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1. Introduction

Fractional calculus is a generalization of classical calculus, related to the operations
of the integration and differentiation of a non-integer (fractional) order. The concept
of fractional operators was introduced almost simultaneously with the development of
classical ones. A fractional analysis is the branch of mathematical analysis that deals with
several different possibilities of defining real number powers or the complex power of a
differentiation operator D and of integration J. Fractional-order differential equations are
generalized and non-integer differential equations that are achieved in time and space with
a power-law memory kernel of non-local relationships [1]. Fractional derivatives (which
are used as Riemann–Liouville and Caputo derivatives) are used to model viscoelastic
damping in certain types of materials, such as polymers. The Caputo derivative is the most
appropriate fractional operator to be used in modeling real-world problems. The concept of
fractional calculus was initially presented by Leibniz more than 300 years ago. It is worth
mentioning that evolution equations including fractional derivatives in time, in some cases,
have better effects in applications than traditional evolution equations of an integer order
in time. Hilfer gave the implementation of fractional calculus in physics [2,3].

A control system handles, holds, adjusts, or regulates the behavior of other devices
or systems using control loops. It can range from a signal home heating controller using a
thermostat controlling a domestic boiler to large industrial control systems which are used
for controlling processes or machines. A control system is a set of mechanical or electronic
devices that regulate other devices or systems by way of control loops. Control systems are
a central part of the industry and of automation. A control system provides the desired
response by controlling the output. A control problem involves a system that is discussed
by state variables; at each time step, the choice of the value of the control variable applied
at a time causes a change in state variables of the system at time-step ν + 1.
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Fractional delay differential equations have been applied in various neoteric science
and engineering fields. The delayed system has an instantaneous control input signal, but
that does not affect the signal characteristics. An ideal delay is a delay system that does
not affect the signal characteristics at all and that delays the signal for an exact amount of
time. The amount of time by which the arrival of a signal is retarded after transmission
through physical equipment or the system is known as the delay time. A delay differential
equation is known as an equation with delay, compared with those without delay which are
more realistic, suitable to discuss many phenomena in nature, and have many applications.
Diekmann gave delay equations a functional, complex, and nonlinear analysis. [4]. Sousa,
J. V. D. C. et al. [5,6] worked on the mild solutions of fractional differential equations. Niazi
et al. [7], Shafqat et al. [8], Alnahdi [9], Khan [10], and Abuasbeh et al. [11] investigated the
existence and uniqueness of the fractional evolution equations.

A general form of a time delay equation for x(ν) is

d
dν

x(ν) = j(ν, x(ν), xν).

In [12], the topological structure (compactness and Rσ-property) of the solution set of
the following type of fractional delay control problems was studied.

cDr
νx(ν) = Nx(ν) + j(ν, xν) + Bu(ν), ν ∈ [−h, a],

x(ν) = Ψ(ν),
0 < r < 1,

where Y and V are Banach spaces. N is a linear closed operator generating a strongly
continuous semigroup T(ν) on Y. Where r < r < 1.

Motivated by the above work, we study the topological structure of the solution set of
the following fractional control delay problem:

cDr
νEx(ν) = Nx(ν) + j(ν, x(ν) + Gu(ν) ν ∈ [0, a],

x(ν) = ψ(ν), ν ∈ [−h, 0],
x′(ν) = x1, 1 < r < 2,

(1)

where E, N, and G are linear closed operators generating a strongly continuous semigroup
{T(t)}t≥0 on Y, h ≥ 0,c Dr

ν, 1 < r < 2, is the Caputo fractional derivative of order q,
the state function x takes values in Y, the control function y takes values in V, B is a
bounded linear operator from V to X, ψ ∈ C([−h, 0]; X), xt ∈ C([−h, 0]; X) is defined by
xt(s) = x(t + s)(s ∈ [−h, 0]), and f : [0, b]× C([−h, 0]; X) → X is, in general, a nonlinear
function to be specified later.

As a result of the aforementioned thought, we are compelled to examine the control
problem (1) in this work under relatively benign circumstances. The initial goal is to
investigate the Rσ-property and compactness of the solution set’s topological structure. It
is good to mention several controllability issues have been investigated by demonstrating
that the reachability set is invariant under a nonlinear perturbation in many works. The
authors of these works made the assumption that the solution was unique, which suggests
that the solution set is single-pointed and the Lipschitz continuity on the nonlinearity
is involved. As a result, there is a limitation to these results. This inspires our work’s
second goal. More specifically, using the knowledge of the topological structure, we will
demonstrate the invariance of its reachability set under nonlinear perturbations under a
more general class of nonlinearities f, which does not ensure the uniqueness of a mild
solution for the control problem (1). This specifically implies that the control problem
(1) is approximately controllable if the corresponding linear problem is approximately
controllable. We stress the fact that the lack of uniqueness precludes us from demonstrating
the invariance of a reachability set using well-known methods, such as the Banach and
Schauder fixed-point theorems.
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The characterization of solution sets containing compactness, acyclicity, and an Rσ

