [ (8= 5P A (B((8 —5)°)) Z(8,0(8), £(8))As (30)

%

—f 9 —s)f lApp(B((ﬁ—s)p))As

x@(s,v<s>,a<s>, :fzms, P u(p), E(p))Ap, :f’zz<s,p,v<p>,§<p>>Ap>,

X1 (On(v(8; ), 8(8;)) = De(8;,v(8; ), 8(8;))) |, 8 € (B8] i =1,2,..m,

or
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]

(P§R;,f‘0)*1 [gT — Ao (B9*)Eo —l9f(19 - s)P‘lAp,p (B((8—5)P))Z(8,&(9),v(9))As

/i
—5{(19 —8) Ao (B((8 —5)"))As

’ 4 S (1901 191]/

S0 S0

x@(s,f:(s»v(s),?zl(s, D E(p)v(p)Ap, | Zas, né(;a),v(p))/sp)

- L/
=) emg) [f:T ~ Mg (B0 — J (8 =5 g (B((9 ) Z(0,2(0)v(#)s o
% ’
— [(®—5)" " App(B((8—5)F))As
%
xO\'s,8(s),v(s), [ Za(s,p,E(p),v(p))Ap, [ Za(s, p.E(p),v(p))Ap |,
_Zizl (Ot(g(ﬂt_)lv(ﬁt_)) + Df(ﬂt_ré’(ﬂt_)fv(ﬁt_)))}l LS (191'/191'4-1]/ i=12,...,n,
where N, (BOP) is the matrix form of the MLF, v(A) = v4 and {(A) = & a. Further, the control
function £(0) estimated by ||£(9)|| < I, or ||€(8)|| < T1;, where I1; and T1, are defined by
I, = I [”VAH + ([ Ao (B )wo | + (Z(TO + TD)) v+ ¢lle
j=1

+(u3u2(TZ + T®1 + T®2 -+ (T®3T21 + T®4TZZ) (Sl — So)) Hl/ + CHOO + Yé) (191 — 190)},

and

I, = H& l||‘:A| + HAp(Bﬁp)(:OH + (Z(TO + TD)) ”V + g“oo

j=1
+(u3u2(TZ + T@l + T®2 + (T@3T21 + T®4TZZ> (Sl — So)) HV + (:Hoo + Y(f)) (191 — 190)},

ford € (0;,011],i=1,2,...,n.

Proof. For ¢ € (8;,9;.1],i=1,2,...,n,let (v,{) € T x T, which is defined in (28) and (29))
is a solution to the MIS (3), then for ¢ € A, and using (30), we get

L1
v(A) = Ap(Bﬁp)VoJr/(A—S)p "N (B((A=5)))Z(s,v(s),E(5))D s
%
]
+ / (A=) App(B((A—5)))
%
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_ AP(BAP)UO+/(A—s)f’—lAp,p(B((A §)P))Z(s,v(s),E(s))A s
%
9
(A=) App(B((A=5)))
%
><®(s,é‘ /21 s,p.¢ Ap,/Zz s,p.¢(p) (p))AP)AS
i ’ o
+21(Of(§(At ), V(A7) +Di(A7,E(A7), v(A]))) +/(A—5)p_1App(B((A—S)p))H
t= 9
/]
X (P%l‘;lo)*l vr — Ap(BAP) vy — /(A - s)pflAp,p (B((A—=5s)"))Z(s,v(s),&(s))As
%
L]
~ [(A =9 A (B((A = 5)))
L)

@(S/V(S)rﬁf(s)r/Zl(S/PrV(P)r‘f(P))AP//Zz(Sr P/V(P)rC(P))AP)AS

S0

— Y (Or(v(A] ), E(A])) + D (A7, v(A7 ), E(A7))) | Bs,
t=1
which yields that
O
V(A) = AP(BAP)VOJr/(A—S)P_lAp,P(B((A—s)p))Z(s,v(S),g(s))As
%o
+/ )P App(B((A=5)))
( /z1 1, E(p)v(p)AP, [ Za(s,p,8(p), 1 >>Ap)
+i1(0t(é<A;) V(A7) = Di(A7,E(A7 ), v(AY))) +
t=
]
(PRE)ERY) Ap(BAYYy — [ (A=5)"" 0 (B((A =5)))Z(s,1(5), £(5)) s
0}
/]
— [(A=9r " Anp(B((4 -5)"))
)
x®( /Z1 S, PV Ap,/zz s, p,v(p) C(p))Ap)AS
Y OV AT ) E(AD) + Di(Ar v(AD),E(AD)) |As
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In the same way, by using (31), we can prove that {(A) = 4. Also, for ¢ € (9, 9;11],
i=1,2,...,n, the estimation
@) = TR[llvall = [[Ap(BS)vol|
B

