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Abstract: The propagation of optical soliton profiles in plasma physics and atomic structures is
represented by the (1 + 1)−dimensional Schrödinger dynamical equation, which is the subject of
this study. New solitary wave profiles are discovered by using Nucci’s scheme and a new extended
direct algebraic method. The new extended direct algebraic approach provides an easy and general
mechanism for covering 37 solitonic wave solutions, which roughly corresponds to all soliton families,
and Nucci’s direct reduction method is used to develop the first integral and the exact solution of
partial differential equations. Thus, there are several new solitonic wave patterns that are obtained,
including a plane solution, mixed hyperbolic solution, periodic and mixed periodic solutions, a mixed
trigonometric solution, a trigonometric solution, a shock solution, a mixed shock singular solution,
a mixed singular solution, a complex solitary shock solution, a singular solution, and shock wave
solutions. The first integral of the considered model and the exact solution are obtained by utilizing
Nucci’s scheme. We present 2-D, 3-D, and contour graphics of the results obtained to illustrate the
pulse propagation characteristics while taking suitable values for the parameters involved, and we
observed the influence of parameters on solitary waves. It is noticed that the wave number α and
the soliton speed µ are responsible for controlling the amplitude and periodicity of the propagating
wave solution.

Keywords: first integral; Nucci’s direct reduction method; nonlinear dissipative Schrödinger model;
new direct extended algebraic method (NDEAM); analytical solitary wave solutions

1. Introduction

The Schrödinger equation is one of the fundamental equations in quantum theory.
In quantum physics, the Schrödinger equation is frequently employed to determine a
wave function’s progression over time. In other words, the primary application of the
Schrödinger equation is to the prediction of the trajectory of a particle’s motion, and these
findings play a significant role in the advancement of modern physics, as well as applied
mathematics [1]. It is also characterized as a classical field equation. One of the applications
is the comparison of the propagation of light in a planar waveguide with a nonlinear optical
fiber [2,3]. The study of wave theory shows that the the nonlinear Schrödinger equation
(NLSE) is a feasible tool for the demonstration of self-monochromatic waves in a dispersive
medium. The NLSE is more common in the disciplines of plasma physics, matter physics,
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Heisenberg spin chains, deep water waves, computer networking, and optical communica-
tion (Seadawy et al. [4], Liu et al. [5], and Wang et al. [6]). The dissipative NLSE is extremely
helpful for the modeling of amplitude in the study of dispersive and dissipative media.
Therefore, the d-NLSE is a viable technique for the modeling of dissipative self-modulating
monochromatic waves with dispersion. The estimation of quasi-monochromatic waves’
packets with slow alterations in nonlinear systems is provided by the NLSE’s linear and
nonlinear dispersive and dissipative effects (Ma et al. [7]; Mo et al. [8]; Jiang et al. [9]).

Meanwhile, numerous researchers have worked on distinct forms of NLSEs. Chen et al. [10]
gave interactions and a general periodic solution of the NLSE. The d-NLSE’s asymptotic
behaviors were studied by Cazenave et al. [11]. Keller–Segel dynamics were studied by
Lopez with the NLSE [12]. Weng et al. [13] also conducted an asymptotic analysis with
some semi-rational vector solutions of the n-component NLSE, and some of the optical
solutions were given by Savaissou by using a power law [14]. Seadway found soliton
solutions of the Korteweg–de-Vries–Zakharov–Kuznetsov equation [15]. Akram worked
on the CGL equation and obtained optical solutions, and they also used the Triki–Biswas
equation to study ultrashort pulse propagation in optical fiber frameworks [16–18]. Kumar
studied higher-order equations, such as the Chaffee–Infante equation, BLMP equation,
and rdDym equation, with different approaches [19–21]. Imran explored an improved
perturbed Schrödinger equation with the use of the Ker law [22] and examined the Chen–
Lee–Liu dynamical equation with Nucci’s reduction approach [23]. Adil et al. [24] obtained
the traveling wave solution of nonlinear directional couplers and studied fusion and
fission reactions with soliton solutions [25]. The bright and dark soliton solutions of the
(2 + 1)−NLSE were studied by Wazwaz [26].