property are fruitful in the study of corresponding equations. Bader and Kryszewski
proved that the set consisting of all mild solutions for a constrained semilinear differential
inclusion is a nonempty, compact Rσ set and gave its applications to the periodic problem
and the existence of equilibria [13]. Andres and Pavlackon obtained an existence result for
the corresponding semilinear systems from information about the structure and a fixed-
point index technique in Frechet spaces [14]. Semilinear differential inclusions in Banach
spaces are illustrated in [15]. The problem of exact and approximate controllability is to be
distinguished. In general infinite-dimensional spaces, the concept of exact controllability is
usually too strong [16]. An explanation of multi-valued differential equations is referred to
in (Grossmann, 1994). Mahmudo illustrated the controllability of linear stochastic systems
referred to in [17]. Controllability is one of the qualitative properties of a control system
that has an important place in control theory. Controllable systems have many applications
in different branches of science and engineering. Differential inclusions have been used
as a model for controlled systems with discontinuities. Fractional evolution inclusions
are a type of important differential inclusion mentioning the process behaving in a more
complex way with respect to time [18].

Now, let us provide a quick synopsis of this study. We provide some preliminary
information in Section 2. For the control problem (1), Section 3 is devoted to the examination
of the compactness and Rσ-property of the solution set, followed by the invariance of
reachability set under nonlinear perturbations. We provide a sample application in Section 4
to demonstrate the viability of our findings. We include a conclusion in Section 5.

2. Preliminaries

Topology and Topological Structures

Topology is the study of geometrical characteristics and spatial relations unaffected
by the continuous changes in the shape or size of figures. In mathematics, topology is
concerned with the characteristics of a geometric object that are preserved under continuous
deformations, such as stretching, twisting, crumpling, and bending, that is, without closing
holes, opening holes, tearing, gluing, or passing through itself [19,20]. Topology deals
with characteristics of spaces that are constant under any continuous deformation. It is
sometimes called rubber sheet geometry because the objects can be stretched and contracted
like rubber but cannot be broken, for example, a square can be deformed into a circle
without breaking it.
Some important terms used in topology are stated below:

(i) Connected set: A set that cannot be divided into two nonempty open subsets. Math-
ematically, it can be written as the union of two subsets A and B is not equal to X.
Example: Circle is a connected space.

(ii) Contractible set: A set that can be converted to one of its points by continuous
deformation.

(iii) Compact set: A set s; a subset of x is called a compact set if every sequence in S has a
subsequence that converges to a point in S.

(iv) Quasi-compact space: A topological space x is called a quasi-compact space if every
open covering of Y has a finite subcover.

(v) Convex set: The set of points such that given any two points A, B in that set line AB,
joining them lies entirely within that set.

(vi) Frechet space: A space which is equivalently a complete Hausdorff locally convex
vector space is metrizable (homeomorphic to metric space).

(vii) Banach space: A complete normed vector space is called a Banach space.

Now, we propose some notations, maintain some conventions, and mention some
results which are highly used for deriving the main results. Let C([a, b]); Y) stand for the
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Banach space of all continuous functions from [a, b] to Y equipped with super norm |.|. Let
Y and Z be metric spaces. As usual, 2Z is the collection of all nonempty subsets of Z.

C(Z) = F ∈ 2Z F is closed,

µ : y→ 2Z is a multi-valued map.

Lemma 1 ([21]). Let µ : Y → 2Z be a closed and quasi-compact multi-valued map. Then, µ is
upper semi-continuous (closed, quasi-compact, multi-valued map).

Definition 1 ([22]). (i) Y is called an absolute retract (AR space) if for any metric space H
and any closed subset F ⊂ H, every continuous function ζ : F → Y can be extended to a
continuous function ζ : H → Y.

(ii) Y is called absolute neighborhood retracts (ANR space) if for any metric space H, closed
subset F ⊂ H, and continuous function ζ : F → Y there exists a neighborhood (F ⊂ R) and
continuous extension ζ : R→ y ζ.

Definition 2. A nonempty subset F of Y is said to be contractible if there exists a point yo ∈ D and a
continuous function J : F× [0, 1]→ F. Such that J(x, 1) = y0 and J(x, 0) = x for every x ∈ F.

