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Abstract: A new local fractional modified Benjamin–Bona–Mahony equation is proposed within the
local fractional derivative in this study for the first time. By defining some elementary functions
via the Mittag–Leffler function (MLF) on the Cantor sets (CSs), a set of nonlinear local fractional
ordinary differential equations (NLFODEs) is constructed. Then, a fast algorithm namely Yang’s
special function method is employed to find the non‑differentiable (ND) exact solutions. By this
method, we can extract abundant exact solutions in just one step. Finally, the obtained solutions on
the CS are outlined in the form of the 3‑D plot. The whole calculation process clearly shows that
Yang’s special function method is simple and effective, and can be applied to investigate the exact
ND solutions of the other local fractional PDEs.

Keywords: local fractional derivative; Mittag–Leffler function; Yang’s special function method;
cantor sets

1. Introduction
As is known to all, many complex phenomena occurring in nature involving in op‑

tics [1–5], vibration [6,7], social and economic [8], thermal science [9,10], and others [11–13]
can be modeled by the partial differential equations (PDEs). In recent years, the fractional
derivative has been adopted to PDEs to describe many phenomena arising in scientific
and engineering fields, such as physics [14–18], biology [19–21], chemistry [22–24], me‑
chanics [25–27], communication engineering [28–31], and so on [32,33]. Finding the ex‑
act solution of the fractional partial differential equation is helpful to further understand
and analyze the dynamic behavior of the fractional partial differential equation. Com‑
pared with the mathematical model with an integer derivative, the fractional derivative
mathematical model can more accurately describe the complex phenomena. Recently, the
local fractional derivative (LFD) has attracted wide attention in various fields and some
outstanding research results have emerged. In [34], the q‑homotopy analysis transform
method is applied to study the local fractional Poisson equation. In [35], the local fractional
Fokker Planck equation is proposed and the reduced differential transformmethod and lo‑
cal fractional series expansion method are considered. In [36], the factorization technique
is derived to investigate some local fractional PDEs. In [37], the Sumudu transformmethod,
alongside theAdomian decompositionmethod, is used to employ the local fractional PDEs.
In [38], the Mittag–Leffler function‑based method is adopted to find the non‑differentiable
exact solutions of the (2 + 1)‑dimensional local fractional breaking soliton equation. In [39],
the local fractional variational iteration method is presented to investigate the local frac‑
tional heat conduction equation. In [40], the extended rational fractal sine–cosine method
is used and six sets of the exact solutions are obtained. In [41], the Local fractional Fourier
series method is utilized to study the wave equations. Many other studies can be seen
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in [42–46]. On the inspiration of the latest research results about the LFD, we present a
new local fractional modified Benjamin–Bona–Mahony equation (LFMBBME) below:

∂ϑℵϑ

∂tϑ
+

∂ϑℵϑ

∂xϑ
+ kℵ2

ϑ

∂ϑℵϑ

∂xϑ
+

∂2ϑ

x2ϑ

(
∂ϑℵϑ

∂tϑ

)
= 0, (1)

where ϑ(0 < ϑ ≤ 1) is the fractional order, ∂ϑℵϑ

∂tϑ and ∂ϑℵϑ

∂xϑ are the local fractional derivatives.
The definitions are presented in Section 2. In this work, we aim to investigate the exact ND
solutions of the LFMBBME via a fast algorithm known as Yang’s special function method,
which can avoid the complicated calculation process and obtain abundant exact solutions
in one step. The ideas within work are expected to open up some new horizons in the
study of local fractional PDEs. The rest of this article is structured as follows. In Section 2,
the properties of the LFD and some special functions are presented. In Section 3, a set
of nonlinear local fractional ODEs is constructed. In Section 4, Yang’s special function
method is used to find the exact ND solutions, and the behaviors of the solutions on the
CS are presented. Finally, a conclusion is reached in Section 5.

2. Basic Theory
In this section, some basic theory that is used to study the problem is presented.

Definition 1. The LFD ofΞ(x)with orderϑis defined as [47]:

dϑΞ(x)
dxϑ

|x = x0 = lim
x→x0

∆ϑ[Ξ(x)− Ξ(x0)]

(x − x0)
ϑ

, (2)

where ∆ϑ[Ξ(x)− Ξ(x0)] ∼= Γ(1 + ϑ)[Ξ(x)− Ξ(x0)] with Euler’s gamma function.

