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Abstract: The multifractal relationship between reference evapotranspiration (ET0), computed by the
Penmann-Monteith equation (PM), relative humidity (RH) and mean surface temperature (Tmean)
was studied in the middle zone of the Guadalquivir River Valley (south Spain) in a previous study.
This work extends that study to the average wind speed (U2) and solar radiation (SR), focusing
on more recent years. All agro-meteorological variables were analyzed by multifractal detrended
cross-correlation analysis (MFCCA) and multifractal detrended fluctuation analysis (MFDFA). The
outcomes revealed persistent long-term autocorrelations, with Tmean and RH having the highest
persistence (H > 0.75). More precise results of multifractal properties than in the previous study were
obtained for ET0, Tmean, and RH due to the elimination of trends in the signals. Only medium and
large fluctuations in ET0 showed multifractal cross-correlations with its controlling factors, except
for U2. Moreover, joint scaling exponents differed from individual exponents. These phenomena
contrast with what has been observed in previous cross-correlation studies, revealing that some
differences exist in the dynamics of multifractality among the analyzed variables. On the other hand,
the Tmean–ET0 relation showed that extreme events in ET0 are mainly ruled by high temperature
fluctuations, which match conclusions drawn in the previous study.

Keywords: reference evapotranspiration; persistence; multifractal cross-correlations; scaling
exponents; meteorological factors

1. Introduction

Evapotranspiration is an important variable for scheduling irrigation systems and
water resource planning, which directly influence crop yield and are strongly dependent on
climatic conditions [1]. This variable is the combination of two factors: water evaporation
from the soil, ruled by climatic conditions, and crop evaporation and transpiration, which
are governed both by physical and biological processes [2]. In 1975, the United Nations
Food and Agriculture Organization (FAO) established a conventional computing technique
to determine an approximation of actual evapotranspiration when measuring it using
lysimeters and evaporation pans is not possible. It simply involves separating these
two factors into two different variables: reference evapotranspiration (ET0) and crop
coefficients [2–4]. The former variable describes maximum evapotranspiration based on a
reference crop: a natural grass surface with some specific features [5]. The most frequently
used ET0 computing methods are based on the Thornthwaite, Hargreaves and Penman-
Monteith (PM) equations [6]. However, the superiority of the FAO-56 PM equation [3] over
other equations has been demonstrated [7,8].
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Reference evapotranspiration has been a widely studied variable in the last decades, in-
cluding investigations of its temporal and spatial patterns related to the climate
change [1,6,9–11] and its role in models of the phenological response of olive crops [12].

Different agro-meteorological variables (such as ET0, surface temperature, and wind
speed), are characterized by nonlinear characteristics which evolve differently at distinct
timescales, showing a multifractal nature [13]. The multifractal theory states that some
systems and, particularly, some time series might be described by a combination of mixed
fractal subsets [14,15], each characterized by a different scaling exponent or singularity
strength [2,16]. The variable ET0 has also nonlinear relationships with its controlling factors,
which reveals multifractal cross-correlations, as has been shown in previous studies [17–20].
Therefore, the study of the nonlinearity and scaling properties of ET0 might be of help in
improving the modelling of the interrelationships between these variables [17,20].

A common method for studying the multifractality of a nonlinear time series is
multifractal detrended analysis (MFDFA), proposed by Kantelhardt et al. [21]. However,
to analyze the multifractality of cross-correlations between two time series, multifractal
detrended cross-correlation analysis (MFCCA) is increasingly being used [22–24]. This
technique was proposed by Oświȩcimka et al. as a proper generalization of the computation
of the fractal cross-correlation scaling exponent, λ, for different statistical moments to
determine multifractal cross-correlations between two time series [25]. The λ exponent is
based on the detrended fluctuation analysis (DCCA), which was first used by Podobnik
and Stanley [26] to investigate power law correlations between different time series in
the presence of nonstationarity. Additionally, it quantifies the strength of these cross-
correlations for fluctuations of different sizes, identifying the main dominant fluctuations
in the interaction between different variables [27].

In a preceding study, multifractal relations between ET0 and two of its predictor vari-
ables, mean temperature (Tmean) and relative humidity (RH), were found in the area of the
middle zone of the Guadalquivir River Valley (south Spain) by using joint multifractal anal-
ysis [2]. Despite the successful application of this methodology in different fields [28–30], it
presents some difficulties when attempting to interpret more than three variables’ distribu-
tions [2]. For this reason, a study of correlations between ET0 and meteorological variables
using a method whose results are more easily interpretable, such as MFCCA, is relevant for
a better understanding of the interactions between these variables. This method has gained
popularity in the study of ET0 in recent years [17,19]. Therefore, the aim of this study is
to extend the research into the interaction of ET0 in the work of Ariza-Villaverde et al. [2]
with the mentioned Tmean and RH, as well as the average wind speed at 2 m above the
surface (U2) and solar radiation (SR). For this purpose, an agro-meteorological time series
of 21 years data (in the period 2001–2021) and daily resolution were selected to be analyzed.
Individual multifractal exponents were also computed by MFDFA to compare them to the
cross-correlation results.

