
Citation: Zulqarnain, R.M.; Ma,

W.-X.; Eldin, S.M.; Mehdi, K.B.; Faridi,

W.A. New Explicit Propagating

Solitary Waves Formation and

Sensitive Visualization of the

Dynamical System. Fractal Fract.

2023, 7, 71. https://doi.org/10.3390/

fractalfract7010071

Academic Editors: Ghazala Akram,

Muhammad Abbas, Ali Akgül,

Maasoomah Sadaf and Luis

Vázquez

Received: 6 December 2022

Revised: 24 December 2022

Accepted: 29 December 2022

Published: 9 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fractal and fractional

Article

New Explicit Propagating Solitary Waves Formation and
Sensitive Visualization of the Dynamical System
Rana Muhammad Zulqarnain 1 , Wen-Xiu Ma 1,2,3,4,*, Sayed M. Eldin 5, Khush Bukht Mehdi 6

and Waqas Ali Faridi 6

1 College of Mathematics and Computer Science, Zhejiang Normal University, Jinhua 321004, China
2 Department of Mathematics, King Abdulaziz University, Jeddah 21589, Saudi Arabia
3 Department of Mathematics and Statistics, University of South Florida, Tampa, FL 33620-5700, USA
4 School of Mathematical and Statistical Sciences, North-West University, Mafikeng Campus, Private Bag X2046,

Mmabatho 2735, South Africa
5 Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo 11835, Egypt
6 Department of Mathematics, University of Management and Technology, Lahore 54770, Pakistan
* Correspondence: wma3@usf.edu

Abstract: This work discusses the soliton solutions for the fractional complex Ginzburg–Landau
equation in Kerr law media. It is a particularly fascinating model in this context as it is a dissipative
variant of the Hamiltonian nonlinear Schrödinger equation with solutions that create localized
singularities in finite time. The φ6-model technique is one of the generalized methodologies exerted
on the fractional complex Ginzburg–Landau equation to find the new solitary wave profiles. As
a result, solitonic wave patterns develop, including Jacobi elliptic function, periodic, dark, bright,
single, dark-bright, exponential, trigonometric, and rational solitonic structures, among others. The
assurance of the practicality of the solitary wave results is provided by the constraint condition
corresponding to each achieved solution. The graphical 3D and contour depiction of the attained
outcomes is shown to define the pulse propagation behaviors while imagining the pertinent data for
the involved parameters. The sensitive analysis predicts the dependence of the considered model on
initial conditions. It is a reliable and efficient technique used to generate generalized solitonic wave
profiles with diverse soliton families. Furthermore, we ensure that all results are innovative and mark
remarkable impacts on the prevailing solitary wave theory literature.

Keywords: exact solitary wave structures; Jacobi elliptic functions; fractional complex Ginzburg–Landau
equation; φ6-model expansion method; beta derivative; sensitive analysis

1. Introduction

Exploring exact and solitary traveling wave solutions for nonlinear partial differential
equations plays a vital role in nonlinear physical phenomena. Nonlinear wave phenomena
occur in many scientific and engineering fields, such as plasma physics, fluid mechanics,
biology, optical fiber, solid-state physics, chemical physics, chemical kinematics, and geo-
chemistry. Nonlinear wave phenomena such as dissipation, dispersion, reaction, diffusion,
and convection should be included in the nonlinear wave equation. Over the past few
eras, innovative exact solutions may support a determination of novel phenomena [1–4].
Additionally, soliton theory has captivated considerable devotion in experimental explo-
ration by scientific societies and intellectuals, as it is a dynamic sector of investigation
in broadcastings, engineering, mathematical physics, and numerous other divisions of
nonlinear discipline. Particularly, solitons have been extensively studied in the present
era. Solitons are types of solitary waves that propagate waves deprived of being scattered
over vast distances, i.e., they retain their figure over long distances. Solitons are the major
strategy for a telecommunication society. Because of this feature, they are of phenomenal
reputation in nonlinear science. Soliton replicas have many purposes, such as solitary
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wave-based communication contacts, fiber amplifiers, optical pulse compressors, etc. Soli-
ton theory has led to research for investigators due to its application in assorted arenas
such as broadcasting, enterprise, statistical materials science, mathematical physics, and
various parts of nonlinear problems [5–8].

Over the past two centuries, fractional calculus has attracted the attention of various
intellectuals. Use them to model numerous nonlinear facets, including biological, fluid,
and chemical processes. Fractional order partial differential equations (PDEs) are gener-
alizations of conventional order PDEs. The literature comprises numerous descriptions
of fractional derivatives, such as the Hadamard derivative [9], the Weyl derivative [10],
the Riesz derivative [11], He’s fractional derivative [12], Riemann–Liouville [13,14], Abel–
Riemann derivative [15], Caputo [16], Caputo–Fabrizio [17] Atangana–Baleanu derivative
in the perspective of Caputo [18], the conformable fractional derivative [19], the innovative
truncated M-fractional derivative [20]. Atangana et al. [21] recently developed the beta
derivative that contains many of the properties considered to be the confines of fractional
derivatives. This derivative has stimulating effects in various fields, such as optical physics,
circuit analysis, chaos theory, fluid mechanics, disease analysis, biological modeling, etc.

Several models are currently being considered for soliton solutions [22–29]. One
model that has been under contemplation for several years is the complex Ginzburg–
Landau (CGL). The complex Ginzburg–Landau equation (CGLE) is one of the best models
to define optical phenomena [30–32]. To better study complex optical phenomena and
their nature, the finest approaches are to bargain exact traveling solutions to CGLE that
designate nonlinear optical phenomena. Numerous potent mathematical methods have
recently been used to obtain exact soliton solutions to CGLE. Liu et al. [33] obtained the kink
and periodic wave solutions by using the Hirota bilinear method. Inc et al. [34] obtained
the bright and singular soliton solutions for the non-linearity term of the CGL model by
utilizing the Sine-Gordon method. Arnous et al. [35] observed the optical soliton solution
by utilizing the improved simple equation technique. The quadratic and multiple solitons
of n-dimension CGLE were extended by Khater et al. [36] using the Sine-Gordon expansion
method. Das et al. [37] used the F-expansion method to obtain bright and dark solitons
of CGLE.