~ [ =980 (B =51 128, v(8), ()|

X As

6(5,6(5),1/(5),/21(5, P/C(P)/V(P))API/Zz(S/PIC(P)/V(P))AP)

- louvter 16 )] + ntht,th>,awt>>||>],

leads to

i

€@ = H&lIIVAHHAp(Bﬂp)Vo\H<Z(T0+TD)>|V+C||oo

j=1
+(uzuz (Tz + To, + To, + (To, Tz, + To,Tz,) (s1 — 50)) [V + Elle + Y6) (8 — 80)] =11,

Similarly,

€@ = Hg%l”‘:A|+HAP(Bl9P)€OH+(Zl:(TO+TD)>”V+§”oo

i
+(usuz (Tz + To, + To, + (T, Tz, + To,Tz,) (s1 = 50)) [V + &l + Y&) (81 — 0)] = 1.

This finishes the proof. [

Definition 8. The MIS (4) has a solution (v,{) € T x Tifv(0) = v, {(0) = o and the pair
(&,v) is a solution to the following integral equations:

9
Ap(BI)vo+ [ (8 =5)°" Aoy (B((8 —5)7)) Z(8,v(8), £(8))As

+ j"l(ﬂ —5) App (B((8 —5)°))As
%

xE <s,v<s>,¢<s>, 2 Ee)ap, 2t pm(p),e(p))Ap),
+ }1(19 —8) T App(B((8 —s)P))HE(9)As, 8 € (%,5:01] N T, i=1,2,...,1,
i)
0
v(d) = Ap(BO) g+ [(8—5) " A (B((8—5)P))Z(9,v(8),E(8))As (32)

%
7l

+ [ (8 =5 App(B((8—5)"))As

xa<s,v<s>,c<s>, f Z1(s,pv(p), ()P, :fzz<s, p,v<p>,§<p>>Ap>,

+ [(0—5)P " App(B((9—s)))HE(Y)As

Si
+-L J(@® - s)P_1<p,-(s,v(s),§(s))As, %€ (s, 9Nt i=12,...,n,
;i
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and

i
Ap(BOP) c;fo+f — )" App (B((9 —5)P)) Z(8,E(9),v(8))As

o
9

+ (8 =5)" " Aop(B((8—5)°))As
%

xE(s,C(S),V(S),;f] Z1(s, P,C(P),V(P))Anj Z5(s, PIC(P)/V(P))AP>/

Ll
+ (0 —5) " App(B((8—3s)P))HUO)As, ¥ € (8;,5i14) N T, i=1,2,...,m,
%

= Ap(BOP) §0+f —8)" T A0 (B((9 —5)P)) Z(8,E(9),v(8))As (33)

%

+f —s)™ 1App(B((ﬂ—s)p))As
xE(s,C(S)IV(S),j Z4(s, P/C(P)/V(P))AP/:[’ Z5(s, Pr@(P)/V(P))AP>/

B
+ [ (8 =) App(B((8—5)°)) HE(S)As

where Ap(BO) is the matrix form of the MLFE.

Definition 9. We say that the MIS (4) is controllable on T, if for each vy, Co,va,Ca € T where
8;1 = A, there is an rd-continuous function £ € L*(I,R) so that the corresponding solution of (4)

justifies v(0) = v, §(0) = &p and £(A) = {4.