Definition 3. A subset F of metric space is called Rς set if there exists a decreasing sequence Fn of
compact and contractible sets such that F = ∩∞

1 Fn Rσ set is nonempty, compact, and connected.
compact + convex ⊂ compactAR− space ⊂ compact + contractible ⊂ Rσset.

Definition 4. A multi-valued map µ : Y → 2Z is an Rσ map if µ is upper semi-continuous and
µ(x) is an Rσset for each x ∈ X.

Lemma 2 ([23]). Let Y be a metric space and M a Banach space. Suppose that χ : X → M is a
proper map that is χ is continuous. Furthermore, if there is a sequence χn of mappings from X into
M such as the following:

(i) χn is proper and χn converges to χ uniformly on X.
(ii) For a given point y0 ∈ M and for every y in a neighborhood of R(y0) of y0 in M, there is

exactly one solution xn of the equation χn = y. Then, the inverse of χ(y0) is an Rσ set.

Definition 5. A continuous map ρ : F ⊂W →W is called condensing concerning an MNC− β
if for all bounded sets Ω ⊂ M that is not relatively compact.

Theorem 1. Let Ω ⊂W be a bounded open neighborhood of zero and ρ : Ω→W a β-condensing
map with respect to a monotone non-singular MNC − β in W if ρ verifies boundary condition
y 6= λρ(y) where 0 < λ ≤ 1 then Fix(ρ) is nonempty and compact.
Let an abstract operator ς : ς1(0, a; Y)→ H([0, a]); Y) verify below conditions:

(1) There exists a constant H > 0 such as

||(ςg1)(ν)− (ςg2)(ν)|| ≤ H
∫ ν

0
||g1(s)− g2(s)||ds,

for all g1, g2 ∈ ς1(0, a; Y).

(2) For each compact set N ⊂ Y and a progression gn ⊂ ς1(0, b; X) such as that hn(ν) ⊂ N for
ν ∈ [0, a], the weak convergence gn → g0 shows ς(gn)→ ς(g0) strongly in H([0, a]; Y).

Remark 1. A typical example of a ς operator is the Cauchy operator

(Gg)(ν) =
∫ ν

0
g(µ)dµ.
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Lemma 3. Let ς satisfy both two conditions of the above theorem and a progression gn ⊂ ς1(0, a; Y)
be integrable bounded such as that

||gn(ν)|| ≤ $(ν),

for ν ∈ [0, a], $ ∈ ς1(0, b). Assume that there exists v(ν) ∈ ς1(0, a) such as

χ(gn) ≤ v(ν)

χ((ς(gn))(ν)) ≤ 2C
∫ ν

0
v(µ)dµ

for ν ∈ [0, a] and T(ν) upon X for ν ≥ 0

M = sup ||T(ν)||

for ν ≥ 0. Let 1 < r < 2, and let us give two families of UE(ν) and KE(ν) of linear operators for
ν ≥ 0 by

UE(ν)ω =
∫ ∞

0
Eξr(θ)C(νrθ)dθ

KE(ν)ω =
∫ ∞

0
rEθξr(θ)S(νrθ)dθ

χE(ν) =
∫ ν

0
UE(µ)dµ.

We will use probability density function ξr(θ) as

ξr(θ) =
1

rθ1+ 1
r

v(θ
−1
r ) ≥ 0

is the function of Wright type defined on (0, ∞) which satisfies∫ ∞

0
ξr(α)dα = 1

v(θ) =
1
Π

Σ∞
i=1(−1)i−1(θ)−ri−1 Γ(ri + 1)

i!
.

Lemma 4. The operators UE(ν) and KE(ν) hold the following characteristics:

(i) For all ν ≥ 0, UE(ν) and KE(ν) are linear and bounded operators on Y. More properly,

||UE(ν)(ζ)|| ≤ M||ζ||,||KE(ν)(ζ)|| ≤
rM

Γ(1 + r)
||ζ||, ν ≥ 0, ζ ≥ x;

(ii) UE(ν) and KE(ν), ν ≥ 0 are strongly continuous on Y.

Lemma 5. If u(ν) fulfills (1) for x(ν) = Ψ(ν) and x′(ν) = x1, then the solution x(ν) is given as
the fractional delay control problem satisfying the integral equation

Ex(ν) = EΨ(0) + Ex1(ν) +
1

Γ(r)

∫ ν

0
(ν− µ)r−1(Nx(µ) + j(µ, xµ))dµ.