Γ(1 + ϑ) =:
∫ ∞

0
xϑ−1 exp(−x)dx.

For the LFD, there is the following rule chain [47]:

dkϑΞ(x)
dxkϑ

=

k times

dϑ

dxϑ
. . .

dϑ

dxϑ
Ξ(x).

Definition 2. The local fractional integral (LFI) of Ξ(x) with the fractional order ϑ (0 < ϑ ≤ 1)
is defined by [47]:

aIϑb Ξ(x) =
1

Γ(1 + ϑ)

∫ b

a
Ξ(x)(dx)ϑ =

1
Γ(1 + ϑ)

lim
∆xk→0

N−1

∑
k=0

Ξ(xk)(∆xk)
ϑ (3)

Here, ∆xk = xk+1 − xk and x0 = a < x1 < . . . < xN−1 < xN = b.

Property 1. The properties of the LFD are listed as follows [47]:

(1)
dϑ

dtϑ
[p(t)± q(t)] =

dϑ

dtϑ
p(t)± dϑ

dtϑ
q(t), (4)

(2)
dϑ

dtϑ
[p(t)q(t)] = q(t)

dϑ

dtϑ
p(t) + p(t)

dϑ

dtϑ
q(t), (5)

(3)
dϑ

dtϑ
[p(t)/q(t)] =

[
q(t) dϑ

dtϑ p(t)− p(t) dϑ

dtϑ q(t)
]

q(t)2 , (6)
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Definition 3. The MLF on the CS with fractional order ϑ is defined as [47]:

MIϑ(℘γ) =
∞

∑
ℑ=0

℘ℑϑ

Γ(1 +ℑϑ)
. (7)

Definition 4. Based on the MLF, we can derive four special functions, namely the SE function, the
CH function, the SE function, and the CS function, as [47]:

SHϑ

(
℘ϑ
)
=

2
MIϑ

(
℘ϑ
)
+MIϑ

(
−℘ϑ

) , (8)

CHϑ

(
℘ϑ
)
=

2
MIϑ

(
℘ϑ
)
−MIϑ

(
−℘ϑ

) , (9)

SEϑ

(
℘ϑ
)
=

2
MIϑ

(
iϑ℘ϑ

)
+MIϑ

(
−iϑ℘ϑ

) , (10)

CSϑ

(
℘ϑ
)
=

2iϑ

MIϑ
(
iϑ℘ϑ

)
−MIϑ

(
−iϑ℘ϑ

) . (11)

The behaviors of the four special functions on theCSusing ϑ = ln 2/ ln 3 are displayed
in Figure 1.

Figure 1. The outline of the special functions on theCS: (a) for the SE function, (b) for theCH function,
(c) for the SE function, (d) and for the CS function.
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Property 2. The properties of the MLF are given as [47]:

(1) D(ϑ)MIϑ
(

∆ξϑ
)
= ∆MIϑ

(
ξϑ
)

, (12)

(2)MIϑ
(

ξϑ
)
MIϑ

(
ζϑ
)
= MIϑ

(
ξϑ + ζϑ

)
, (13)

(3)MIϑ
(

ξϑ
)
MIϑ

(
−ζϑ

)
= MIϑ

(
ξϑ − ζϑ

)
(14)

(4)MIϑ
(

ξϑ
)
MIϑ

(
iϑζϑ

)
= MIϑ

(
ξϑ + iϑζϑ

)
(15)

(5)MIϑ
(

iϑξϑ
)
MIϑ

(
iϑζϑ

)
= MIϑ

(
iϑξϑ + iϑζϑ

)
(16)

3. Construct of the NLFODEs
In the view of Equation (8), we define the following NLFODE [48]:

φϑ

(
℘ϑ
)
= χ1SHϑ

(
χ2℘

ϑ
)

, (17)

Taking the LFD of Equation (17), we have:

D(ϑ)φϑ

(
℘ϑ
)
= D(ϑ)

[
χ1SHϑ

(
χ2℘

ϑ
)]

= D(ϑ)