Lemma 4. Suppose that the hypotheses (1), (3), (4), (5) hold and va, 4 € T where 9;,1 = A'is
any chosen point. Then the pair (v,¢) € T x T, which is defined in (32) and (33) is a solution to the
MIS (3) on (s;, 0i41] N T, i =1,2,...,n, with the control function
8 i
(Pﬁ%ﬁ )7t |ij — Ao (B3 _J(ﬁ — )P App(B((8—5)))Z(8,v(8),8(8))As
0

—f 9 —s)f lApp(B((ﬁ—s)p))As

Xa<s v(s), le S, p,v (P)rC(P))APrj Z5(s, P/V(P)rg(P))APﬂr 9 € (8,s]NT,

L
(P§R§‘O)’l |j/T — Ap(BO)1g —ﬂf(ﬁ - s)p_lAp,p (B((8—5)"))Z(8,v(9),&(9))As

— [(0—5)" " App(B((9—5)))As
xE(sm(sm(s),f zl<s,p,v<p>,¢<p>>Ap,:f' zz<s,p,v<p>,<:<p>>Ap>,

L (19—s)p71¢i(s,v(s),é(s))As ,0€ (s;,%41],i=1,2,...,1,
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my

L/
(P§R;,§*0)*1 [gT — Ao (B9*)Eo —0[(19 — s)P‘lAp,p (B((8—5)P))Z(8,&(9),v(8))As

]
—5{(19 —8) Ao (B((9—5)"))As

xE (s, (s),v(s), f Zi(s,p,¢(p),v(p))Ap, fl Zy(s, PIC(P)W(P))AP> ] ;€ (B8N,

) . %
(R [ffT ~ N (BO)G — [ (9 =5) Mg (B((8 —5)°))Z(8,E(8), v(9)) s
- 7[(19 =)' A (B((9 —5)7)) s
L)
xE(s,C(s),v(s),sfl Z1(s, p,g(p),v(p))Ap,sfl Z(s, P,C(p),v(p))Ap>,

—%)lgf(ﬂ—s)p_l(pi(s,g(s),v(s))As ,0€ (s, 00T, i=1,2,...,1,

where Ay (BYFP) is the matrix form of the MLF, v(A) = v, and {(A) = { . Further, the control
function £(0) estimated by ||£(9)|] < 3y or |[£(8)| < Iy, where 2y and 3, are defined by

1
I, [mn A (B Yo + (s — Bur Ty v + &l

I'(p)

+(u3u2(TZ + T®1 + T®2 + (T@3Tzl + T@4TZ2)(51 — So)) ||1/ + {;’Hoo + Yé)(l?l — 190)],
and

1
I, [|cA|| + [0 Bol| + £ 55— BTyl + 8l

+(u3u2(TZ + T®1 + T®z + (T@3T21 + T®4TZZ)(SI — So)) ||1/ + é\loo + Yé)(ﬂl — 190)],
ford e (s;,%1]NT,i=12,...,n
Proof. Similar to Lemma 3, the proof is given. [

Theorem 9. If the assertions (1), (3),(4), (5) are true, then the MIS (3) is controllable on T
provided that

max{ /s, J5,J6} < 1. (34)

Proof. Assume that 0" C Q where 0" = {(Ky,Ky,K3,Kg) € Q: ||Ky, Ky, K3, Ky|| < 67},
where 6 = max{¢”,8/} and 8”,6] € (0,1), and also 6} > E;. Define an operator %’p’ :
O x U7 — U by
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Ap(BOF) vo—i—j 9 —5)P A (B((8—5)F))Z(8,v(9),E(8))As

L)

+f —8) Ao (B((9—5)"))As

><®< szl s, p,v(p), §( P))Ar]j Zz(s,P,V(P),é(p))Arf),
+f —8) " App (B((9 —s)P))HE(B)As, ¢ € (8o, B1],
Sp(v,0)(®) = Ap(BOF) 1/0—1—7[ 8 — )P Apo(B((8—5)))Z(9,v(8),E(8))As
%

+f —8)  Ap o (B((9—5)"))As

x®<s,v<s>,¢<s>,}'zl<s, pu(p), (), f Z(s, pm(p),@(p)mp),

+ [(0 =) Mo (B((8—5)°)) HE(B)As

Y (O (v(87), E(07)) + De (8, v(9;),E(8;))), 8 € (8;,8;14], i =1,2,...,1,

where A, (B9”) is the matrix form of the MLE. Now, we show that 37 : 0" x 0" — 00" isa
self-mapping. For ¢ € (9;,0;11],1 =1,2,...,n, we have