The current research sheds light on the space-time fractional CGLE [38,39]. The
space-time fractional CGL model associated here is deliberated by

iA
0 Dα

t u + aA
0 D2α

x u + cH
(
|u|2

)
u

= 1
|u|2u∗

{
δA

0 D2α
x
(
|u|2

)
|u|2 − N

(A
0 Dα

x
(
|u|2

))2
}
+ Pu,

(1)

where α and β are the fractional parameters, x signifies distance through the fiber, t rep-
resents time in dimensionless form a, c, and P are valued constants. The sign ∗ shows
the complex conjugate of the function u(x, t) and H is a real-valued algebraic function,
and its consistency is organized by a complex function H

(
|u|2

)
u : C → C. Now, C a two-

dimensional linear space R2, H
(
|u|2

)
u is k times continuously differentiable real-valued

function [40]:

H
(
|u|2

)
u ∈

∞
U

p,q=1
Ck
(
(−q, q)× (−p, p); R2

)
, (2)

where δ = 2N, then Equation (1) reduces to

iA
0 Dα

t u + aA
0 D2α

x u + cH
(
|u|2

)
u

= N
|u|2u∗

{
2A

0 D2α
x
(
|u|2

)
|u|2 −

(A
0 Dα

x
(
|u|2

))2
}
+ Pu.

(3)

Equation (2) is one of many models that control the dynamics of fiber optic pulse
diffusion at transcontinental and transoceanic distances. Sulaiman et al. [41] extended the
Sine-Gordon expansion method and intended the conformable time-space fractional CGLE.
Abdo et al. [42] deliberated the fractional CGLE using the extended Jacobi elliptic function
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expansion system. Arshed [43] utilized the exp (−φ(ξ))− expansion method and built the
soliton solutions to fractional CGLE. Ghanbari and Gomez-Aguilar [44] use exponential
rational functional methods to explore periodic and hyperbolic soliton solutions CGLE.
Lu et al. [45] considered the (2+1) dimensional fractional CGLE by fractional Riccati and
bifurcation methods. Hussain and Jhangeer [46] obtained the optical solitons of fractional
CGLE with conformable, beta, and M-truncated derivatives. Akram et al. [47] studied
the optical solitons for the fractional CGLE with Kerr law non-linearity engaging diverse
fractional differential operators. Sadaf et al. [48] obtained the dark, bright, complexion,
singular and periodic optical solitons of fractional CGLE with Kerr law non-linearity
implementing conformable, beta, and M-truncated derivatives. Zafar et al. [49] used
improved exp-function and the Kudryshov method to obtain kink, bright, W-shaped bright
and dark solitons for fractional CGL models. This model was confirmed with quadratic-
cubic laws, Kerr’s law, and parabolic laws of nonlinear fibers.

The main focus of this investigation is to use the new implication of fractional-order
derivatives, such as beta fractional derivatives [21] for space-time fractional CGLE [38,39],
and to determine the novel composite exact traveling wave solutions in terms of light,
dark, singular soliton, and periodic solitary wave solutions with Kerr’s law using the
φ6-model expansion method [50–54]. To the best of our familiarity, the solutions attained
are broader and in diverse arrangements, which have not been stated in earlier available
studies [38,42–49]. Moreover, we attain the dynamic behavior of a solitary wave solution
(SWS) involving a class of Jacobi elliptic functions under the constraints. Due to its im-
perative solicitation in nonlinear optics, this solution is significant for advanced studies of
this model.

The rest of the paper is organized as follows. In Section 2, the beta derivative and its
properties are deliberated, and the techniques of φ6-model expansion scheme is discussed
in Section 3. In Section 4, φ6-model expansion model is utilized for the space-time fractional
CGLE. The graphical assessments of our attained solutions are signified in 3D and contour
plots for multiple values of parameters in Section 5. Section 6 includes the study of the
sensitivity analysis. Finally, conclusions are publicized in Section 7.

2. Beta-Derivative and Its Properties

Definition: Suppose a function h(x) that is defined ∀ as non-negative x. Therefore, the beta
derivative of the function h(x) is given as [21]:

A
0 Dβ

x(h(x)) = lim
ε→0

h
(

x + ε
(

x + 1
Γ(β)

)1−β
)
− h(x)

ε
, 0 < β ≤ 1.

Properties: Assuming that a and b are real numbers, g(x) and h(x) are two functions β−
differentiable and β ∈ (0, 1] then.

i. A
0 Dβ

x(ag(x) + bh(x)) = aA
0 Dβ

x(g(x)) + bA
0 Dβ

x(h(x)), ∀ a, b ∈ R.

ii. A
0 Dβ

x(c) = 0, for any constant c.

iii. A
0 Dβ

x(g(x)h(x)) = h(x)A
0 Dβ

x(g(x)) + g(x)A
0 Dβ

x(h(x)).

iv. A
0 Dβ

x

(
g(x)
h(x)

)
=

h(x) A
0 D β

x (g(x))+g(x) A
0 D β

x (h(x))
(h(x))2 .

v. A
0 Dβ

x(g(x)) =
(

x + 1
Γ(β)

)1−β dg(x)
dx .

(4)

3. Representation of the φ6-Model Expansion Method

Suppose that the nonlinear (PDE) is defined as:
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F(u, ux, ut, uxx, utt, . . . . . )= 0, (5)

Here, u(x, t), partial derivatives F as a polynomial.
The core phases of this scheme are:
Step 1: By the subsequent transformation

u(x, t) = U(η), η = x− vt. (6)

where ν is the wave speed, and the PDE is converted into the following ODE.

G
(
U, U′, U′′, U′′′, . . .

)
= 0, (7)

At this stage, G is a polynomial and

U = U(η), U′ = dU
dη

, U′′ =
d2U
dη2 , U′′′ =

d3U
dη3 , · · · .

Step 2: Suppose that Equation (7) has the formal solution:

U(η) =
2M

∑
i=0

aiφ
i(η), (8)

where ai(i = 0, 1, 2, · · · , 2M) are constants to be resolved later, while φ(η) satisfies the
well-known auxiliary nonlinear ODE.