Moreover, we have:

x(ν) = UE(ν)Ψ(0) + χE(ν)Ex1 +
∫ ν

0
(ν− µ)r−1KE(ν− µ)j(µ, xµ)dµ,

∀ν ∈ [0, b], such that

UE(ν) =
∫ ∞

0
ME(θ)C(νEθ)dθ, χE(ν) =

∫ ν

0
UEsds, KE(ν) =

∫ ∞

0
EθME(θ)C(νEθ)dθ,
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where UE(ν) and χE(ν) are continuous with χ(0) = 1 and U(0) = 1, ‖UE(ν)‖ ≤ c, c > 1, ∀ν ∈
[0, T].

Proof. We have a delay control problem,
cDr

νEx(ν) = Nx(ν) + j(ν, xν) + Bu(ν) ν ∈ [−h, a],
x(ν) = Ψ(ν),
x′(ν) = x1, 1 < r < 2.

Firstly, consider the following equation of control problem:

cDr
νEx(ν) = Nx(ν) + j(ν, xν)

Ex(ν)− Ex(0)− Ex′(o)ν =
N

Γ(r)

∫ ν

0
(ν− µ)r−1x(µ)dµ +

1
Γ(r)

∫ ν

0
(ν− µ)r−1 j(µ, xµ)dµ

Ex(ν)− EΨ(0)− Ex1(ν) =
N

Γ(r)
νr−1x(µ) +

1
Γ(r)

νr−1 j(µ, xµ)

Ex(ν) = EΨ(0) + Ex1(ν) +
1

Γ(r)

∫ ν

0
(ν− µ)r−1(Nx(µ) + j(µ, xµ))dµ

Ex(ν) = EΨ(0) + Ex1(ν) +
1

Γ(r)
Nνr−1x(µ) +

1
Γ(r)

νr−1 j(µ, xµ).

Taking Laplace of the above equation,

ELx(ν) = ELΨ(0) + ELx1(ν) +
1

Γ(r)
NLνr−1x(µ) +

1
Γ(r)

Lνr−1 j(µ, xµ)

E
∫ ν

0
e−λµdµ = EΨ(0)

1
λ
+ Ex1

1
λ2 +

N
Γ(r)

Γ(r)
λr

∫ ∞

0
e−λµx(µ)dµ +

1
Γ(r)

Γ(r)
λr

∫ ∞

0
e−λµ j(µ, xµ)dµ

∫ ∞

0
e−λµx(µ)dµ = v(λ),

∫ ∞

0
e−λµ j(µ, xµ)dµ = ω(λ).

The above equation becomes

Ev(λ) = EΨ(0)
1
λ
+ Ex1

1
λ2 +

N
λr v(λ) +

1
λr ω(λ)

Ev(λ)− N
λr v(λ) = EΨ(0)

1
λ
+ Ex1

1
λ2 +

1
λr ω(λ)

E(λr I − NE−1)v(λ) = EΨ(0)
λr

λ
+ Ex λr

λ
+

λr

λr ω(λ)

E(λr I − NE−1)v(λ) = λr−1EΨ(0) + λr−2Ex1 + ω(λ)

Ev(λ) = λr−1(λr I − NE−1)−1Ψ(0) + λr−2(λr I − NE−1)−1Ex1 + (λr I − NE−1)−1ω(λ)

(λr I − NE−1)−1 =
∫ ∞

0
E−1e−λrµC(µ)dµ

Ev(λ) = λr−1
∫ ∞

0
E−1e−λrµC(µ)Ψ(0)dµ + λr−2

∫ ∞

0
E−1e−λrµC(µ)Ex1dµ

+
∫ ∞

0
E−1e−λrµS(µ)ω(λ)dµ

v(λ) = λr−1
∫ ∞

0
E−1e−λrµC(µ)Ψ(0)dµ + λ−1λr−1

∫ ∞

0
E−1e−λrµEx1dµ

+
∫ ∞

0
E−1e−λrµS(µ)ω(λ)dµ.

Now, consider one-sided probability density function whose Laplace transform is

e(−λ)r
=

∫ ∞

0
e−λθvr(θ)d(θ).
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Firstly, solving first term of the above equation,

λr−1
∫ ∞

0
E−1e(−λ)rµΨ(0)dµ =

∫ ∞

0
λr−1E−1e−λrνr

C(νr)Ψ(0)rνr−1dν

=
∫ ∞

0
E−1e−(λν)r

C(νr)rνr−1Ψ(0)dν

=
∫ ∞

0
r(λν)r−1E−1e−(λν)r

CνrΨ(0)dµ

=
∫ ∞

0

−1
λ

d
dν

(e−(λν)r
)E−1C(νr)ψ(0)dν

=
∫ ∞

0

∫ ∞

0

−1
λ

d
dν

(e−(λνθ)v(θ)E−1C(νr)ψ(0)dθdν

=
∫ ∞

0

∫ ∞

0

−1
λ

d
dν

(e−λ ν′
θ (θ)v(θ)E−1C

ν′r

θr ψ(0)
dν′

θ
dθ

=
∫ ν

0

∫ ν

0
e−λνE−1v(θ)C(

νr

θr )Ψ(0)dνdθ

=
∫ ν

0
e−λν

∫ ν

0
E−1v(θ)C(

νr

θr )Ψ(0)dνdθ

=
∫ ν

0
e−λν

∫ ν

0
E−1vr(θ)

−1
r C(νr(θ′)ψ(0)(

−1
r
(θ)−1− 1

r )dθ′dν

=
∫ ν

0
e−λν

∫ ν

0
E−1vr(θ)

−1
r C(νr(θ)Ψ(0)