3 CICCRRC)]

SwoE| < ¥
]

D; (07, v(97),2(87)) || + A0 (BOwo

1
+ [[|@ =9 l1Ane (B8 =51 11 (Z(6,v(8), 5(8))
%
+0 SIV(S)/‘E(S)//Zl(SrP/V(P)rC(P))APr/ZZ(S/PrV(P)/C(P))AP)) As
. 50 S0
1 CEn i M CICER N O
%

IN

Y (To+Tp)s" + ur + 6" uz (u2 Tz + up T, + uzTe,

j=1

+us(To, Tz, + To,Tz,) (s1 — s0) + Y&) (8 — Bo)

+TuTR(8 — %) [i(To +Tp)d" + |[v|| 4 + 11 + 6" uz(u2Tz + us T, + uxTo,
=1

+uz(To, Tz, + To,Tz,) (s1 — s0) + Y&) (8 — 9)]

which implies that

Similarly, if 6§ > Eg, one can show that

Sy, 8)0)| < Er+6"Js < 8"+ 85 = &

[Sp@v)(®)] <Es+6"h <" +6"h =47,
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Hence

< & and || (§,V)(19)H <ol (35)

3y (v,2)(0)|

It follows from (35) that 3" (0" x 0") C U". Also, for ¢ € (8;,9;1],i = 1,2,...,n,
with vg = 7y and &y = go one has

S (v,8)(9) — %’p’(ﬁ,é)(ﬂ)H

21 0 (v(#).2(8;)) = 0; (7087 ), (7))
fe

/]
+ [ =9I ane (B =) 1 Z(6,v(8), 5(8))

+0 (s,v<s>,a:<s>, [z pvp)ew)sp, [ 26, pm(p),c(p))AP))

IN

D; (19].*,1/(19;),@(19;)) - D; (19;,3(19]),5(19,-’)) H

- (z(avw),éw)) +O ( 7(s), £(s), / 21 (s, p.7(p).E(p) ) Ap, / 2(s,p.7(p), ~<;a>)A;o>) As
]
= [l =9~ Ianp (e - Dl eR5) 0 - o0
x i oj<v(19f),g(19]f)) —oj(a(ﬁj*),é(&;)) Dj(ﬂj’,v(ﬂj’),(f(ﬂj’)> —Dj(ﬂ;,a(ﬁ;),g(ﬁ;))H

_(( (8),86)) ( /lepv Ap/Zzspv()Yp))Ap))

which implies that

35 (1,)(8) = S5 (7,8)(8)|

IN

i
(Z(TO + TD) + [MZTZ + uzTgl + leT@z + Mz(TQSTzl + T@gTZZ)(Sl — SO)] (191 — 1.90))
=1

x(Iv =7l + |5 -] )

i
+TuTH(% — %) LZ(TO +Tp) + [u2T7 4 upTe, + usTe, + u2(Te, Tz, + Te,Tz,) (s1 — so0)| (0 — 190)]
=1
x(Iv =7l + |5 -] )

(1+ TaTH(% — 80))

IN

i
X LZ(TQ + TD) + [uzTZ + MzT@l + uzT®2 + U2(T@3Tzl + T®3TZ2)(51 — So)] (191 — 190)‘|
i—1

x(Iv =7l + e - | ).
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S (v, 8)() =

Hence
|spw.0) - S5@H@)| < Jo(Iv -7l + e -] )-

Analogously, we can write

|Spw.0@) - 95@.H@)| < Js(Iv—7llo+ e -] )-

Therefore, the operator “{0’ is strictly contractive. As a result, using the Banach FP
theorem, C”’p’ has only one FP, that is the MIS (3) has a US. Moreover, we deduce from
Lemma 3 that v(¢) and ¢(9) satisfy the conditions v(A) = v4 and {(A) = 4. As aresult,
the controllability exists for the MIS (3). O

Theorem 10. If the assertions (1), (3), (4) and (5) hold, then the MIS (4) is controllable on T
provided that
max{J;} <1,i=5,7.