The optical solution of the (3 + 1) NLSE was given by Lanre [27]. Kudryashov gave
the solutions of periodic and solitary waves by using a reduced form of a higher-order
NLSE, and he also vigilantly worked on a resonant NLSE for optical solitons [28,29]. Wang
worked on a chiral NLSE and figured out its abundant solutions [30]. Faridi et al. [31]
analyzed the isotropic bi-quadratic Heisenberg spin chain phenomenon and found soliton
solutions, and they also analyzed propagating wave structures of cold bosonic atoms
and obtain soliton solutions [32]. Tahir worked on different models and found their
soliton solution with the help of updated techniques [33–35]. In parallel to this, there are
multiple researchers who have worked on different linear and nonlinear equations, such as
Akgül [36], who worked on the nonlinear stochastic Newell–Whitehead–Segel equation, an
HIV/AIDS model [37], pseudo-parabolic differential equations [38], the fractal–fractional
Klein–Gordon equation [39], and the kernel Hilbert space method [40]. Cubic–quintic
nonlinear Schrödinger equations were also studied by Fabio [41], and he obtained the dark
and bright solutions of the nonlinear Schrödinger equation [42], etc.

The considered model was studied by Seadawy. He produced the bright and dark
soliton solutions by using ansatz function methods [43]. To obtain the soliton solutions in
the current work, a novel direct extended algebraic method is applied to the model.

In the present study, Section 2 presents the model and its structure. Section 3 portrays
a detailed description of the proposed technique and solutions of the model with graphs of
the solutions. A graphical discussion is included in Section 4. At the end, Section 5 contains
the summary as a conclusion.

2. Description of the Model

We consider the dissipative NLSEs

iUt +
1
2

Uxx + U|U|2 = 0, i =
√
−1, (1)

and
iUt −

1
2

Uxx + U|U|2 = 0, i =
√
−1. (2)
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The (1 + 1)−dNLSE is [43],

iUt(x, t) + aUxx(x, t) + b|U(x, t)|2U(x, t) + icU(x, t) = 0, i =
√
−1, (3)

where the dispersion is represented by a, b is a non-linearity constant, and the dissipative
effects are shown by c. If the dissipative effect is weak, c = 0. This effect can also be shown
for various forms of signs of ab < 0 and ab > 0. The exact localized traveling wave
solutions can be generated for the NLSE [43]. There are also some chances of significant
modification of the pulse shape if the absorption is reduced and the nonlinear term is made
comparable to the dispersion term. The shape of the stationary solution is affected by
the sign of a. In fact, if both a > 0 and b > 0, then one can determine the group of exact
solutions, which are localized and stationary.

3. Computation of Soliton Solutions
3.1. Description of the Method

Assume a general NPDE of the type:

Y(U, Ut, Ux, Utt, Uxx, · · · ) = 0, (4)

which can be transformed:

M( R, R′, R′′, · · · ) = 0, (5)

by using the following transformation:

U(x, t) = U(κ)eiΦ, (6)

where κ = k1x + k2t and Φ = k3x + k4t, where the prime sign represents the order of
differentiation for different attributes in Equation (5). Assume that Equation (5) has a
solution of the form:

U(κ) =
j

∑
r=0

ar(P(κ))r, (7)

where

P′(κ) = ln(ρ)
(

ϕ + υ P(κ) + ς(P(κ))2
)

, ρ 6= 0, 1. (8)

In addition, ς, υ, and ϕ are real constants. The general forms of the solutions of
Equation (8) w.r.t the real parameters ς, υ, and ϕ are as follows:

1. For υ2 − 4ϕς < 0 and ς 6= 0,

P1(κ) = −
υ

2ς
+

√
−v

2ς
tanρ

(√
−v

2
κ

)
, (9)

P2(κ) = −
υ

2ς
−
√
−v

2ς
cotρ

(√
−v

2
κ

)
, (10)

P3(κ) = −
υ

2ς
+

√
−v

2ς

(
tanρ

(√
−v κ

)
±
√

mn secρ

(√
−v κ

))
, (11)
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P4(κ) = −
υ

2ς
+

√
−v

2ς

(
cotρ

(√
−v κ

)
±
√

mn cscρ

(√
−v κ

))
, (12)