[
2χ1

MIϑ(χ2℘ϑ)+MIϑ(−χ2℘ϑ)

]
= − 2χ1χ2[MIϑ(χ2℘

ϑ)−MIϑ(−χ2℘
ϑ)]

[MIϑ(χ2℘ϑ)+MIϑ(−χ2℘ϑ)]
2

(18)

which gives:[
D(ϑ)φ

(
℘ϑ
)]2

=

{
− 2χ1χ2[MIϑ(χ2℘

ϑ)−MIϑ(−χ2℘
ϑ)]

[MIϑ(χ2℘ϑ)+MIϑ(−χ2℘ϑ)]
2

}2
= 4χ2

1χ2
2
[MIϑ(2χ2℘

ϑ)+MIϑ(−2χ2℘
ϑ)−2]

[MIϑ(χ2℘ϑ)+MIϑ(−χ2℘ϑ)]
4

= 4χ2
1χ2

2
[MIϑ(χ2℘

ϑ)+MIϑ(−χ2℘
ϑ)]

2−4

[MIϑ(χ2℘ϑ)+MIϑ(−χ2℘ϑ)]
4 = χ2

1χ2
2

(
4

[MIϑ(χ2℘ϑ)+MIϑ(−χ2℘ϑ)]
2 ,−, 16

[MIϑ(χ2℘ϑ)+MIϑ(−χ2℘ϑ)]
4

)
= χ2

2χ2
1

[
SH2

ϑ

(
℘ϑ
)
− SH4

ϑ

(
℘ϑ
)]

= χ2
2 φ2

ϑ

(
℘ϑ
)[

1 − 1
χ2

1
φ2

ϑ

(
℘ϑ
)]

= χ2
2 φ2

ϑ

(
℘ϑ
)
− χ2

2
χ2

1
φ4

ϑ

(
℘ϑ
)

(19)

Based on Equation (9), we can construct the following NLFODE [48]:

φϑ

(
℘ϑ
)
= χ1CHϑ

(
χ2℘

ϑ
)

, (20)

Taking the LFD of the above equation as:

D(ϑ)φϑ

(
℘ϑ
)
= D(ϑ)

[
χ1CHϑ

(
χ2℘

ϑ
)]

= D(ϑ)

[
2χ1

MIϑ(χ2℘ϑ)−MIϑ(−χ2℘ϑ)

]
= − 2χ1χ2[MIϑ(χ2℘

ϑ)+MIϑ(−χ2℘
ϑ)]

[MIϑ(χ2℘ϑ)−MIϑ(−χ2℘ϑ)]
2

(21)
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Then, we have:[
D(ϑ)φ

(
℘ϑ
)]2

=

{
− 2χ1χ2[MIϑ(χ2℘

ϑ)+MIϑ(−χ2℘
ϑ)]

[MIϑ(χ2℘ϑ)−MIϑ(−χ2℘ϑ)]
2

}2
= 4χ2

1χ2
2
[MIϑ(2χ2℘

ϑ)+MIϑ(−2χ2℘
ϑ)+2]

[MIϑ(χ2℘ϑ)−MIϑ(−χ2℘ϑ)]
4

= 4χ2
1χ2

2
[MIϑ(χ2℘

ϑ)−MIϑ(−χ2℘
ϑ)]

2
+4

[MIϑ(χ2℘ϑ)−MIϑ(−χ2℘ϑ)]
4 = χ2

1χ2
2

 4
[MIϑ(χ2℘ϑ)−MIϑ(−χ2℘ϑ)]

2

+ 16

[MIϑ(χ2℘ϑ)−MIϑ(−χ2℘ϑ)]
4


= χ2

2χ2
1

[
CH2

ϑ

(
℘ϑ
)
+CH4

ϑ

(
℘ϑ
)]

= χ2
2 φ2

ϑ

(
℘ϑ
)
+

χ2
2

χ2
1

φ4
ϑ

(
℘ϑ
)

(22)

We can also consider the following NLFODE [48]:

φϑ

(
℘ϑ
)
= χ1SEϑ

(
χ2℘

ϑ
)

, (23)

Similarly, its LFD is given by:

D(ϑ)φϑ

(
℘ϑ
)
= D(ϑ)