φ′2(η) = h0 + h2φ2(η) + h4φ4(η) + h6φ6(η),

φ′′(η) = h2φ(η) + 2h4φ3(η) + 3h6φ5(η),
(9)

where hi(i = 0, 2, 4, 6) are real constants.
Step 3: We govern the positive integer N in Equation (8) by balancing the highest-order

derivative with the highest nonlinear terms in Equation (7).
Step 4: It is well known [52–54] that Equation (9) has the solution

φ(η) =
Ω(η)√

f Ω2(η) + g
, (10)

where
(

f Ω2(η) + g
)
> 0 and Ω(η) is the solution of the Jacobian elliptic equation.

Ω′2 = l0 + l2Ω2(η) + l4Ω4(η), (11)

where lj(j = 0, 2, 4) are constants to be determined later, while f and g are given by

f =
h4(l2 − h2)

(l2 − h2)
2 + 3lol4 − 2l2(l2 − h2)

, (12)

g =
3loh4

(l2 − h2)
2 + 3lol4 − 2l2(l2 − h2)

, (13)

Under the constraints condition

h4
2(l2 − h2)(9l0l4 − (l2 − h2)(2l2 + h2)) + 3h6

(
3l0l4 −

(
l22 − h2

2
))2

= 0. (14)

Step 5: Equation (11) has the Jacobi elliptic solution defined in table as
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No. l0 l2 l4 U(η)

1 1 −
(
1 + m2) m2 sn(η) or cd(η)

2 1−m2 2m2 − 1 −m2 cn(η)

3 m2 − 1 2−m2 −1 dn(η)

4 m2 −
(
1 + m2) 1 ns(η) or dc(η)

5 −m2 2m2 − 1 1−m2 nc(η)

6 −1 2−m2 −
(
1−m2) nd(η)

7 1 2−m2 1−m2 sc(η)

8 1 2m2 − 1 −m2(1−m2) sd(η)

9 1−m2 2−m2 1 cs(η)

10 −m2(1−m2) 2m2 − 1 1 ds(η)

11 1−m2

4
1+m2

2
1−m2

4 nc(η) ± sc(η) or cn(η)
1±sn(η)

12 −(1−m2)
2

4
1+m2

2
−1
4 mcn(η) ± dn(η)

13 1
4

1−2m2

2
1
4

sn(η)
1±cn(η)

14 1
4

1+m2

2
(1−m2)

2

4
sn(η)

cn(η)±dn(η)

Now, we define Jacobian elliptic functions with their limitations to derive the exact
solutions of this method which are given in the following table.

Function m→ 1 m→ 0 Function m→ 1 m→ 0

sn(η, m) tanh(η) sin(η) ns(η, m) coth(η) csc(η)

cd(η) 1 cos(η) dc(η) 1 sec(η)

cn(η) sech(η) cos(η) nc(η) cosh(η) sec(η)

dn(η) sech(η) 1 nd(η) cosh(η) 1

sc(η) sinh(η) tan(η) cs(η) csch(η) cot(η)

sd(η) sinh(η) sin(η) ds(η) csch(η) csc(η)

4. Appliance of φ6-Model Expansion Method

By using the traveling wave transformation

u(x, t) = U(η)eiθ(x,t), η = 1
α

(
x + 1

Γ(α)

)α
− v

α

(
t + 1

Γ(α)

)α
.

Θ(x, t) = − k
α

(
x + 1

Γ(α)

)α
+ w

α

(
t + 1

Γ(α)

)α
+ θ0(ε),

(15)

where u(x, t), w, k, v, Θ(x, t) and θ0(ε) represents the pulse shape, wave number, fre-
quency, speed, phase component, and phase function of soliton, respectively.

Substituting Equation (15) into Equation (3), an ODE is attained, whose real and
imaginary parts, respectively, are:

(a− 4N)U′′ −
(

w + ak2 + P
)

U + cH
(

U2
)

U = 0, (16)

And
v = −2ak. (17)

Now, the research concentration is to contemplate Equation (16) with the shape of
nonlinear fibers, i.e., Kerr law.
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Kerr Law

In this case, when we take
H(U) = U. (18)

This appears in water waves and in nonlinear fiber optics Biswas et al. [55]. Then,
Equation (3) becomes:

iA
0 Dα

t u + aA
0 D2α

x u + c
(
|u|2

)
u

= N
|u|2u∗

{
2A

0 D2α
x
(
|u|2

)
|u|2 −

(A
0 Dα

x
(
|u|2

))2
}
+ Pu.

(19)

Thus, Equation (19) changes to

(a− 4N)U′′ −
(

w + ak2 + P
)

U + cU3 = 0. (20)

According to the balance principle, we obtain m = 1. Putting m = 1 into Equation (8),
we then get

U(η) = a0 + a1φ(η) + a2φ2(η). (21)

Here, a0, a1 and a1 are unknown parameters. Now, substitute Equation (9) along with
Equation (13) into Equation (20) and compare the polynomial coefficients equal to zero.

We acquired:

φ0(η) : a0
3c + 2aa2h0 − aa0k2 − 8a2h0N − a0P− a0w = 0,

φ1(η) : 3a0
2a1c + aa1h2 − aa1k2 − 4a1h2N − a1P− a1w = 0,

φ2(η) : 3a0a1
2c + 3a0

2a2c + 2aa2h1 + 2aa2h2 − aa2k2

−8a2h1N − 8a2h2N − a2P− a2w = 0,

φ3(η) : a1
3c + 6a0a1a2c + 2aa1h4 − 8a1h4N = 0,

φ4(η) : 3a1
2a2c + 3a0a2

2c + 6aa2h4 − 24a2h4N = 0,

φ5(η) : 3a1a2
2c + 3aa1h6 − 12a1h6N = 0,

φ6(η) : a2
3c + 8aa2h6 − 32a2h6N = 0.