Proof. Assume that 0" C Q where 0" = {(Ky,Ky,K3,Kg) € Q: ||[Ky, Ky, K3, Ky|| < 87},
where 6§ = max{¢”,é{} and 6”,5] € (0,1), and also &) > Eg. Define an operator Syt
O x O — U by

/]
Ap(BO#)vg + ﬂf =) A (B((9 = 9)")) Z(8,v(8),6(9))As
+f =)' App (B((8 = 5)°))As
<& s,v<s>,é<s>,}’zl<s,p,v<p>,é<p>>Ap,7zz(s,p,v<p>,c<p>>Ap>,

50 50

+f —8) T Ao (B((9 —5)°) HL(9)As, 9 € (8;,s]NT, i=1,2,...,n,
Ap(B)vg +l§€ —5) T Ao (B((9—5)"))Z(9,v(9),E(9))As
+f =) " Ao (B((9 = 5)°)) As

><5<s,v(s),g(s),721(s, P/V(P)rC(P))API:{IZZ(Sr P/V(P)IC(P))M’)/

ik [0 =9 u(s,E(5), (s))As
Y;

+f —8) T App (B((9 —5)P))HL(s)As, O € (s;,0;11]NT, i=1,2,...,m,

where A (B9) is the matrix form of the MLE. Now, we illustrate that 37* : U x 0" — U”
is a self-mapping. For ¢ € (s;, ;1] NT,i=1,2,...,n, we get
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IN

|5 @)

IN

IN

/H -

+/H s)"” l ‘HAPP B((9—

E(S,V(S),éf(s)r/zl(s, p,v(p),&(p))

_|_

9

+ )@=l Ann(B((o -

%
Lu Tyd(s;
T(p) 7
+u25”T@3 TZl (Sl

+THTh

1
——uzTyd(s; —
ro) el

ilgitsvis), ) 14 + | Ap(B®wol|

P)IIHINEE) A s

— 191‘) +uy +us (Msz(SH + leTE] 8"+ u2T525//
s0) + Te,Tz,0" (s1 — s0) + Y&) (8 — %)

8;) +uy +u3 (uszé” + M2T315” + uzngyl

+u25”T®3T21 (s; —sg) + T®4TZZ5”(SZ —50) + YE) (0 — 190)]

E9 + 5//]5 5// 6”]5 — 5{/,

also, if E1g < 6", we have

A

1
< <F(p) uzTy(si — ;) +us[usTz + usTa, + usTw, + 1z (Tz, Tz, + Tz, T2z,) (51— s0) | (0 — 190)>

|83 @

Hence
e

It follows from (36) that 3** (0" x ") C U". Also, for ¢ € (8;,9;14],i = 1,2,...,n
with vg = 1y and &y = Co, one has

8) =9, (#,8)(9)|

x (||v — 7l + H§ - EHOQ)

+THT§R(19 191) |: (1p) u3T¢( 19) + uz l:

x <||v — 7l + H§ - EHOO)

IN

1
X {F(p) uzTy(si — 0;) + uz[upTz + upTs, + upTs, + up (T, Tz, + Tz, Tz,) (51 — 50)] (8 — 190)]

(1+ THTH(O —9)))

x(Iv =7+ e - |-

Hence

[EACBIGES

)| < Bio+6")s < 6"+ 6" = 5.

19)H < 6 and H<‘ ,)(19)H <ol

u Tz + uzT_El + uzTEZ :| :|
% -0
“+uyp (Tgstl + TE3TZZ) (Sl — So) ( ! 0)

@O < (-l + e 2] ).

(36)
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Similarly, we can obtain

Therefore, the operator C‘;* is strictly contractive. Thus, from the Banach FP theorem,
S " has a unique FP, which is a US to the MIS (4). In addition, we deduce from Lemma 4
that v(9) and (&) satisfy the stipulations v(A) = v4 and (A) = 4. This proves that, the
MIS (4) is controllable. [

3@ ) (0) = 95 EN©)| < Jr (v =7l + |2 - ]|)-

6. Supportive Example
This part is devoted to analyzing the findings from the earlier steps.

Example 1. Consider the MIS below:

“TDPY(8) = 327v(8) + 525 9(9) + eu (8, 9 (v(8)), P(&(9)) +fo Npy (v, ) As + ¢(9),
“TDPE(8) = 5278(8) + 3259(9) + eu(8,9(E(8)), p(v(8)) +fo Noy (G v)As +¢(0),
v(0) =1, &0) =1, 8 = [0,4].\{1,1.3}, (37)
v(8) = Or(v(9r),5(0r)) + Dy (8, ,v(9,),5(6,),¢(8,)), r
g(0r) = Ox( (197),1/09 )) + Dr(8,8(8;7 ), v(8;), ¢( ?)), = ,2-

— 7230(9) = eu(®, 9 (v(8), W(E(B)) = i Ao (v, E)As +9(8)| <1
9) + %(P(é‘) +eu(®, (5(8)), V() + J§ Apa(Ev)s +9(8)] <1 )

D (8, (8 ), 68 ), 9(8;,)) <1, 7 =
7)) = Dy(87,E07),v(07), (87 ) <1, 7 =

Weputr’ =10,4]:\{1,1.3}, %1 = 1,0, = 1.3, K1 (8) = 527, K2 (9) = 55, Aoy (v, &) =

1,2,
1,2.

E rp+,y forp v > 0. Also, we take
t
Z(8,v(8),8(9),Suz(8),9(8)) = eu(d,9(v(9)), ¥(§(9))) +/0 Aoy (V,8)As + ¢(9),
where 4)( ) is a control map for ¢ € " and S, (¢) = fot Npy(v,G)As and put e = 1. Assume

that 7,& € Q'([0,3],R) satisfy (38), then there is ¢ € QY([0,3],R) with ¢y € R so that
lp(0,v,8)| <1,forall ¢ € T and |@g| < 1. So, (38) can be written as

“TDPT(9) = F2(9) + 7239(8) +eu (0, p (7(9)), $(E(9)) + Ji Aoy (7.) Bs +4(8) + 9(8,7,8), 9 € 7,
TDPE(9) = FE(0) + 9(8) +eu (0, P (E(9)), Y ((®) ) + [ Apsy (8,7) A5 +¢(8) + 9(8,8,7), 0 € T
7(8,) = O, (7(8,),&( 807),0(0,)) + po(9,7,8), r =1,2

So, (37) has the solution

v(8) = O1(v(81),£(81)) + Oz (v<192>,é(192)>+D1(19 v (87),8(87),¢(97)) + D205, v(8;),8(07),¢(9))
+f0t eu (8, 9(9)) [ew (D, p(v(9)), p(E(8) "’fo Npy (v, (;' AP""P (s)]As

&(8) = O1(&(81),v(81)) + 02(&(%), <192>>+D1<19 L8007, v(87), (8 ))+Dz(l9 ,8(97),v(87),0(8;))
+ fo eu(®,9(0)) [ew (8, 9(E(9), p(v(9)) + [; Am CV)AP+<P()

Therefore, the MIS (37) has just one solution on Q'(]0,3]+,R), according to our obtained
results, and the system (37) is UH stable on T".
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7. Conclusions and Future Works

Over the past year, impulsive fractional differential equations have advanced quickly.
Particularly for those issues that are subject to abrupt changes and discontinuous jumps
and cannot be described by integer-order differential equations, it plays a significant
role in providing a natural framework for modeling various real processes arising in
phenomena discussed in various scientific fields. Numerous mathematicians have recently
demonstrated an interest in the qualitative theory of impulsive differential equations. In a
connected fractional dynamic system with initial boundary and impulsive conditions on
time scales, we have successfully demonstrated its existence, uniqueness, UH stability
and controllability criterion. For the existence of at least one solution, the Leray-Schauder
alternative type FP theorem was applied. The unique solution was looked into while
using the Banach contraction theorem. In addition, an example was given to demonstrate
the results drawn from the analysis. For future projects, the main aim of the authors is
that these qualitative specifications can be checked and established on some real-world
impulsive systems arising in mathematical models of brain.
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MDPI Multidisciplinary Digital Publishing Institute
DOA] Directory of open access journals
TLA Three letter acronym

LD Linear dichroism

FDEs Fractional differential equations
UH Ulam-Hyers

BS Banach spaces

CD Caputo derivative

PS Product space

MLF Mittag-Leffler function

MIS Mixed impulsive system

us Unique solution

FpP Fixed point
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