This work is organized as follows: Section 2 describes the area of study, data infor-
mation of agro-meteorogical variables, and the methodology used; Section 3 contains the
results and discussion; and Section 4 contains the conclusions drawn from these results.

2. Materials and Methods
2.1. Data

Daily records of mean temperature (Tmean), relative humidity (RH), wind speed at
2 m heigh (U2), and solar radiation (SR) in the period 2001–2021 were used in this study
(a total of N = 7670 data). Raw data from climatic variables had less than 1% missing
values and were obtained from the Open Data website https://www.juntadeandalucia.
es/agriculturaypesca/ifapa/riaweb/web/datosabiertos (accessed on 27 December 2022).
Missing values were omitted in our calculations. The station is located in the city of
Córdoba, southern Spain (37◦51′25” N, 4◦48′10” W; 94 m above sea level) and belongs to
the Agroclimatic Information Network of Andalusia. The maintenance of this network

https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/datosabiertos
https://www.juntadeandalucia.es/agriculturaypesca/ifapa/riaweb/web/datosabiertos
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and the cited website are carried out by the IFAPA (Andalusian Institute for Research and
Training in Agriculture, Fishery, Food and Ecological Production) [31].

The area of study is characterized by a continental Mediterranean climate [32]: a
temperate climate with dry and hot summers, classified as Csa according to the Köppen
climate classification [2]. Reference evapotranspiration data from the same period were
computed by the IFAPA from the climatic variables according to the FAO-56 Penman-
Monteith (PM) equation [3]. All data series can be seen in Figure 1 and the main descriptive
statistical parameters can be found in Table 1.
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Table 1. Statistical properties of the agro-meteorological time series. 

Variable Maximum Minimum Mean SD 

𝑇𝑚𝑒𝑎𝑛  (℃) 34.71 0.05 17.66 7.42 

𝑅𝐻 (%) 100 21.12 64.03 18.38 
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𝑆𝑅 (MJ/m2day) 33.25 0.58 17.85 8.43 

𝐸𝑇0 (mm) 10.25 0.38 3.86 2.41 

Figure 1. Meteorological time series and reference evapotranspiration. (a,c,e,g,i) Original series. (b,d,f,h,j)
Daily anomalies of time series. (a,b) Mean temperature (Tmean). (c,d) Relative humidity (RH). (e,f) Wind
speed at 2 m heigh (U2). (g,h) Solar radiation (SR). (i,j) Reference evapotranspiration (ET0).

Table 1. Statistical properties of the agro-meteorological time series.

Variable Maximum Minimum Mean SD

Tmean (°C) 34.71 0.05 17.66 7.42
RH (%) 100 21.12 64.03 18.38

U2 (m/s) 8.22 0.03 1.62 0.75
SR
(
MJ/m2day

)
33.25 0.58 17.85 8.43

ET0 (mm) 10.25 0.38 3.86 2.41
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2.2. Seasonal Detrending

The agro-meteorological time series display seasonal trends (see Figure 1). Because
periodicities can influence the analysis of nonlinear properties of time series [17,33], the
seasonal component of these series must be eliminated before applying multifractal meth-
ods. For this purpose, the standardized anomalies of daily series were obtained using the
following formula [16,34–37]: x′i = (xi − µi)/σi, where µi is the calendar mean and σi is the
calendar standard deviation.

2.3. Multifractal Detrending Analysis Algorithms

The MFCCA and MFDFA algorithms are closely related. The former is based in DCCA
and was conceived by Oświȩcimka et al. [25] to study the multifractal cross-correlations
between two time series. The MFDFA method was developed by Kantelhardt et al. [21] as
a generalization of the detrended fluctuation analysis [38] to obtain the scaling properties
of one single multifractal stationary or nonstationary signal. Both consists of the following
initial steps.

First, the integrated series after subtracting the mean or “profile” is computed in
MFDFA (MFCCA) for the (two) time series xi (xi and yi), with i = 1, 2, . . . , N:

X(j) = ∑
j
i=1(xi − x), Y(j) = ∑

j
i=1(yi − y) (1)

Next, the profile is divided (both profiles are divided) into Ns = f loor(N/s) nonover-
lapping segments of length s, where f loor(·) denotes the greatest integer number lower
than the quotient. The segments, ν, must be taken in both directions [19] to avoid the
omission of the remaining part of the series in the calculations.