(22)

Mathematica software is used to resolve the system (22) and obtain a set of solutions,

a0 = a0, a1 = 0, a2 = a2,

h0 = a0∆
2a2K , h2 = ∆1

4K , h4 = − a0a2c
2K , h6 = −a2

2c
8K ,

(23)

here K = a− 4N, ∆ = −a0
2c + ak2 + P + w and ∆1 = −3a0

2c + ak2 + P + w.
The exact solutions of Equation (3) are:
Result 1
If l0 = 1, l2 = −

(
1 + m2), l4 = m2, 0 < m < 1, then Ω(η) = sn(η) thus, we have

U1 =

(
a0 + a2

(
sn2(η)

f sn2(η) + g

))
eiθ(x,t), (24)

where f and g are given as

f =
h4(−m2−h2−1)

(−m2−h2−1)2−2(−m2−1)(−m2−h2−1)+3m2
,

g = 3h4

(−m2−h2−1)2−2(−m2−1)(−m2−h2−1)+3m2
,

(25)

When m→ 1, Ω(η) = sn(η) = tanh(η), we can acquire an SWS.
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U1,1 =

(
a0 + a2

(
tanh2(η)

f tanh2(η) + g

))
eiθ(x,t), (26)

or Ω(η) = cd(η) = 1, we can acquire an SWS.

U1,2 =

(
a0 + a2

(
Ω(η)2

f Ω(η)2 + g

))
eiθ(x,t), (27)

When m→ 0, Ω(η) = sn(η) = sin(η), we can acquire an SWS.

U1,3 =

(
a0 + a2

(
sin2(η)

f sin2(η) + g

))
eiθ(x,t), (28)

or Ω(η) = sn(η) = cos(η), we can acquire an SWS.

U1,4 =

(
a0 + a2

(
cos2(η)

f cos2(η) + g

))
eiθ(x,t), (29)

under constraints defined as:(
a0a2c

2(a−4N)

)2(
−m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)

×
(

9m2 −
(
−m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)(

2
(
−m2 − 1

)
+ P−a0

2c+ak2+w
4(a−4N)

))
− 3a2

2c
8(a−4N)

(
3m2 −

(
−m2 − 1

)2
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

Result 2
If l0 = 1−m2, l2 = 2m2 − 1, l4 = −m2, 0 < m < 1, then Ω(η) = cn(η) thus, we have

U2 =

(
a0 + a2

(
cn2(η)

f cn2(η) + g

))
eiθ(x,t), (30)

where f and g are given as

f =
h4(2m2−h2−1)

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)−3(1−m2)m2
,

g =
3(1−m2)h4

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)−3(1−m2)m2
,

(31)

When m→ 1, Ω(η) = cn(η) = sech(η), we can acquire an SWS.

U2,1 =

(
a0 + a2

(
sech2(η)

f sech2(η) + g

))
eiθ(x,t), (32)

When m→ 0, Ω(η) = sn(η) = cos(η), we can acquire an SWS.

U2,2 =

(
a0 + a2

(
cos2(η)

f cos2(η) + g

))
eiθ(x,t), (33)

under constraints defined as
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(
a0a2c

2(a−4N)

)2(
2m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)

×

 −
(

2m2 − P−a0
2c+ak2+w

4(a−4N)
− 1
)

(
2
(
2m2 − 1

)
+ P−a0

2c+ak2+w
4(a−4N)

)
− 9
(
1−m2)m2


− 3a2

2c
8(a−4N)

(
−3
(
1−m2)m2 −

(
2m2 − 1

)2
+
(

P−a0
2c+ak2+w

4(a−4N)

)2
)2

= 0.

Result 3
If l0 = m2 − 1, l2 = 2−m2, l4 = −1, 0 < m < 1, then Ω(η) = dn(η) thus, we have

U3 =

(
a0 + a2

(
dn2(η)

f dn2(η) + g

))
eiθ(x,t), (34)

where f and g are given as

f =
h4(−m2−h2+2)

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)−3(m2−1)
,

g =
3(m2−1)h4

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)−3(m2−1)
,

(35)

When m→ 1, Ω(η) = dn(η) = sech(η), we can acquire an SWS.

U3,1 =

(
a0 + a2

(
sech2(η)

f sech2(η) + g

))
eiθ(x,t), (36)

when m→ 0, Ω(η) = dn(η) = 1, we can acquire an SWS.

U3,2 =

(
a0 + a2

(
Ω(η)2

f Ω(η)2 + g

))
eiθ(x,t), (37)

under constraints defined as(
a0a2c

2(a−4N)

)2(
−m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)

×

 −
(
−m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)(

2
(
2−m2)+ P−a0

2c+ak2+w
4(a−4N)

)
− 9
(
m2 − 1

)


− 3a2
2c

8(a−4N)

(
−
(
2−m2)2 − 3

(
m2 − 1

)
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

Result 4
If l0 = m2, l2 = −

(
m2 + 1

)
, l4 = 1, 0 < m < 1, then Ω(η) = ns(η) or dc(η) thus,

we have

U4 =

(
a0 + a2

(
Ω(η)2

f Ω(η)2 + g

))
eiθ(x,t), (38)

where f and g are given as

f =
h4(−m2−h2−1)

(−m2−h2−1)2−2(−m2−1)(−m2−h2−1)+3m2
,

g = 3m2h4

(−m2−h2−1)2−2(−m2−1)(−m2−h2−1)+3m2
,

(39)

when m→ 1, Ω(η) = ns(η) = coth(η), we can acquire an SWS.
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U4,1 =

(
a0 + a2

(
coth2(η)

f coth2(η) + g

))
eiθ(x,t), (40)

or Ω(η) = dc(η) = 1, we obtain

U4,2 =

(
a0 + a2

(
Ω(η)2

f Ω(η)2 + g

))
eiθ(x,t), (41)

when m→ 0, Ω(η) = ns(η) = csc(η), we can acquire an SWS.