1

r(θ)1+ 1
r

dθdν

=
∫ ∞

0
e−λν(UE(ν)Ψ(0))dν

= L′(UE(ν)Ψ(0))λ.

Similarly,

λ−1λr−1
∫ ∞

0
E−1e−(λ)

rµC(µ)Ey1dµ = L′[g1(ν)]λL′[UE(ν)Ey1])λ.

Now,∫ ∞

0
E−1e−(λ)

rµS(µ)ω(λ)dµ

=
∫ ∞

0
E−1e−(λ)

r(ν)r
ω(λ)rνr−1dν =

∫ ∞

0
E−1e−(λν)r

S(νr)
∫ ∞

0
e−λµ f (µ, yµ)dνdµ

=
∫ ∞

0

∫ ∞

0
E−1e−(λν)r

S(νr)e−λµ j(µ, yµ)dνdµ

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
E−1e−λνθvr(θ)dθS(νr)e−λµ f (µ, yµ)rνr−1dµdν

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
E−1e−λ ν′

θ (θ)vr(θ)S(
ν′

θr e−λµ j(µ, yµ)r(
(ν′)r−1

θr−1 )
dν′

θ
dµdθ

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
E−1e−λ(ν+µ)vr(θ)S(

νr

θr )j(µ, yµ)r(
νr−1

θr )dµdνdθ

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
E−1e−λν′vr(θ)S(

(ν′ − µ)r

θr )j(µ, yµ)r(
(ν′ − µ)r−1

θr )dµdνdθ

=
∫ ∞

0

∫ ∞

0

∫ ∞

0
E−1e−λνvr(θ)S(

(ν− µ)r

θr )j(µ, yµ)r(
(ν− µ)r−1

θr )dµdνdθ
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=
∫ ∞

0
e−λν[r

∫ t

0

∫ ∞

0
E−1vr(θ)S(

(ν− µ)r

θr )j(µ, xµ)
(t− µ)r−1

θr dµdθ]dν

= L′[r
∫ ν

0
(ν− µ)r−1

∫ ∞

0
E−1v(θ)S(

(ν− µ)r

θr )j(µ, xµ)
1
θr dθdµ]λ

= L′[r
∫ ν

0
(ν− µ)r−1

∫ ∞

0
E−1vr(θ)S(

(ν− µ)r

θr )j(µ, xµ)
1
θr dθdµ]λ

= L′[r
∫ ν

0
(ν− µ)r−1

∫ ∞

0
E−1vr(θ

−1
r )S(ν− µ)r(θ′)j(µ, xµ)(θ

′)(
−1
r
(θ′)−1− 1

r dθ′dµ]λ

= L′[r
∫ ν

0
(ν− µ)r−1

∫ ∞

0
E−1vr(θ)

−1
r )

1

rθ1+ 1
r

S(ν− µ)r(θ)′)j(µ, xµ)(θ
′)dθ′dµ]λ

= L′[r
∫ ν

0
(ν− µ)r−1

∫ ∞

0
E−1vr(θ)

−1
r )

1

rθ1+ 1
r

S(ν− µ)r(θ)j(µ, xµ)(θ)dθdµ]λ

= L′[r
∫ ν

0
(ν− µ)r−1

∫ ∞

0
E−1ξr(ϑ)S(ν− µ)r(θ)j(µ, xµ)(θ)dθdµ]λ

= L′(
∫ ν

0
KE(ν− µ)j(µ, xµ)dµ)λ

v(λ) = L′(UE(ν)ψ(0))λ + L[g1(ν))λL′(UE(ν)Ex1)λ + L′(
∫ ν

0
KE(ν− µ)j(µ, xµ)dµ.

Taking inverse Laplace, we obtain

x(ν) = UE(ν)ψ(0) + χE(ν)x1 +
∫ ν

0
(ν− µ)r−1KE(ν− µ)(j(µ, xµ) + Bu(µ))dµ

which is the required mild solution to our control problem.