[
χ1SEϑ

(
χ2℘

ϑ
)]

= D(ϑ)

[
2χ1

MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)

]
= − 2χ1χ2[iϑMIϑ(χ2iϑ℘ϑ)−iϑMIϑ(−χ2iϑ℘ϑ)]

[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]
2

(24)

Such that[
D(ϑ)φϑ

(
℘ϑ
)]2

=

{
− 2χ1χ2[iϑMIϑ(χ2iϑ℘ϑ)−iϑMIϑ(−χ2iϑ℘ϑ)]

[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]
2

}2
= −4χ2

1χ2
2
[MIϑ(2χ2iϑ℘ϑ)+MIϑ(−2χ2iϑ℘ϑ)−2]

[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]
4

= −4χ2
1χ2

2
[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]

2−4

[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]
4 = χ2

1χ2
2

 − 4
[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]

2

+ 16

[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]
4


= χ2

1χ2
2

[
−SE2

ϑ

(
℘ϑ
)
+ SE4

ϑ

(
℘ϑ
)]

= χ2
2 φ2

ϑ

(
℘ϑ
)[
−1 + 1

χ2
1

φ2
ϑ

(
℘ϑ
)]

= −χ2
2 φ2

ϑ

(
℘ϑ
)
+

χ2
2

χ2
1

φ4
ϑ

(
℘ϑ
)

(25)

In the light of Equation (11), we construct another NLFODE as [48]:

φϑ

(
℘ϑ
)
= χ1CSϑ

(
χ2℘

ϑ
)

, (26)

Applying the LFD for Equation (26) as:

D(ϑ)φϑ

(
℘ϑ
)
= D(ϑ)

[
χ1CSϑ

(
χ2℘

ϑ
)]

= D(ϑ)

[
2χ1iϑ

MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)

]
=

2χ1χ2[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]

[MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)]
2

(27)
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Thus, we have:[
D(ϑ)φ

(
℘ϑ
)]2

=

{
2χ1χ2[MIϑ(χ2iϑ℘ϑ)+MIϑ(−χ2iϑ℘ϑ)]

[MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)]
2

}2
= 4χ2

1χ2
2
[MIϑ(2χ2iϑ℘ϑ)+MIϑ(−2χ2iϑ℘ϑ)+2]

[MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)]
4

= 4χ2
1χ2

2
[MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)]

2
+4

[MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)]
4 = χ2

1χ2
2

 − −4
[MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)]

2

+ 16

[MIϑ(χ2iϑ℘ϑ)−MIϑ(−χ2iϑ℘ϑ)]
4


= χ2

1χ2
2

[
−CS2

ϑ

(
℘ϑ
)
+CS4

ϑ

(
℘ϑ
)]

= χ2
2 φ2

ϑ

(
℘ϑ
)[
−1 + 1

χ2
1

φ2
ϑ

(
℘ϑ
)]

= −χ2
2 φ2

ϑ

(
℘ϑ
)
+

χ2
2

χ2
1

φ4
ϑ

(
℘ϑ
)

(28)

From Equations (19), (22), (25), and (28), we can conclude the general NLFODE as the
following form by introducing two parameters p and q:

[
D(ϑ)φϑ

(
℘ϑ
)]2

= pχ2
2 φ2

ϑ

(
℘ϑ
)
+ q

χ2
2

χ2
1

φ4
ϑ

(
℘ϑ
)

, (29)

Obviously, its exact ND solutions are given as:

φϑ

(
℘ϑ
)
=


χ1SHϑ

(
χ2℘

ϑ
)
, f or p = 1, q = −1

χ1CHϑ

(
χ2℘

ϑ
)
, f or p = 1, q = 1

χ1SEϑ

(
χ2℘

ϑ
)
, f or p = −1, q = 1

χ1CSϑ

(
χ2℘

ϑ
)
, f or p = −1, q = 1

. (30)

4. Yang’s Special Function Method
In this section, Yang’s special function method will be adopted to search for the exact

ND solutions. For this goal, the following ND transformation is considered [49–51]:

ℵϑ

(
xϑ, tϑ

)
= ℵϑ

(
℘ϑ
)