U4,3 =

(
a0 + a2

(
csc2(η)

f csc2(η) + g

))
eiθ(x,t),

)
(42)

or Ω(η) = dc(η) = sec(η), we obtain

U4,4 =

(
a0 + a2

(
sec2(η)

f sec2(η) + g

))
eiθ(x,t), (43)

under constraint defined as(
a0a2c

2(a−4N)

)2(
−m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)

×
(

9m2 −
(
−m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)(

2
(
−m2 − 1

)
+ P−a0

2c+ak2+w
4(a−4N)

))
− 3a2

2c
8(a−4N)

(
3m2 −

(
m2 − 1

)2
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

Result 5
If l0 = −m2, l2 = 2m2 − 1, l4 = 1 − n2, 0 < m < 1, then Ω(η) = nc(η), thus,

we have

U5 =

(
a0 + a2

(
nc2(η)

f nc2(η) + g

))
eiθ(x,t), (44)

where f and g are given as

f =
h4(2m2−h2−1)

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)−3(1−m2)m2
,

g = − 3m2h4

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)−3(1−m2)m2
,

(45)

when m→ 1, Ω(η) = nc(η) = cosh(η), we can acquire an SWS.

U5,1 =

(
a0 + a2

(
cosh2(η)

f cosh2(η) + g

))
eiθ(x,t), (46)

When m→ 0, Ω(η) = nc(η) = sec(η), we can acquire an SWS.

U5,2 =

(
a0 + a2

(
sec2(η)

f sec2(η) + g

))
eiθ(x,t), (47)

under constraint defined as
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(
a0a2c

2(a−4N)

)2(
2m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)

×

 −
(

2m2 − P−a0
2c+ak2+w

4(a−4N)
− 1
)

(
2
(
2m2 − 1

)
+ P−a0

2c+ak2+w
4(a−4N)

)
− 9
(
1−m2)m2


− 3a2

2c
8(a−4N)

(
−3
(
1−m2)m2 −

(
2m2 − 1

)2
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

where h2, h4 and h6 are given in Equation (23).
Result 6
If l0 = −1, l2 = 2− m2, l4 = −

(
1− n2), 0 < m < 1, then Ω(η) = nd(η), thus,

we have

U6 =

(
a0 + a2

(
nd2(η)

f nd2(η) + g

))
eiθ(x,t), (48)

where f and g are given as

f =
h4(−m2−h2+2)

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)−3(m2−1)
,

g = − 3h4

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)−3(m2−1)
,

(49)

When m→ 1, Ω(η) = nd(η) = cosh(η), we can acquire an SWS.

U6,1 =

(
a0 + a2

(
cosh2(η)

f cosh2(η) + g

))
eiθ(x,t), (50)

when m→ 0, Ω(η) = nd(η) = 1, we obtain.

U6,2 =

(
a0 + a2

(
Ω(η)2

f Ω(η)2 + g

))
eiθ(x,t), (51)

under constraint defined as(
a0a2c

2(a−4N)

)2(
−m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)

×

 −
(
−m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)

(
2
(
2−m2)+ P−a0

2c+ak2+w
4(a−4N)

)
− 9
(
m2 − 1

)


− 3a2
2c

8(a−4N)

(
−
(
2−m2)2 − 3

(
m2 − 1

)
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

where h2, h4 and h6 are given in Equation (23).
Result 7
If l0 = 1, l2 = 2−m2, l4 =

(
1−m2), 0 < m < 1, then Ω(η) = sc(η), thus, we have

U7 =

(
a0 + a2

(
sc2(η)

f sc2(η) + g

))
eiθ(x,t), (52)

where f and g are given as

f =
h4(−m2−h2+2)

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)−3(1−m2)
,

g = 3h4

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)−3(1−m2)
,

(53)

when m→ 1, Ω(η) = sc(η) = sinh(η), we can acquire an SWS.
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U7,1 =

(
a0 + a2

(
sinh2(η)

f sinh2(η) + g

))
eiθ(x,t), (54)

when m→ 0, Ω(η) = sc(η) = tan(η), we obtain.

U7,2 =

(
a0 + a2

(
Ω(η)2

f Ω(η)2 + g

))
eiθ(x,t), (55)

under constraint defined as(
a0a2c

2(a−4N)

)2(
−m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)

×

 9
(
1−m2)− (−m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)

(
2
(
2−m2)+ P−a0

2c+ak2+w
4(a−4N)

)


− 3a2
2c

8(a−4N)

(
−
(
2−m2)2 − 3

(
1−m2)+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

where h2, h4 and h6 are given in Equation (23).
Result 8
If l0 = 1, l2 = 2m2 − 1, l4 = −m2(1−m2), 0 < m < 1, then Ω(η) = sd(η), thus,

we have

U8 =

(
a0 + a2

(
sd2(η)

f sd2(η) + g

))
eiθ(x,t), (56)

where f and g are given as

f =
h4(2m2−h2−1)

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)−3(1−m2)m2
,

g = 3h4

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)−3(1−m2)m2
,

(57)

when m→ 1, Ω(η) = sd(η) = sinh(η), we can acquire an SWS.

U8,1 =

(
a0 + a2

(
sinh2(η)

f sinh2(η) + g

))
eiθ(x,t), (58)

when m→ 0, Ω(η) = sd(η) = sin(η), we obtain.

U8,2 =

(
a0 + a2

(
sin2(η)

f sin2(η) + g

))
eiθ(x,t), (59)

under constraint conditions defined as(
a0a2c

2(a−4N)

)2(
2m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)

×

 −
(

2m2 − P−a0
2c+ak2+w

4(a−4N)
− 1
)

(
2
(
2m2 − 1

)
+ P−a0

2c+ak2+w
4(a−4N)

)
− 9
(
1−m2)m2


− 3a2

2c
8(a−4N)

(
−3
(
1−m2)m2 −

(
2m2 − 1

)2
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

Result 9
If l0 = 1−m2, l2 = 2−m2, l4 = 1, 0 < m < 1, then Ω(η) = cs(η), thus, we have
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U9 =

(
a0 + a2

(
cs2(η)

f cs2(η) + g

))
eiθ(x,t), (60)

where f and g are given as

f =
h4(−m2−h2+2)

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)+3(1−m2)
,

g =
3(1−m2)h4

(−m2−h2+2)2−2(2−m2)(−m2−h2+2)+3(1−m2)
,

(61)

when m→ 1, Ω(η) = cs(η) = csch(η), we can acquire an SWS.