Then, for each one of 2Ns segments, the local trend of the profile (each profile) is
obtained by fitting a polynomial of order m (pm

X, ν, pm
Y, ν). Trends are subtracted from the

series and the detrended cross-covariance (detrended variance) can be computed as:

f 2
xy(υ, s) = 1

s

s
∑

k=1

{{
X[(υ− 1)s + k]− pm

X, ν(k)
}

×
{

Y[(υ− 1)s + k]− pm
Y, ν(k)

}} (2)

for υ = 1, 2, . . . , Ns and

f 2
xy(υ, s) = 1

s

s
∑

k=1

{{
X[N − (υ− Ns)s + k]− pm

X, ν(k)
}

×
{

Y[N − (υ− Ns)s + k]− pm
Y, ν(k)

}} (3)

for υ = Ns + 1, . . . , 2Ns.
It must be pointed out that the detrended variance is recovered in the MFDFA method

by setting xi = yi in Equations (2) and (3) [21]. Next, the average is computed over all
2Ns segments for different q statistical moments and is repeated for different values of the
length or scale, s.

For the MFDFA method, the fluctuation function is obtained as:

Fq(s) ≡
{

1
2Ns

2Ns

∑
ν=1

[
fxx

2(ν, s)
]q/2

}1/q

(4)

For q = 0, the expression in Equation (4) diverges and a logarithmic averaging
operation must be applied instead.

If the analyzed signal has long-range power law-correlated fluctuations, the fluctuation
function can be expressed as:

Fq(s) ∼ sh(q) (5)
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The scaling exponent, h(q), can be computed by the least-squares regression of Fq(s)
versus s in a log–log plot and is called the generalized Hurst exponent [39]. In fact, h(2) coin-
cides with the value of the well-known classical Hurst exponent [39,40] for stationary series,
whereas for nonstationary series the Hurst exponent is obtained from H = h(2)− 1 [16].
For positive values of q, h(q) describes the scaling behavior of the large fluctuations whereas
for negative q it is related to the scaling behavior of the small fluctuations.

From h(q), other interesting exponents can be derived [19]. The singularity exponent,
α, and its spectrum, f (α), were considered relevant for this study since their results are
widely used to assess the complexity of the studied signals [16,41–45]. The singularity
exponent or Lipschitz-Hölder exponent, α(q), can be obtained as:

α(q) =
dτ(q)

dq
(6)

where τ(q) is the mass exponent and can be computed from the expression τ(q) = qh(q)− 1 [21].
Then, the singularity spectrum or multifractal spectrum f (α) can be computed by means of
the Legendre transformation:

f (α) = qα(q)− τ(q) (7)

Plots of f (α) vs. α commonly have the shape of a concave down parabola with different
properties which characterize them: the singularity of maximum spectrum, α0, the width,
w = αmax − αmin, and the asymmetry of the spectrum. The first property correspond to the
most dominant scaling behavior, while the width indicates the strength of the multifractality
of the signal [43]. Asymmetry is measured in different ways in the literature [41,43,46].
Here, the asymmetry index (AI) was used, in a similar manner as previous in studies of
reference evapotranspiration [17,19]:

AI =
∆αL − ∆αR
∆αL + ∆αR

(8)

where ∆αL = α0 − αmin and ∆αR = αmax − α0 are, respectively, the widths of the left and
right tails of the spectrum. Positive values of the AI describe left-skewed spectra, i.e., the
left tail is wider than the right one [47]. These signals are characterized by more complex
extreme events or large fluctuations and more regular and frequent small fluctuations. The
opposite happens with negative values of the AI (right-skewed spectra), where spectra
exhibit small fluctuations with fine structure. If the AI is zero, the spectrum is symmetric
and the complexity of small fluctuations is similar to large fluctuations.

The cross-covariance obtained in MFCCA, unlike the detrended variance, can be
positive or negative [25], and the qth-order covariance function is computed regarding
the sign:

Fq
xy(s) =

1
2Ns

2Ns

∑
ν=1

{
sgn
[

f 2
xy(υ, s)

]∣∣∣ f 2
xy(υ, s)

∣∣∣q/2
}

(9)

where sgn(·) denotes the sign function.
In this case, if both series are long term power-law cross-correlated, the covariance

function is expected to exhibit the following relation:

Fq
xy(s)1/q = Fxy(q, s) ∼ sλ(q) (10)

where Fq
xy(s) = −

∣∣∣Fq
xy(s)