3. Main Results

Our standing assumptions on j are given below:

(i) Let j a function such that j : [0, a]× C([−h, 0]; Y)→ Y is continuous.
(ii) There exists ς ∈ C[−h, 0] such that ||j(ν, v)|| ≤ ζ(ν)(1 + |v0|).
(iii) There exists k ∈ La(0, a) such that χ(j(ν, Ω)) ≤ k(ν), ν ∈ [0, a] and χ is Hausdroff

MNC in X.

Theorem 2. Let pr > 1 and assumptions (i),(ii), and (iii) of the above main result be verified
and KE(ν) be continuous in the uniform operator topology for all ν greater than zero. Given
u ∈ La(0, a; V), then $(u) is nonempty and compact. Furthermore, KE(ν) is compact for ν > 0,
then $ is an Rσ set.

Step 1:
We build the solution map having a mild solution of the control problem in the following:

ζu(x(ν)) = UE(ν)Ψ(0) + χE(ν)Ex1 +
∫ ν

0
(ν− µ)r−1KE(ν− µ)(j(µ, xµ) + Bu(µ)),

under the conditions

x(ν) = Ψ(ν),

x′ = x1.

It is obvious that x ∈ 	(u) if x is a fixed point of ζu. We aim to show that ζu accepts at least
one fixed point. We claim that ζu is β condensing. Consider Ω is a bounded subset of H([−h, a]; X)
that is not relatively compact such that

β(ζu(Ω)) ≥ β(Ω)
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by the definition for β, there exists a progression yn ⊂ ζu(Ω)

β(ζu(Ω)) = (γyn), modC(yn)).

Assume,

σ(t) =
2Mr

Γ(1 + r)

∫ ∞

0
(ν− µ)r−1k(µ)eLµdµ

sup e−Lνσ(ν) < 1

χ(yn) = 0.

Now, using point (ii) of the main result, we have

||j(ν, v)|| ≤ η(ν)(1 + |vo|)

||(ν− µ)r−1KE(ν− µ)j(µ, xnµ|| ≤ Mr
Γ(1 + r)

(ν− µ)r−1η(µ)(1 + |xnµ(.)|)

Gj(µ) = (ν− µ)r−1KE(ν− µ)j(µ, xnµ).

Moreover, from point (iii) of the main result, it follows

χ(j(ν, Ω) ≤ k(ν) sup χ(Ω(µ))

χ(Gj(µ)) ≤
Mr

Γ(1 + r)
(ν− µ)r−1k(µ) sup χ(xnµ(µ′))

≤ Mr
Γ(1 + r)

(ν− µ)r−1k(µ)eLµ sup e(−L)(µ+µ′)χ(xn(µ + µ′))

=
Mr

Γ(1 + r)
(ν− µ)r−1k(µ)eLµγ(xn)

χ(Gj(µ)) ≤
Mr

Γ(1 + r)
(ν− µ)q−1k(µ)eLµγ(Ω)

χ(
∫ ν

0
Gj(µ)dµ + (Φ(Bu))(ν)) ≤ σ(ν)γ(xn)

γ(yn) ≤ sup e−Lνσ(ν)γ(yn)

γ(xn) ≤ γ(yn) ≤ sup e−Lνσ(ν)γ(xn)

γ(yn) = 0.

On the other hand, from point (ii) of the main result, it shows that the set j(., xn) is bounded
in Lp(0, b; Y). We obtain

β(Ω) = 0

which is a contradiction. This in turn proves that ζu is β condensing. Next, take x ∈ H([−h, a]; Y)
with x = λζu(x) for 0 < λ ≤ 1. Now, by using point (ii) of the main result, we have

||x(ν)|| ≤ M||Φ(0)||+ M||Ex1||+
rM

Γ(1 + r)

∫ ∞

0
(ν− µ)r−1η(µ)(1 + (|xµ(.)|)0)dµ

+
rM

Γ(1 + r)

∫ ∞

0
(ν− µ)r−1||Bu(µ)||dµ

≤ a1 + a2

∫ ∞

0
(ν− µ)r−1(|xµ(.))|0dµ

a1 = M||Φ(0)||+ rMbr− 1
p

Γ(1 + r)
(

p− 1
pr− 1

)
p−1

p ||Bu||Lp(0, b; X)

a2 =
rM

Γ(1 + r)
sup η(µ).

Step 2:
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Given εn ∈ (0, 1) with εn approaches zero as n approaches infinity. By point (i) of main result,
there exists a sequence jn of locally Lipschitz functions for which [0, a]× H([−h, 0]; Y)→ Y,

||jn(ν, v)− j(ν, v)|| < εn.