U9,1 =

(
a0 + a2

(
csch2(η)

f csch2(η) + g

))
eiθ(x,t), (62)

when m→ 0, Ω(η) = sd(η) = cot(η), we obtain.

U9,2 =

(
a0 + a2

(
cot2(η)

f cot2(η) + g

))
eiθ(x,t), (63)

under constraint conditions defined as(
a0a2c

2(a−4N)

)2(
−m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)

×

 9
(
1−m2)− (m2 − P−a0

2c+ak2+w
4(a−4N)

+ 2
)

(
2
(
2−m2)+ P−a0

2c+ak2+w
4(a−4N)

)


− 3a2
2c

8(a−4N)

(
−
(
2−m2)2

+ 3
(
1−m2)+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

where h2, h4 and h6 are given in Equation (23).
Result 10
If l0 = −m2(1−m2), l2 = 2m2 − 1, l4 = 1, 0 < m < 1, then Ω(η) = ds(η), thus,

we have

U10 =

(
a0 + a2

(
ds2(η)

f ds2(η) + g

))
eiθ(x,t), (64)

where f and g are given as

f =
h4(2m2−h2−1)

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)+3(1−m2)m2
,

g =
3m2(1−m2)h4

(2m2−h2−1)2−2(2m2−1)(2m2−h2−1)+3(1−m2)m2
,

(65)

when m→ 1, Ω(η) = ds(η) = csch(η), we can acquire an SWS.

U10,1 =

(
a0 + a2

(
csch2(η)

f csch2(η) + g

))
eiθ(x,t), (66)

when m→ 0, Ω(η) = ds(η) = csc(η), we obtain.

U10,2 =

(
a0 + a2

(
csc2(η)

f csc2(η) + g

))
eiθ(x,t), (67)

under constraint conditions defined as
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(
a0a2c

2(a−4N)

)2(
2m2 − P−a0

2c+ak2+w
4(a−4N)

− 1
)

×

 −
(

2m2 − P−a0
2c+ak2+w

4(a−4N)
− 1
)

(
2
(
2−m2)+ P−a0

2c+ak2+w
4(a−4N)

)
− 9
(
1−m2)m2


− 3a2

2c
8(a−4N)

(
−3
(
1−m2)m2 −

(
2m2 − 1

)
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

Result 11
If l0 = 1

4
(
1−m2), l2 = 1

2
(
m2 + 1

)
, l4 = 1

4
(
1−m2), 0 < m < 1, then Ω(η) =

nc(η)± sc(η) or cn(η)
1±sn(η) , thus, we have

U11 =

(
a0 + a2

(
(nc(η)± sc(η))2

f (nc(η)± sc(η))2 + g

))
eiθ(x,t), (68)

where f and g are given as

f =
h4( 1

2 (m2+1)−h2)

( 1
2 (m

2+1)−h2)
2−(m2+1)( 1

2 (m
2+1)−h2)+ 3

16 (1−m2)
2 ,

g =
3(1−m2)h4

( 1
2 (m

2+1)−h2)
2−(m2+1)( 1

2 (m
2+1)−h2)+ 3

16 (1−m2)
2 ,

(69)

when m→ 1, Ω(η) = nc(η)± sc(η) = cosh(η)± sinh(η), we can acquire an SWS.

U11,1 =

(
a0 + a2

(
(cosh(η)± sinh(η))2

f (cosh(η)± sinh(η))2 + g

))
eiθ(x,t), (70)

or Ω(η) = cn(η)
1±sn(η) =

sech(η)
1±tanh(η) , we obtained

U11,2 =

(
a0 + a2

(
sech2(η)

f sech2(η) + g(1± tanh(η))2

))
eiθ(x,t), (71)

when m→ 0, Ω(η) = nc(η)± sc(η) = sec(η)± tan(η), we obtained

U11,3 =

(
a0 + a2

(
(sec(η)± tan(η))2

f (sec(η)± tan(η))2 + g

))
eiθ(x,t), (72)

or Ω(η) = cn(η)
1±sn(η) =

cos(η)
1±sin(η) , we obtained.

U11,4 =

(
a0 + a2

(
cos2(η)

f cos2(η) + g(1± sin(η))2

))
eiθ(x,t), (73)

under constraint condition defined as(
a0a2c

2(a−4N)

)2( 1
2
(
m2 + 1

)
− P−a0

2c+ak2+w
4(a−4N)

)
×

 9
16
(
1−m2)2 −

(
1
2
(
m2 + 1

)
− P−a0

2c+ak2+w
4(a−4N)

)
(

m2 + P−a0
2c+ak2+w

4(a−4N)
+ 1
)


− 3a2

2c
8(a−4N)

(
3

16
(
1−m2)2 − 1

4
(
m2 + 1

)2
+
(

P−a0
2c+ak2+w

4(a−4N)

)2
)2

= 0.
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Result 12
If l0 = − 1

4
(
1−m2)2, l2 = 1

2
(
m2 + 1

)
, l4 = − 1

4 , 0 < m < 1, then Ω(η) = ncn(η)±
dn(η), thus, we have

U12 =

(
a0 + a2

(
(ncn(η)± dn(η))2

f (ncn(η)± dn(η))2 + g

))
eiθ(x,t), (74)

where f and g are given as

f =
h4( 1

2 (m2+1)−h2)

( 1
2 (m

2+1)−h2)
2−(m2+1)( 1

2 (m
2+1)−h2)+ 3

16 (1−m2)
2 ,

g =
3(1−m2)h4

4
(
( 1

2 (m
2+1)−h2)

2−(m2+1)( 1
2 (m

2+1)−h2)+ 3
16 (1−m2)

2
) ,

(75)

When m→ 1, Ω(η) = ncn(η)± dn(η) = nsech(η)± sech(η), we can acquire an SWS.