∣∣∣ if the qth-order covariance function is negative and λ(q) is the
multifractal cross-correlation exponent and describes the fractal properties of the cross-
covariance [25]. Note that Equation (10) is similar to Equation (5) in the MFDFA method.
For monofractal cross-correlation, λ is independent of q and has the same value obtained
by DCCA [26]. For multifractal cross-correlation, the value computed by DCCA is equal to
the multifractal exponent for the second statistical moment, λ(2).
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Kwapień et al. defined the q-dependent detrended cross-correlation coefficient as the
ratio between the detrended covariance (Fq

xy(s)) and variance (Fq
xx(s)) functions [27]:

ρq(s) =
Fq

xy(s)√
Fq

xx(s)Fq
yy(s)

(11)

For q = 2, the definition of the standard detrended cross-correlation coefficient
(ρDCCA(s)) is retrieved [48]. However, the definition of a q-dependent coefficient allows the
characterization of the cross-correlation of large and small fluctuations between both series
for statistical moments which are higher or lower than 2, respectively [27]. For q ≥ 0, values
of this coefficient are bound within the same range as ρDCCA(s): −1 ≤ ρq(s) ≤ 1. For nega-
tive moments, the computation of ρq(s) can lead to very large absolute values that deviate
greatly from 1 due to very small values in the denominator in Equation (11). According to
Kwapień et al. [27], this issue might be addressed by applying the multiplicative inverse of
those values higher than the unit and the result, ρ∗q(s), is then within the range [−1, 1]. If
the signal fluctuations (for q < 0) are weakly cross-correlated or are uncorrelated, values
of this function either violently fluctuate within the interval [−1, 1] or are close to zero.
On the contrary, if small fluctuations are cross-correlated, a stable non-zero function ρ∗q(s)
is obtained for q < 0 and some scales, even if the original values of the cross-correlation
coefficients exceed 1 [27].

3. Results
3.1. MFDFA of Agro-Meteorological Times Series

MFDFA was applied to all four meteorological variables and ET0, considering a range
of scales, s, between 8 and N/10 days, with steps of 1 day, and values of q between −4 and
4, with steps of 0.2. These values are similar to those used in previous studies [2,13,17,19].

As Oświęcimka et al. state, the effects of trends in analyzed data is one of the problems
that multifractal analysis has [49]. The polynomial of order two is most frequently used for
detrending in MFDFA, however, this sometimes leads to less accurate results than using
polynomials of higher orders, as the mentioned authors show. To investigate the optimum
polynomial order, polynomial orders from m = 1 up to 5 were chosen and the computation
of the qth order detrended fluctuation functions were obtained in every case. Next, the
polynomial order of trends for which the fluctuation functions better fitted to a power
law (which yielded the highest Pearson correlation coefficients in the fits of the log–log
plots) was chosen. We found that m = 3 was the best order of the polynomial to perform
the analysis.

The fluctuation functions computed for the detrending polynomial order m = 3 and
q = [−4,−2, 0, 2, 4] are shown in Figure 2 for every agro-meteorological variable, and it
can be seen that they are in increasing order of q. The log–log plots of Fq(s) vs. the scale,
s, fit well to a straight line for every moment q and for a wide range of scales between
15–20 and 172–335 days. Fluctuation functions for every q and all agro-meteorological
variables show Pearson correlation coefficients that exceed the value of 0.990. According
to the protocol of Makowiec and Fuliński [50], scaling exponents can be considered as
representatives for the underlying scaling phenomena when a linear approximation for
each q in a logarithmic scale of the fluctuation function vs. s dependence over the same
range of scales has a Pearson correlation coefficient higher than 0.98.

Generalized Hurst exponents or slopes from these fits with their statistical errors
can be seen in Figure 3a. Since all the scaling exponents were higher than 0.5, small and
large fluctuations of every variable displayed persistent long-range correlations. Similar
outcomes have been obtained by other authors for the time series of daily maximum air
temperature, minimum air temperature, and ET0 recorded in years 1992–2019 in India, and
time series of daily air temperature, RH, SR, wind speed, air pressure, and ET0 recorded in
the years 1961–1990 in California (USA) [17,19]. Moreover, different scaling exponents for
every q can be observed, which confirms their multifractal nature. The RH series exhibits
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the curve with the highest exponents for almost all the statistical moments considered,
which means that this variable presents the most persistent correlations. For large and
medium fluctuations, RH was followed in order of strength of correlations by Tmean, SR,
ET0, and U2. For small and very small fluctuations, SR and RH both had the strongest
correlations, followed by Tmean, ET0, and U2. This is due to the broad range of scaling
exponents (∆h(q)) that SR shows, approximately twice the value of the other variables (see
Table 2). This denotes that the SR series exhibits the highest degree of multifractality and is
the most complex signal.
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Table 2. Multifractal parameters of the agro-meteorogical variables.