We define the approximation operator by

ζu
n = UE(ν)Φ(0) + χE(ν)Ex1 +

∫ ν

0
(ν− µ)r1 KE(ν− µ)(jn(µ, xµ) + Bu(µ))dµ

x(ν) = Ψ(ν),

x′ = x1, ν ∈ [−h, 0]

||(I − ζu
n)(x)(ν)− (I − ζu)(x)(ν)|| = 0

||(I − ζu
n)(x)(ν)− (I − ζu)(x)(ν)|| ≤ M

Γ(1 + r)

∫ ν

0
(ν− µ)r−1||jn(µ, xµ)− j(µ, xµ)||dµ ≤ Mbr

Γ(1 + r)
εn.

Using below equation

||j− n(ν, v)− j(ν, v)|| < εn.

We obtain I − ζu
n → I − ζu with

||jn(ν, v)|| ≤ 1 + η(ν)(1 + (|v|0))

for any bounded sequence xm ⊂ H([−h, a]; Y), we have

Gjn(µ) = (ν− µ)r−1KE(ν)jn(µ, x(mµ))

χ(
∫ ν

0
Gjn(µ)dµ + (Φ(Bu))(ν)) = 0

for all y ∈ C([−h, a]; Y), the equation

(I − ζu
n)(x) = y.

For the continuity of I − ζu
n and closeness of K, it is uncomplicated to see that Ω is closed. Let

xm = ym be progression; we can take a progression ym ⊂ K such that

xm − ζu
n = ym

xm(ν) = UE(ν)Φ(0) + Ex1 + ym(ν) +
∫ ν

0
(ν− µ)r−1KE(ν− µ)[jn(µ, x(mµ)) + Bu)µ)]dµ

Φ(ν) + ym(ν) ν ∈ [−h, 0]

χ(Φ(jn(ν, x(mν)) + Bu(ν)) = 0

	(u) = (I − ζu)−1(0)

for each t ∈ [0, a]. Because for all ν ∈ [−h, a], ym(ν) is relatively compact in Y, we finalize that

ϕ(xm(ν)) = 0.

This shows that xm(ν) is relatively compact for all ν ∈ [−h, b].
Observe that the compactness of KE(ν) for ν > 0 shows that KE(ν) is continuous in the uniform
operator topology.

Theorem 3. Let pr be greater than one. Suppose that assumptions (i),(ii) of the main result
are verified and KE(ν) is compact for ν > 0. Furthermore, let the hypothesis (iv) there exist
Ψ ∈ Lp(0, a; V) such that

(Φ(BΨ))(a) = (Φ)(a)
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for each Φ ∈ Lp(0, a; V). Then, there exists r′ greater than zero such that the reachability set of the
control problem is constant under nonlinear perturbations

K(a,j) = K(a,0).

Proof. Step 1:
For every u ∈ Lp(0, a; V), 	(u) is nonempty, compact, and Rσ set. In this step, our

purpose is to prove that the multi-valued map $ is an Rσ map. Let un → u in Lp(0, b; V)
and xn ∈ $(un), xn → x in HJ[−h, a]; Y). It is uncomplicated to observe that xn holds the
following integral equation:

xn(ν) = UE(ν)Ψ(0) + χE(ν)Ex1 +
∫ ν

0
(ν− µ)r−1KE(ν− µ)(j(µ, xµ) + Bu(µ))dµ,

x(ν) = Ψ(ν),

x′(ν) = x1(ν),

given assumption (i) of the main result

j : [0, a]× H([−h, 0]; X)→ Y.

We have j(µ, x(nµ))→ j(µ, xµ) for all µ ∈ [0, a],

j(., xn) + B(u)n → j(., x) + B(u(.)).

Using limit n→ ∞, we see that x verifies the integral equation

x(ν) = UE(ν)Ψ(0) + χE(ν)Ex1 +
∫ ν

0
(ν− µ)r−1KE(ν− µ)(j(µ, xµ) + Bu(µ))dµ,

x(ν) = Ψ(ν),

x′ = x1,

which implies that x ∈ $(u).
Step 2:
By the hypothesis (iv), there exists a continuous map : La(0, a; Y)→ La(0, a; V) such

that for any Φ ∈ La(0, a; y),

(Φ(BSΦ))(a) + (Φ)(a) = 0

||SΦ||(Lp(0, a; V)) ≤ d||Φ||(La(0, a; V)).