, ℘ϑ = ρϑxϑ − ϖϑtϑ, (31)

Additionally, there is:
lim
ϑ→1

℘ϑ = ρx − ϖt, (32)

Putting Equation (31) into Equation (1) gives:

∂ϑℵ
∂tϑ

= −ϖϑ dϑℵ
d℘ϑ

, (33)

∂ϑℵϑ

∂xϑ
= ρϑ dϑℵϑ

d℘ϑ
, (34)

∂2ϑ

x2ϑ

(
∂ϑℵϑ

∂tϑ

)
= −ρ2ϑϖϑ d3ϑℵϑ

dζ3ϑ
, (35)

Taking them into Equation (1) yields:

(
ρϑ − ϖϑ

) dϑℵ
d℘ϑ

+ kρϑℵ2 dϑℵ
d℘ϑ

− ρ2ϑϖγ d3ϑℵ
d℘3ϑ

= 0, (36)

where ρϑ − ϖϑ ̸= 0.
Applying the LFI to Equation (36) and ignoring the integral constant yields:

(
ρϑ − ϖϑ

)
ℵϑ +

1
3

kρϑℵ3
ϑ − ρ2ϑϖγ d2ϑℵϑ

d℘2ϑ
= 0, (37)
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By multiplying both sides of above equation by dϑℵϑ

d℘ϑ , we have:

(
ρϑ − ϖϑ

)
ℵϑ

dϑℵϑ

d℘ϑ
+

1
3

kρϑℵ3
ϑ

dϑℵϑ

d℘ϑ
− ρ2ϑϖγ d2ϑℵϑ

d℘2ϑ

dϑℵϑ

d℘ϑ
= 0, (38)

Taking the LFI of the above equation leads to:

1
2

(
ρϑ − ϖϑ

)
ℵ2

ϑ +
1

12
kρϑℵ4

ϑ −
1
2

ρ2ϑϖγ

(
dϑℵϑ

d℘ϑ

)2

= ∆, (39)

Here, ∆ is the integral constant. Letting ∆ to be zero, we have:

1
2

(
ρϑ − ϖϑ

)
ℵ2

ϑ +
1
12

kρϑℵ4
ϑ −

1
2

ρ2ϑϖγ

(
dϑℵϑ

d℘ϑ

)2

= 0. (40)

Such that: (
dϑℵϑ

d℘ϑ

)2

=
ρϑ − ϖϑ

ρ2ϑϖϑ
ℵ2

ϑ +
k

6ρϑϖϑ
ℵ4

ϑ. (41)

By comparing Equation (41) and Equation (29), we have:
Set 1: For p = 1, q = −1, there is:

ρϑ − ϖϑ

ρ2ϑϖϑ
= χ2

2, (42)

k
6ρϑϖϑ

= −
χ2

2
χ2

1
, (43)

According to Equations (42) and (43), we have:

χ1 =

√
6
(
ϖϑ − ρϑ

)
kρϑ

, χ2 =

√
ρϑ − ϖϑ

ρ2ϑϖϑ
, (44)

Thus, we can obtain the exact solution of Equation (1) as:

ℵϑ(x, t) =

√
6
(
ϖϑ − ρϑ

)
kρϑ

SHϑ

(√
ρϑ − ϖϑ

ρ2ϑϖϑ

(
ρϑxϑ − ϖϑtϑ

))
. (45)

For ϖϑ = 1, ρϑ = 2, k = −1, we display the profile of the exact ND solution given by
Equation (45) on the CS in Figure 2. Here, the t and x are both selected on the CS range
0 to 1, and the fractional order is used as ϑ = ln 2/ ln 3. It can be found that the value
of the solution is between 1 and 1.8. In addition, the figure is the blocky structure which
conforms to the CS characteristics.

Set 2: For p = 1, q = 1, there is:

ρϑ − ϖϑ

ρ2ϑϖϑ
= χ2

2, (46)

k
6ρϑϖϑ

=
χ2

2
χ2

1
, (47)
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Figure 2. The profile of Equation (45) on CS with ϖϑ = 1, ρϑ = 2, and k = −1 for ϑ = ln 2/ ln 3.