Variables H ∆h(q) α0 w ∆f(α) AI

Tmean 0.764 0.137 0.794 0.265 0.364 −0.333
RH 0.831 0.112 0.857 0.199 0.264 −0.363
U2 0.668 0.089 0.688 0.176 0.219 −0.193
SR 0.729 0.238 0.771 0.479 0.800 −0.540
ET0 0.707 0.067 0.725 0.127 0.134 0.094

In Figure 3b, multifractal spectra of these variables are depicted. As can be seen in
the figure, they are ordered from higher to lower value of α0 (from right to left), where
a lower value implies a less correlated signal (and one which has more complex small
fluctuations). The width is much higher for the SR time series, again denoting a higher
degree of multifractality for this variable. Additionally, the right tail of this spectrum
indicates that small fluctuations of SR exhibit a fine structure which is characterized by the
largest range of f observed in these variables (see Table 2). Lastly, the AI suggests that all
meteorological variables had slightly right-skewed spectra, where SR was noticeable by its
clear asymmetric shape, whereas ET0 displayed an almost symmetric multifractal spectrum
with a small deviation to a left-skewed spectrum. This means that the small fluctuations
of the main controlling factors of ET0 had fine structure and were more complex, whereas
those observed in reference evapotranspiration were more regular and homogeneous.
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These outcomes differ considerably from those obtained by the joint multifractal
analysis in the same area of study in the previous research [2]. Even though a higher
number of years were analyzed here, different individual multifractal spectra for ET0,
Tmean, and RH and their deviation from α ∼ 1 can explained due to the elimination of the
trend component in MFDFA, which is known to affect the multifractal properties [33,49].

3.2. MFCCA of Meteorological Times Series with ET0

Similarly, the MFCCA method was applied to pairs of meteorological factors and ET0
with the same range of q moments and scales, s, used in the application of MFDFA. The
same procedure explained in Section 3.1 was performed to find the optimum polynomial
order of trends. Once again, the best order of polynomial to eliminate trends was observed
to be m = 3.

Log–log plots of detrended cross-covariance functions Fq
xy(s)1/q for different values

of q vs. s are shown in Figure 4. It was found that the covariance function of RH and ET0
was negative, as might be expected, since a rise in one variable results in a reduction in the
other and vice versa. For relatively high positive moments and several scales, covariance
functions follow a power law. For negative and low positive moments, they are almost
zero or display violent fluctuations around zero, with a sign which strongly depends on
the timescale, leading to irregular curves like those shown in the figure. Consequently,
meteorological variables do not show power law cross-correlations with ET0 for small
fluctuations. Only the covariance between U2 and ET0 also show a nonlinear scaling with
violent fluctuations for q > 0 and all scales (Figure 4c), denoting that neither variable
exhibits multifractal cross-correlations.
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The existence of power-law cross-correlations between pairs of these meteorological
factors and reference evapotranspiration have also been observed in previous studies [17,19].
However, in those studies they were observed for fluctuations of any magnitude. In this
study, we have established that only large and medium fluctuations exhibit power-law
temporal correlations, whereas correlations between small fluctuations do not follow
Equation (10) or are negligible (see Figure 4). A similar behavior was found for several
time series in a financial context [23,25,47].

Log–log plots of the second-order covariance functions, F2
xy(s)1/q, of each meteorolog-

ical factor with ET0 and second-order variance functions, F2(s), obtained in the previous
section, are shown together vs. the scale in Figure 5. Linear trends (solid lines) of F2

xy(s)
and F2(s) with scale can be noticed in Figure 5a,b,d, showing the power-law scaling of
these functions. Correlation coefficients of linear fits for these curves can also be seen
in this figure. Once again, the protocol of Makowiec and Fuliński was applied to the
detrended cross-correlation functions to consider the scaling exponents as representatives
of the scaling phenomenon [50].
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Figure 5. Detrended variance and covariance functions for q = 2 of meteorological variables with ET0

(dashed lines) and their linear fits (solid lines). (a) Tmean–ET0. (b) RH–ET0. (c) U2–ET0. (d) SR–ET0.

