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(Fractional) differential equations have seen increasing use in physics, signal process-
ing, fluid mechanics, viscoelasticity, mathematical biology, electrochemistry, and many
other fields over the last two decades, providing a new and more realistic way to capture
memory-dependent phenomena and irregularities inside systems using more sophisticated
mathematical analysis (see, for example, [1] and the references therein).

The study of the stability of (fractional) differential equations has attracted a lot of
attention as a result of its growing applications. Furthermore, fractional- and integer-order
controllers have received increased attention in recent years. Among these are optimal
control, CRONE controllers, fractional PID controllers, lead-lag compensators, and sliding
mode control.

The purpose of this Special Issue is to carry out studies on fractional/integer-order con-
trol theory and its applications to practical systems modeled using fractional/integer-order
differential equations such as design, implementation, and application of fractional/integer-
order control to electrical circuits and systems, mechanical systems, chemical systems,
biological systems, finance systems, etc.

Ten high-quality papers were accepted for publication in this Special Issue. The
papers were written by different authors (note that no author published more than one
paper, which proves the wide scope of the Special Issue). The published papers are briefly
summarized as follows.

According to [2], the discrete fractional Fourier transform (DFRFT) has several def-
initions, the most common of which is the multiweighted fractional Fourier transform
(M-WFRFT). It is difficult to demonstrate its unitarity. The weighted-type fractional Fourier
transform, fractional-order matrix, and eigendecomposition-type fractional Fourier trans-
form are used as basic functions to demonstrate and describe unitarity. They observed that
the M-WFRFT has just four effective weighting terms, none of which are extended to M
terms, as stated by the definition. Furthermore, the program code is examined, and the
results demonstrate that the prior work (Digit Signal Process 2020: 104: 18) for unitary
verification based on MATLAB is incorrect.

According to [3], there has been a recent surge in the number of papers addressing
the overall issue of fractional-order controllers, with a concentration on fractional-order
PID. This controller has been offered in several versions, each with its own set of tweaking
techniques and implementation possibilities. A number of recent studies have discussed
the practical application of such controllers. However, industrial acceptance of these
controllers is still a long way off. Auto-tuning approaches for fractional-order PIDs may
increase their desirability in relation to industrial applications. The existing auto-tuning
approaches for fractional-order PIDs are reviewed in this work. The emphasis is on the most
recent discoveries. For various processes, a comparison of many auto-tuning algorithms
is addressed. Numerical examples are provided to demonstrate the applicability of the
methodologies, which might be applied to simple industrial operations.
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The study [4] proposes an interval estimator for a fourth-order nonlinear susceptible–
exposed–infected–recovered (SEIR) model with disturbances using noisy counts of sus-
ceptible patients given by Public Health Services (PHS). According to the World Health
Organization, infectious diseases are the leading cause of mortality among the top 10 causes
of death worldwide (WHO). As a result, tracking and assessing the progression of these dis-
eases is critical for developing intervention methods. The authors investigate a real-world
situation in which some uncertain variables, such as model disturbances and uncertain
input and output measurement noise, are not precisely available but fall within an interval.
Furthermore, the unclear transmission bound rate from the susceptible to the exposed stage
cannot be measured. They created an interval estimator based on an observability matrix
that yields a tight interval vector for the SEIR model’s actual states in a guaranteed man-
ner without computing the observer gain. The developed approach provides additional
freedom because it is not dependent on observer gain. For the estimated state vector, the
convergence of the width to a known value in a finite period is explored to demonstrate
the stability of the estimation error. Finally, simulation results show that the suggested
approach performs well.

Ref. [5] discusses a novel finite time stability (FTS) of neutral fractional-order systems
with a time delay (NFOTSs). In light of this, the Gronwall inequality is used to demonstrate
the FTSs of NFOTSs in the literature. The application of fixed-point theory to show the FTS
of NFOTSs is a novel component of our proposed study. Finally, two instances are used to
validate and substantiate the theoretical contributions.