U12,1 =

(
a0 + a2

(
(nsech(η) + sech(η))2

f (nsech(η) + sech(η))2 + g

))
eiθ(x,t), (76)

when m→ 0, Ω(η) = ncn(η)± dn(η) = n cos(η)± 1, we obtained

U12,2 =

(
a0 + a2

(
(n cos(η)± 1)2

f (n cos(η)± 1)2 + g

))
eiθ(x,t), (77)

under constraint condition defined as(
a0a2c

2(a−4N)

)2( 1
2
(
m2 + 1

)
− P−a0

2c+ak2+w
4(a−4N)

)
×

 9
16
(
1−m2)2 −

(
1
2
(
m2 + 1

)
− P−a0

2c+ak2+w
4(a−4N)

)
(

m2 + P−a0
2c+ak2+w

4(a−4N)
+ 1
)


− 3a2

2c
8(a−4N)

(
3

16
(
1−m2)2 − 1

4
(
m2 + 1

)2
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

Result 13
If l0 = 1

4 , l2 = 1
2
(
1− 2m2), l4 = 1

4 , 0 < m < 1, then Ω(η) = sn(η)
1±cn(η) , thus, we have

U13 =

(
a0 + a2

(
sn2(η)

f sn2(η) + g(1± cn(η))2

))
eiθ(x,t), (78)

where f and g are given as

f =
h4( 1

2 (1−2m2)−h2)

( 1
2 (1−2m2)−h2)

2−(1−2m2)( 1
2 (1−2m2)−h2)+ 3

16

,

g = 3h4

4
(
( 1

2 (1−2m2)−h2)
2−(1−2m2)( 1

2 (1−2m2)−h2)+ 3
16

) ,
(79)

when m→ 1, Ω(η) = sn(η)
1±cn(η) =

tanh(η)
1±sech(η) , we can acquire an SWS.

U13,1 =

(
a0 + a2

(
tanh2(η)

f tanh2(η) + g(1± sech(η))2

))
eiθ(x,t), (80)

when m→ 0, Ω(η) = sn(η)
1±cn(η) =

sin(η)
1±cos(η) , we obtained
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U13,2 =

(
a0 + a2

(
sin2(η)

f sin2(η) + g(1± cos(η))2

))
eiθ(x,t), (81)

under constraint conditions defined as(
a0a2c

2(a−4N)

)2( 1
2
(
1− 2m2)− P−a0

2c+ak2+w
4(a−4N)

)
×
(

9
16 −

(
1
2
(
1− 2m2)− P−a0

2c+ak2+w
4(a−4N)

)(
−2m2 + P−a0

2c+ak2+w
4(a−4N)

+ 1
))

− 3a2
2c

8(a−4N)

(
− 1

4
(
1− 2m2)2

+ ( P−a0
2c+ak2+w

4(a−4N)
)

2
+ 3

16

)2
= 0.

Result 14
If l0 = 1

4 , l2 = 1
2
(
m2 + 1

)
, l4 = 1

4
(
1−m2)2, 0 < m < 1, then Ω(η) = sn(η)

cn(η)±dn(η) ,
thus, we have

U14 =

(
a0 + a2

(
sn2(η)

f sn2(η) + g(cn(η)± dn(η))2

))
eiθ(x,t), (82)

where f and g are given as

f =
h4( 1

2 (m2+1)−h2)

( 1
2 (m

2+1)−h2)
2−(m2+1)( 1

2 (m
2+1)−h2)+ 3

16 (1−m2)
2 ,

g = 3h4

4
(
( 1

2 (m
2+1)−h2)

2−(m2+1)( 1
2 (m

2+1)−h2)+ 3
16 (1−m2)

2
) ,

(83)

when m→ 1, Ω(η) = sn(η)
cn(η)±dn(η) =

tanh(η)
sech(η)±sech(η) , we can acquire an SWS.

U14,1 =

(
a0 + a2

(
tanh2(η)

f tanh2(η) + g(sech(η)± sech(η))2

))
eiθ(x,t), (84)

when m→ 0, Ω(η) = sn(η)
cn(η)±dn(η) =

sin(η)
cos(η)±1 , we obtained

U14,2 =

(
a0 + a2

(
sin2(η)

f sin2(η) + g(cos(η)± 1)2

))
eiθ(x,t), (85)

under constraint conditions defined as(
a0a2c

2(a−4N)

)2( 1
2
(
m2 + 1

)
− P−a0

2c+ak2+w
4(a−4N)

)
×

 9
16
(
1−m2)2 −

(
1
2
(
m2 + 1

)
− P−a0

2c+ak2+w
4(a−4N)

)
(

m2 + P−a0
2c+ak2+w

4(a−4N)
+ 1
)


− 3a2

2c
8(a−4N)

(
3

16
(
1−m2)2 − 1

4
(
m2 + 1

)2
+ ( P−a0

2c+ak2+w
4(a−4N)

)
2
)2

= 0.

5. Graphical Demonstration and Explanation

This section displays the graphical presentation of the obtained solution and the
influence of the fractional order parameter. Figures 1–3 demonstrate the 3D and contour
graphs for different values of the fractional parameter α for the trigonometric function
answers of Equation (26). Additionally, we explain the sensitive analysis of the complex
Ginzburg–Landau equation in Kerr law media. One can notice in the plotted Figures 4–7
that the dynamical system is sensitive to initial conditions.



Fractal Fract. 2023, 7, 71 16 of 23Fractal Fract. 2023, 7, x FOR PEER REVIEW 21 of 28 
 

 

   
(a) (b) (c) 

  
 

(d) (e) (f) 

   
(g) (h) (i) 

Figure 1. This figure presents the impact of fractional order on the solution 1,1Re( ( , ))U x t
 at 

0 21, 0.9, 0.9, 0.9, 1, 0.7, 2, 11.56449544 , 0.1.a w P k c N a a I ν= = = = = = = = = .(a) 
3D visualization at. (b) Contour visualization at. (c) 2D visualization at α  = 0.1. (d) 3D visualiza-
tion at α  = 0.5. (e) Contour visualization at α  = 0.5. (f) 2D visualization at α  = 0.8. (g) 3D vis-
ualization at α  = 0.9. (h) Contour visualization at α  = 0.9. (i) 2D Visualization at α  = 0.9. 