The multifractal cross-correlation exponents λ(q) for q > 0 in the Tmean–ET0, RH–ET0,
and SR–ET0 links are shown in Figure 6 (black triangles) together with their individual
scaling exponents (green and red symbols). They were obtained by fitting the covariance
functions to a straight line in the ranges of scales [40, 96], [27, 236], and [36, 227] days,
respectively (see Figure 5). λ(q) can only be computed for q ≥ 1 in the case of the Tmean–ET0
relation and for q ≥ 0.4 in the other two cases. Pearson correlation coefficients from least-
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squares regressions were higher than 0.980 for every value of q, and λ(q) exponents were
all higher than 0.5 and had larger statistical errors than their individual counterparts. Fur-
thermore, they rapidly increased for medium fluctuations, showing a strong q-dependency
and, thus, multifractal cross-correlations.
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Figure 6. Multifractal cross-correlation exponents, λ(q), of meteorological variables with ET0 and
their generalized Hurst exponents h(q). (a) Tmean–ET0. (b) RH–ET0. (c) U2–ET0. Multifractal cross-
correlation was not observed in this case. (d) SR–ET0.

For the second-order moment, λ(2) was approximately the average of the individual
exponents, hxy (see the small differences between both quantities, dxy(2) = λ(2)− hxy(2),
in Table 3). However, for different values of q, λ significantly deviated from hxy for medium
and relatively small fluctuations (Figure 6a,b,d) and for large fluctuations in the case of
Tmean and SR (Figure 6a,d). This phenomenon has not been observed before in recent
studies of the reference evapotranspiration, where multifractal correlation exponents stay
within the range of the individual scaling exponents [17,19]. According to Oświȩcimka
et al., the difference between λ(q) and hxy(q) arises from distinct values of proportionality
constants in the power law behavior of each process [25]. This fact suggests that the nature
and dynamics of multifractality of the meteorological factors and ET0 differ considerably.
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Table 3. MFCCA parameters and Pearson correlation coefficient (ρ ) at a significance level of 0.01 of
the agro-meteorogical series.

λ(2) hxy(2) dxy(2) α0 w ∆f(α) AI ρ

Tmean/ET0 0.732 0.736 −0.003 0.692 0.163 0.368 1 0.399
RH/ET0 0.798 0.769 0.029 0.786 0.064 0.122 1 −0.651
U2/ET0 - - - - - - - 0.251
SR/ET0 0.719 0.718 0.001 0.705 0.089 0.173 1 0.618

The multifractal spectra of relations which exhibited multifractal cross-correlations
are depicted in Figure 7. These spectra were completely left-sided spectra (AI = 1) and
their most relevant properties can be seen in Table 3. Spectral widths were lower than the
width found for each individual variable, except for the Tmean–ET0 link (see Tables 2 and 3),
which might also be directly inferred from the wide range of exponents shown in Figure 6a.
This means that infrequent higher singularities of ET0 were mainly governed by extreme
temperature values, which is consistent with the conclusions drawn in a previous study [2].
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Figure 7. Multifractal spectra of various pairs of cross-correlations with ET0.

Lastly, Figure 8 shows the results of the q-dependent detrended cross-correlation
coefficient, which allows us to quantify the strength of correlations between different pairs
of links for fluctuations of different sizes.

Small and very small fluctuations of ET0 did not exhibit cross-correlations with any
variable, since the normalized version of the coefficient ρq(s) fluctuated around zero or
was highly unstable with violent fluctuations in the range [−1, 1] (see Figure 8a,b and
Section 2.3). For the sake of clarity, the coefficients for Tmean–ET0, U2–ET0 and SR–ET0 links
are not depicted in Figure 8b due to the extreme fluctuations observed in the range [−1, 1]
in these cases. Therefore, small fluctuations of ET0 (for q < 0) do not show correlations
with meteorological factors.

Medium-sized fluctuations, described by the standard DCCA coefficient ρDCCA(s),
were weakly cross-correlated with all the analyzed meteorological factors for a wide
range of scales, with the RH and SR being the most correlated ones. As was expected,
the correlation between RH and ET0 was negative. Correlations were more stable and
increased slightly with scale up to 60, 300, and 200 days (several months) for SR, RH, and
Tmean, respectively. On the contrary, correlations slightly decreased with scale up to 50 days
for U2, becoming negligible (see Figure 8c). For the first three variables, these bounds are
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closely related to the upper limits of the best scales where covariance functions fit well to
power laws. From these boundaries, trends become more irregular and are inverted for
large scales, except for Tmean, whose trend changes twice.
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Figure 8. q-dependent detrended cross-correlation coefficients ρq(s) vs. the scale, s, for different
values of q. (a) q = −4. (b) q = −2. Curves of the Tmean–ET0, U2–ET0 and SR–ET0 links are omitted
because of the presence of violent fluctuations in the range [−1, 1]. (c) q = 2 (ρDCCA(s)). (d) q = 4.