We have:

χ1 =

√
6
(
ρϑ − ϖϑ

)
kρϑ

, χ2 =

√
ρϑ − ϖϑ

ρ2ϑϖϑ
, (48)

Then, the second exact ND solution of Equation (1) is attained as:

ℵϑ(x, t) =

√
6
(
ρϑ − ϖϑ

)
kρϑ

CHϑ

(√
ρϑ − ϖϑ

ρ2ϑϖϑ

(
ρϑxϑ − ϖϑtϑ

))
. (49)

For using ϖϑ = 1, ρϑ = 2, k = 1, we display the solution Equation (49) on the CS for
ϑ = ln 2/ ln 3 in Figure 3. The values of t and x are all selected on the CS from 0 to 1. It can
be found that the profile of Equation (49) is the blocky structure, and when the coordinate
(x, t) is close to (0, 0), the value of the solution increases rapidly.

Figure 3. The profile of Equation (49) on CS with ϖϑ = 1, ρϑ = 2, k = 1 for ϑ = ln 2/ ln 3.
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Set 3: For p = −1, q = 1, there is:

ρϑ − ϖϑ

ρ2ϑϖϑ
= −χ2

2, (50)

k
6ρϑϖϑ

=
χ2

2
χ2

1
, (51)

There is:

χ1 =

√
6
(
ϖϑ − ρϑ

)
kρϑ

, χ2 =

√
ϖϑ − ρϑ

ρ2ϑϖϑ
, (52)

Correspondingly, we can find the exact ND solutions of Equation (1) as:

ℵϑ(x, t) =

√
6
(
ϖϑ − ρϑ

)
kρϑ

SEϑ

(√
ϖϑ − ρϑ

ρ2ϑϖϑ

(
ρϑxϑ − ϖϑtϑ

))
, (53)

By choosing the parameters as ϖϑ = 2, ρϑ = 1, k = 1, we display the outline of
Equation (53) on CS for ϑ = ln 2/ ln 3 in Figure 4. Here, the outline of the solution is also
the blocky structure which corresponds to the characteristics of the CS. Additionally, the
value of the solution increases rapidly when (x, t) is close to (1, 0).

Figure 4. The profile of Equation (53) on CS with ϖϑ = 2, ρϑ = 1, k = 1 for ϑ = ln 2/ ln 3.

Set 4: For p = −1, q = 1, there is:

ρϑ − ϖϑ

ρ2ϑϖϑ
= −χ2

2, (54)

k
6ρϑϖϑ

=
χ2

2
χ2

1
, (55)

There is:

χ1 =

√
6
(
ϖϑ − ρϑ

)
kρϑ

, χ2 =

√
ϖϑ − ρϑ

ρ2ϑϖϑ
, (56)
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Correspondingly, we can find the exact ND solutions of Equation (1) as:

ℵϑ(x, t) =

√
6
(
ϖϑ − ρϑ

)
kρϑ

CSϑ

(√
ϖϑ − ρϑ

ρ2ϑϖϑ

(
ρϑxϑ − ϖϑtϑ

))
. (57)

For using ϖϑ = −1, ρϑ = 1, k = −1, we display the profile of the Equation (57)
solution on the CS with ϑ = ln 2/ ln 3 in Figure 5. Similar to Equation (49), the blocky
structure increases rapidly when (x, t) is close to (0, 0).

Figure 5. The profile of Equation (57) on CS with ϖϑ = −1, ρϑ = 1, k = −1 for ϑ = ln 2/ ln 3.

It should be noted that the correctness of the exact obtained ND solutions provided
by Equations (45), (49), (53), and (57) are verified by substituting them into Equation (41).

5. Conclusions
This paper proposes a new local fractional modified Benjamin–Bona–Mahony equa‑

tion based on the local fractional derivative. A group of nonlinear local fractional ordinary
differential equations is constructed by defining some elementary functions via theMittag–
Leffler function on the Cantor set. A simple and effective approach, called Yang’s special
functionmethod, is suggested for the first time to solve this problem. By using thismethod,
we can obtain four different exact solutions in just one step. Furthermore, the obtained so‑
lutions on the Cantor set are outlined in the form of a 3‑D plot. It is revealed that the
one‑step method is effective and can be utilized to study the other local fractional PDEs.
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