Figure 1. This figure presents the impact of fractional order on the solution Re(U1,1(x, t)) at
a = 1,w = 0.9,P = 0.9, k = 0.9, c = 1, N = 0.7, a0 = 2, a2 = 11.56449544I, ν = 0.1. (a) 3D visual-
ization at. (b) Contour visualization at. (c) 2D visualization at α = 0.1. (d) 3D visualization at α = 0.5.
(e) Contour visualization at α = 0.5. (f) 2D visualization at α = 0.8. (g) 3D visualization at α = 0.9.
(h) Contour visualization at α = 0.9. (i) 2D Visualization at α = 0.9.



Fractal Fract. 2023, 7, 71 17 of 23Fractal Fract. 2023, 7, x FOR PEER REVIEW 22 of 28 
 

 

 
 

 

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2. This figure presents the impact of fractional order on the solution 1,1Re( ( , ))U x t
 at 

0 21, 0.9, 0.9, 0.9, 1, 0.7, 2, 11.56449544 , 0.1.a w P k c N a a I ν= = = = = = = = = (a) 
3D visualization at α  = 0.95. (b) Contour visualization at α  = 0.95. (c) 2D visualization at α  = 
0.95. (d) 3D visualization at α  = 0.99. (e) Contour visualization at α  = 0.99. (f) 2D visualization 
at α  = 0.99. 

   
(a) (b) (c) 

Figure 2. This figure presents the impact of fractional order on the solution Re(U1,1(x, t)) at
a = 1,w = 0.9,P = 0.9, k = 0.9, c = 1, N = 0.7, a0 = 2, a2 = 11.56449544I, ν = 0.1. (a) 3D visual-
ization at α = 0.95. (b) Contour visualization at α = 0.95. (c) 2D visualization at α = 0.95. (d) 3D
visualization at α = 0.99. (e) Contour visualization at α = 0.99. (f) 2D visualization at α = 0.99.

Fractal Fract. 2023, 7, x FOR PEER REVIEW 22 of 28 
 

 

 
 

 

(a) (b) (c) 

   

(d) (e) (f) 

Figure 2. This figure presents the impact of fractional order on the solution 1,1Re( ( , ))U x t
 at 

0 21, 0.9, 0.9, 0.9, 1, 0.7, 2, 11.56449544 , 0.1.a w P k c N a a I ν= = = = = = = = = (a) 
3D visualization at α  = 0.95. (b) Contour visualization at α  = 0.95. (c) 2D visualization at α  = 
0.95. (d) 3D visualization at α  = 0.99. (e) Contour visualization at α  = 0.99. (f) 2D visualization 
at α  = 0.99. 

   
(a) (b) (c) 

Figure 3. Cont.



Fractal Fract. 2023, 7, 71 18 of 23
Fractal Fract. 2023, 7, x FOR PEER REVIEW 23 of 28 
 

 

  
 

(d) (e) (f) 

   
(g) (h) (i) 

   
(j) (k) (l) 

  
 

(m) (n) (o) 
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at α = 0.1. (b) Contour visualization at α = 0.1. (c) 2D visualization at α = 0.1. (d) 3D visualization at α

= 0.5. (e) Contour visualization at α = 0.5. (f) 2D visualization at α = 0.5. (g) 3D visualization at α =
0.9. (h) Contour visualization at α = 0.9. (i) 2D visualization at α = 0.9. (j) 3D visualization at α = 0.95.
(k) Contour visualization at α = 0.95. (l) 2D visualization at α = 0.95. (m) 3D visualization at α = 0.99.
(n) Contour visualization at α = 0.99. (o) 2D visualization at α = 0.99.
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6. Sensitive Visualization

In this section, the sensitivity analysis is performed to investigate the sensitivity of the
complex Ginzburg-Landau equation in Kerr law media using the computational software
MAPLE. The Galilean transformation is applied to the ODE and obtains a dynamical system
as given below.

Let u(η) = G1(η), u′(η) = G2(η),

dG1
dη = G2,

dG2
dη = −w+ak2+P

a−4N G1
3 + c

a−4N G1.

The figures mentioned above are plotted to visualize the sensitive behavior of the
dynamic system at a = 0.2, w = 0, P = 1, k = 0.5, c = 1, N = 0.2.

We must perform a sensitivity analysis to determine how sensitive our system is. If
only a slight modification is made to the initial conditions, the system’s sensitivity will
be inferior. The system will be pretty sensitive if small changes in the initial conditions
cause a significant shift. Many graphs are constructed for various initial condition values
to demonstrate the system’s sensitivity. One can notice from the above-plotted figures that;
the dynamical system is subtle concerning initial circumstances.

7. Conclusions

In this research, we have used the beta-derivative to find the exact solutions of the
fractional CGLE. We conceded this objective by assuming a particular wave transformation
to adjust the fractional CGLE to a nonlinear ODE of second order such that the resultant
ODE could be resolved by engaging the φ6-model expansion method. This method restored
the periodic, dark, bright, dark-bright, exponential, trigonometric, and rational solitons for
Kerr law non-linearity. To designate the physical phenomena of the space-time fractional
CGLE, some solutions are produced in shape by allocating values to parameters in 3D
under some particular constraints. Comparing other work [38,42–49], our solution was
not described in prior works. Additionally, these systems are very operative and potent in
finding soliton solutions of nonlinear fractional differential equations, and the solutions
gained can support us in designating the nonlinear dynamics of optical soliton propagations
in more penetration.

The findings are listed below:

• There are 28 analytical solutions discovered with fourteen distinct families.
• The acquired wave patterns are based on Jacobi elliptic functions, with hyperbolic

solutions obtained for limiting case m→ 1, and trigonometric solutions developed
for limiting case m→ 0.
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• Every obtained traveling wave solution has a related condition constructed to guaran-
tee the existence of the solution.

• On suitable values of the involved parameters, which satisfy the specified constraints,
3D and contour real and imaginary profiles of the solutions are shown.

• The fractional order parameter is responsible for controlling the singularity of the
soliton solution.

• The sensitivity analysis ensures that the model is sensitive to initial conditions.

This method can be applied to many NLPDEs in mathematical physics. Finally,
our solutions have been checked using MATHEMATICA by putting them back into the
original equation.
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