The Pearson correlation coefficients shown in Table 3 are close to the values of ρDCCA(s)
in every case, as occurred in a previous study [19]. Both coefficients clearly show the
existence of some correlations which cannot be fitted to power-law behavior between ET0
and U2. Nevertheless, they are only significant for low timescales, from days to weeks, and
are negligible for larger scales.

Very extreme events of ET0 can be analyzed for q = 4 and these are correlated with all
the meteorological factors, similarly to medium fluctuations, with a slight decrease in the
strength of correlations in every case.
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4. Conclusions

The behavior of five agro-meteorological variables in the middle zone of the Guadalquivir
River Valley (south Spain) revealed time series with persistent long-range autocorrelations
and multifractality. The variables U2, SR, and ET0 showed moderate persistence, while
Tmean and RH exhibited the highest persistence, denoting more predictable signals. Fur-
thermore, more precise results of multifractal properties than in a previous study [2] were
obtained for ET0, Tmean, and RH due to the elimination of trends in the original signals.
The main controlling factors of ET0, especially SR, displayed complex small fluctuations,
whereas ET0 had more regular and homogeneous small fluctuations.

Tmean, RH, and SR exhibited multifractal cross-correlations with ET0 only for medium
and large fluctuations. This suggests that complexity of ET0 is mainly due to relations
between large events relating to various meteorological factors. On the contrary, previous
studies performed in other regions have found multifractal cross-correlations for fluc-
tuations of any magnitude [17,19]. Results of q-dependent cross-correlation exponents
confirmed the absence of correlations for small fluctuations, whereas correlations existed
for every variable for medium and large fluctuations. Tmean–ET0 and RH–ET0 links had
the strongest correlations. Correlations between ET0 and U2 were significant only for
small scales, which indicates that U2 does not influence the complexity of ET0 in the
area analyzed.

Joint scaling exponents, λ, were close to the average of the individual scaling exponents
for q = 2, whereas they differed for small and large fluctuations, meaning that some
differences exist in the dynamics of multifractality among the analyzed variables. On the
other hand, the singularity spectra showed that the Tmean–ET0 link had a wider spectra and
higher singularities, which means that infrequent extreme events in ET0 are mainly ruled
by high fluctuations of temperature, which is consistent with the results obtained in the
previously mentioned study [2].

These conclusions allow confirmation of the usefulness of the MFCCA method in
identifying multifractal cross-correlations when more than three variables are involved.
Moreover, it has the advantage of being more easily interpretable than distributions of
many dimensions obtained by the joint multifractal method.
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27. Kwapień, J.; Oświęcimka, P.; Drożdż, S. Detrended Fluctuation Analysis Made Flexible to Detect Range of Cross-Correlated
Fluctuations. Phys. Rev. E 2015, 92, 052815. [CrossRef] [PubMed]

28. Jiménez-Hornero, F.J.; Jiménez-Hornero, J.E.; Gutiérrez de Ravé, E.; Pavón-Domínguez, P. Exploring the Relationship between
Nitrogen Dioxide and Ground-Level Ozone by Applying the Joint Multifractal Analysis. Environ. Monit. Assess. 2010, 167,
675–684. [CrossRef] [PubMed]

29. Plocoste, T.; Pavón-Domínguez, P. Temporal Scaling Study of Particulate Matter (PM10) and Solar Radiation Influences on Air
Temperature in the Caribbean Basin Using a 3D Joint Multifractal Analysis. Atmos. Environ. 2020, 222, 117115. [CrossRef]

http://doi.org/10.1016/j.gloplacha.2014.01.006
http://doi.org/10.1016/j.agrformet.2019.107657
http://doi.org/10.1016/j.jhydrol.2006.03.027
http://doi.org/10.1016/j.atmosres.2022.106178
http://doi.org/10.1016/j.agwat.2006.05.017
http://doi.org/10.1016/j.agwat.2014.11.019
http://doi.org/10.1016/j.agwat.2021.107445
http://doi.org/10.1016/j.catena.2020.104711
http://doi.org/10.1016/j.agee.2013.07.008
http://doi.org/10.1016/j.physa.2021.126273
http://doi.org/10.1016/j.chaos.2022.111909
http://doi.org/10.1140/epjs/s11734-021-00325-4
http://doi.org/10.1016/j.asej.2016.10.014
http://doi.org/10.3390/atmos11101116
http://doi.org/10.2166/wcc.2021.379
http://doi.org/10.1016/S0378-4371(02)01383-3
http://doi.org/10.1063/5.0026354
http://doi.org/10.1016/j.eneco.2019.05.015
http://doi.org/10.1016/j.physa.2015.06.039
http://doi.org/10.1103/PhysRevE.89.023305
http://doi.org/10.1103/PhysRevLett.100.084102
http://www.ncbi.nlm.nih.gov/pubmed/18352624
http://doi.org/10.1103/PhysRevE.92.052815
http://www.ncbi.nlm.nih.gov/pubmed/26651752
http://doi.org/10.1007/s10661-009-1083-6
http://www.ncbi.nlm.nih.gov/pubmed/19618284
http://doi.org/10.1016/j.atmosenv.2019.117115