Now, consider the multi-valued map

F : La(0, a; V) → 2(La(0,a;V)),

F(u) = S ◦ Hj ◦ 	(uo + u),

Hj : C([−h, a]; Y) → La(0, a; Y),

Hj(x)(ν) = j(ν, xν)

||u||La(0,a;V) ≤ d||Hj(x′)||La(0,a;Y)

≤ d(
∫ b

0
|η(µ)|a(1 + |x′(.)|0)adµ)

1
a

≤ da
1
a sup η(µ)(1 + ||x′||H([−h,a];Y))

||u||La(0,a;V) ≤ M1 + M2||B||(V ↔ X)(||u0||La(0,a;V) + ||u||La(0,a;V)).

We realize that F accepts a fixed point.
Step 3:
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K(a, j) = K(0)

x(a, u0, 0) = UE(a)Φ(0) + (Φ(Bu0))(a)

u∗ = SHj(x)

x(a, u0 + u∗, j) = UE(a)Φ(0) + [Φ(Hj(x) + B(u0 + u∗))](a)

= UE(a)Φ(0) + (Φ(Bu0))(a) + [Φ(Hj(x) + Bu∗)](a)

= x(a, u0, 0) + [Φ(Hj(x) + BSHj(x))](a),

x(a, u, j) ∈ K(a, j),

x(a, u, j) = UE(a)Φ(0) + [Φ(Hj(x) + Bu)](a)

u′ = u− SHj(x)

x(a, u′, 0) = UE(a)Φ(0) + (Φ(Bu′))(a)UE(a)Φ(0) + [Φ(Hj(x) + Bu)](a)− [Φ(Hj(x) + BSHj(x))](a).

To characterize the approximate controllability of the control problem, let us propose
the relevant operator

W =
∫ a

0
(a− µ)r−1KE(a− µ)BB∗K∗E(a− µ)dµ,

where B∗ and K∗E(ν) are adjoints B and KE(ν).

4. Example

Consider the control problem of fractional differential equation with delay in the
form given

cDr
κa(κ, ς) = d2a(κ,ς)

dς2 + σu(κ, ς) + sin(|aκ(ϑ, ς)|) κ ∈ [0, 1], ς ∈ [0, π], ϑ ∈ [−h, 0],
a(κ, 0) = x(κ, π) = 0, κ ∈ [0, 1],
a(κ, ς) = φ(t, ς) κ ∈ [−h, 0],

here 1
2 < r < 1,

aκ(ϑ, ς) = a(κ + ϑ, ς),

φ is continual and σ is a real number. Suppose A = V,

v = M2[0, π].

Let N : D(N) ⊂ A → A be a function given by Nω = d2

dς2 with domain D(N) =

a ∈ Aω, ω′ which are completely continual and ω(0) = ω(π) = 0. It is said that N
has a distinct spectrum and eigenvalues are (−a)2, a ∈ A with the related eigenvectors.
Furthermore, N produces a compact analytic semigroup T(κ) on A.

T(κ)ω = Σ∞
a=1e−a2κ(ω, νn)νn

||T(κ)|| ≤ e−κ ,

for all κ ≥ 0. Denote by F(r,l), the common Mittag-Leffler special function given by

F(r,l)(κ) = Σ∞
i=0

κi

Γ(ri + l)
.
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So, we have

Q(κ)ω = Σ∞
a=1Fr(−a2κr(ω, νa)νa

P(κ)ω = Σ∞
a=1 fr(−a2κr(ω, νa)νa

||Q(κ)|| ≤ 1

||P(κ)|| ≤ r
Γ(1 + r)

.

By compact property of T(κ) for κ > 0, it is clear that Q(κ) and P(κ) are compact
operators for κ > 0. Furthermore, for κ > 0 Q(κ), P(κ) are continual in uniform operator
topology. We have

u(κ)(ς) = u(κ, ς)

a(κ)ς = a(κ, ς).

It is uncomplicated to check that j is continual from [0, 1]× D([−h, 0]; A) to A. Fur-
thermore, for all κ ∈ [0, 1] and ν ∈ D([−h, 0]; A). We obtain

||j(κ, ν)|| ≤ v(κ)(1 + |ν0).

Finally, let us propose a definition of bounded linear operator G : M2(0, 1; V) →
M2(0, 1; A) by (Gu)(κ) = σu(κ) for u(.) ∈ L2(0, 1; V). G is one-one and onto function.

5. Conclusions

In this paper, we prove the existence of a mild solution for the fractional delay control
system. Then, we deal with the topological structure of the solution set consisting of the
compactness and Rσ-property. We also derive a mild solution to the above delay control
problem by using the Laplace transform method. We intend to learn more about the
topological structure of fractional control in our upcoming research. We can identify the
uniqueness and existence with uncertainty by using the Caputo derivative. The concept
put out in this mission may be expanded upon in future projects, along with the inclusion
of the observability and generalization of other activities. There is a lot of research being
conducted on this fascinating subject, which may result in a wide range of applications
and ideas.
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