The authors of [6] introduce a framework of distributed interval observers for fractional-
order multiagent systems with nonlinearity. First, a frame was created to construct the
system’s upper and lower boundaries. The positivity of the error dynamics might be
ensured by applying monotone system theory, implying that the constraints could trap
the initial state. Second, a sufficient condition was used to ensure that distributed inter-
val observers are bounded. The adequate condition was then based on an expansion of
the Lyapunov function in the realm of fractional calculus. An algorithm related to the
observer design technique was also provided. Finally, a numerical simulation was utilized
to demonstrate the distributed interval observer’s usefulness.

The paper [7] investigates an approximate method for solving the generalized frac-
tional diffusion equation that combines the finite difference and collocation methods
(GFDE). The presented method’s convergence and stability analyses are also thoroughly
established. To ensure the proposed method’s effectiveness and accuracy, test examples
with different scale and weight functions are taken into account, and the numerical results
obtained are compared to the existing methods in the literature. The suggested method
works particularly well with generalized fractional derivatives (GFDs), as the existence of
scale and weight functions in a GFD makes discretization and further analysis problematic.

According to [8], autonomous underwater vehicles (AUVs) have a wide range of
uses due to their capacity to travel great distances, their ability conceal themselves well,
their high level of intelligence, and their ability to replace humans in dangerous missions.
AUV motion control systems, which can assure steady operation in the complicated ocean
environment, have piqued the interest of researchers. The authors suggest a single-input
fractional-order fuzzy logic controller (SIFOFLC) as an AUV motion-control system in
this research. First, a single-input fuzzy logic controller (SIFLC) based on the signed
distance approach was presented, with its control input being a linear combination of the
error signal and its derivative. The SIFLC reduces the controller design and calculation
procedure significantly. Then, a SIFOFLC with the error signal’s derivative extending to a
fractional order was produced, providing additional flexibility and adaptability. Finally,
comparative numerical simulations of spiral dive motion control were performed to validate
the superiority of the suggested control algorithm. Meanwhile, the hybrid particle swarm
optimization (HPSO) technique was used to optimize the parameters of several controllers.
The simulation results demonstrate the suggested control algorithm’s enhanced stability
and transient performance.
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The traditional approach to the integration of fractional-order starting value issues, ac-
cording to [9], is based on the Caputo derivative, whose beginning conditions are employed
to build the classical integral equation. The authors show, using a simple counter example,
that this technique results in incorrect free-response transients. The frequency-distributed
model of the fractional integrator and its distributed beginning conditions are used to
solve this fundamental problem. They answer the preceding counter-example using this
model and provide a methodology that is a generalization of the integer-order approach.
Finally, in the linear situation, this technique is used to model Fractional Differential Sys-
tems (FDS) and for the formulation of their transients. Two expressions are constructed,
one based on the Mittag–Leffler function and the other on the notion of a distributed
exponential function.

According to [10], fractional-order differential equations are effective tools for mod-
eling dynamic systems with long-term memory effects. The verified simulation of such
system models using interval tools enables the computation of assured enclosures of attain-
able pseudo-state regions over a finite time horizon. In prior work, the author published an
iteration method based on Picard iteration that uses Mittag–Leffler functions to determine
guaranteed pseudo-state enclosures. In this study, the corresponding iteration is gener-
alized to use exponential functions during the iteration scheme evaluation. A validated
solution of integer-order sets of differential equations yields such exponential functions.
The goal of this work is to show that using exponential functions for Mittag–Leffler func-
tions instead of pure box-type interval enclosures not only improves the tightness of the
calculated pseudo-state enclosures, but also minimizes the required computational cost.
These claims are supported by a realistic simulation model of the charging/discharging
kinetics of Lithium-ion batteries.

Finally, Ref. [11] investigates the synchronization of fractional-order uncertain delayed
neural networks with an event-triggered communication strategy. By developing an
appropriate Lyapunov–Krasovskii functional (LKF) and inequality approaches, sufficient
criteria for the stability of delayed neural networks are obtained. The criteria are expressed
as linear matrix inequalities (LMIs). To accomplish synchronization, a controller is derived
using the drive-response idea, the LMI technique, and the Lyapunov stability theorem.
Finally, numerical examples are provided to validate the effectiveness of the major findings.
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