Fractal Fract. 2023, 7, 54 16 of 16

30. Zeleke, T.B.; Si, B.C. Characterizing Scale-Dependent Spatial Relationships between Soil Properties Using Multifractal Techniques.
Geoderma 2006, 134, 440–452. [CrossRef]

31. Gavilán, P.; Lorite, I.J.; Tornero, S.; Berengena, J. Regional Calibration of Hargreaves Equation for Estimating Reference ET in a
Semiarid Environment. Agric. Water Manag. 2006, 81, 257–281. [CrossRef]

32. García-Marín, A.P.; Jiménez-Hornero, F.J.; Ayuso-Muñoz, J.L. Multifractal Analysis as a Tool for Validating a Rainfall Model.
Hydrol. Process. 2008, 22, 2672–2688. [CrossRef]

33. Hu, K.; Ivanov, P.C.; Chen, Z.; Carpena, P.; Eugene Stanley, H. Effect of Trends on Detrended Fluctuation Analysis. Phys. Rev. E
2001, 64, 011114. [CrossRef]

34. Kantelhardt, J.W.; Koscielny-Bunde, E.; Rybski, D.; Braun, P.; Bunde, A.; Havlin, S. Long-Term Persistence and Multifractality of
Precipitation and River Runoff Records. J. Geophys. Res. 2006, 111, D01106. [CrossRef]

35. Gong, H.; Fu, Z. Beyond Linear Correlation: Strong Nonlinear Structures in Diurnal Temperature Range Variability over Southern
China. Chaos Solitons Fractals 2022, 164, 112737. [CrossRef]

36. Rybski, D.; Bunde, A.; von Storch, H. Long-Term Memory in 1000-Year Simulated Temperature Records. J. Geophys. Res. 2008,
113, D02106. [CrossRef]

37. Xavier Júnior, S.F.A.; Stosic, T.; Stosic, B.; Jale, J.D.S.; Xavier, É.F.M. A Brief Multifractal Analysis of Rainfall Dynamics in Piracicaba,
São Paulo, Brazil. Acta Sci. Technol. 2018, 40, 35116. [CrossRef]

38. Peng, C.-K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic Organization of DNA Nucleotides.
Phys. Rev. E 1994, 49, 1685–1689. [CrossRef]

39. Kantelhardt, J.W.; Rybski, D.; Zschiegner, S.A.; Braun, P.; Koscielny-Bunde, E.; Livina, V.; Havlin, S.; Bunde, A. Multifractality of
River Runoff and Precipitation: Comparison of Fluctuation Analysis and Wavelet Methods. Phys. A 2003, 330, 240–245. [CrossRef]

40. Zhang, Q.; Xu, C.-Y.; Chen, Y.D.; Yu, Z. Multifractal Detrended Fluctuation Analysis of Streamflow Series of the Yangtze River
Basin, China. Hydrol. Process. 2008, 22, 4997–5003. [CrossRef]

41. Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. Multifractal Analysis of
Meteorological Time Series to Assess Climate Impacts. Clim. Res. 2015, 65, 39–52. [CrossRef]

42. Gómez-Gómez, J.; Carmona-Cabezas, R.; Ariza-Villaverde, A.B.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Multifractal
Detrended Fluctuation Analysis of Temperature in Spain (1960–2019). Phys. A Stat. Mech. Its Appl. 2021, 578, 126118. [CrossRef]

43. Kalamaras, N.; Tzanis, C.; Deligiorgi, D.; Philippopoulos, K.; Koutsogiannis, I. Distribution of Air Temperature Multifractal
Characteristics Over Greece. Atmosphere 2019, 10, 45. [CrossRef]

44. Sarker, A.; Mali, P. Detrended Multifractal Characterization of Indian Rainfall Records. Chaos Solitons Fractals 2021,
151, 111297. [CrossRef]

45. Telesca, L.; Lovallo, M. Analysis of the Time Dynamics in Wind Records by Means of Multifractal Detrended Fluctuation Analysis
and the Fisher–Shannon Information Plane. J. Stat. Mech. 2011, 2011, P07001. [CrossRef]

46. Shimizu, Y.; Thurner, S.; Ehrenberger, K. Multifractal spectra as a measure of complexity in human posture. Fractals 2002,
10, 103–116. [CrossRef]
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