P5(κ) = −
υ

2ς
+

√
−v

4ς

(
tanρ

(√
−v

4
κ

)
− cotρ

(√
−v

4
κ

))
. (13)

2. For υ2 − 4ϕς > 0 and ς 6= 0,

P6(κ) = −
υ

2ς
−
√

v

2ς
tanhρ

(√
v

2
κ

)
, (14)

P7(κ) = −
υ

2ς
−
√

v

2ς
cothρ

(√
v

2
κ

)
, (15)

P8(κ) = −
υ

2ς
+

√
v

2ς

(
− tanhρ

(√
v κ
)
± i
√

mnρ

(√
v κ
))

, (16)

P9(κ) = −
υ

2ς
+

√
v

2ς

(
− cothρ

(√
v κ
)
±
√

mnρ

(√
v κ
))

, (17)

P10(κ) = −
υ

2ς
−
√

v

4ς

(
tanhρ

(√
v

4
κ

)
+ cothρ

(√
v

4
κ

))
. (18)

3. For ϕς > 0 and υ = 0,

P11(κ) =

√
ϕ

ς
tanρ(

√
ϕς κ), (19)

P12(κ) = −
√

ϕ

ς
cotρ(

√
ϕς κ), (20)

P13(κ) =

√
ϕ

ς

(
tanρ(2

√
ϕς κ)±

√
mn secρ(2

√
ϕς κ)

)
, (21)

P14(κ) =

√
ϕ

ς

(
− cotρ(2

√
ϕς κ)±

√
mn cscρ(2

√
ϕς κ)

)
, (22)

P15(κ) =
1
2

√
ϕ

ς

(
tanρ

(√
ϕς

2
κ

)
− cotρ

(√
ϕς

2
κ

))
. (23)

4. For ϕς < 0 and υ = 0,

P16(κ) = −
√
− ϕ

ς
tanhρ

(√
−ϕς κ

)
, (24)
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P17(κ) = −
√
− ϕ

ς
cothρ

(√
−ϕς κ

)
, (25)

P18(κ) =

√
− ϕ

ς

(
− tanhρ

(
2
√
−ϕς κ

)
± i
√

mnρ

(
2
√
−ϕς κ

))
, (26)

P19(κ) =

√
− ϕ

ς

(
− cothρ

(
2
√
−ϕς κ

)
±
√

mnρ

(
2
√
−ϕς κ

))
, (27)

P20(κ) = −
1
2

√
− ϕ

ς

(
tanhρ

(√−ϕς

2
κ

)
+ cothρ

(√−ϕς

2
κ

))
. (28)

5. For υ = 0 and ϕ = ς,

P21(κ) = tanρ(ϕκ), (29)

P22(κ) = − cotρ(ϕκ), (30)

P23(κ) = tanρ(2ϕκ) ±
√

mn secρ(2ϕκ), (31)

P24(κ) = − cotρ(2ϕκ) ±
√

mn cscρ(2ϕ κ), (32)

P25(κ) =
1
2

(
tanρ

( ϕ

2
κ
)
− cotρ

( ϕ

2
κ
))

. (33)

6. For υ = 0 and ς = −ϕ,

P26(κ) = − tanhρ(ϕκ), (34)

P27(κ) = − cothρ(ϕκ), (35)

P28(κ) = − tanhρ(2ϕκ) ± i
√

mnρ(2ϕκ), (36)

P29(κ) = − cothρ(2ϕκ) ±
√

mnρ(2ϕκ), (37)

P30(κ) = −1
2

(
tanhρ

( ϕ

2
κ
)

+ cothρ

( ϕ

2
κ
))

. (38)

7. For υ2 = 4ϕς,

P31(κ) =
−2ϕ(υκ ln(ρ) + 2)

υ2κ ln(ρ)
. (39)
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8. For υ = p, ϕ = pq, (q 6= 0), and ς = 0,

P32(κ) = ρpκ − q. (40)

9. For υ = ς = 0,

P33(κ) = ϕκ ln(ρ). (41)

10. For υ = ϕ = 0,

P34(κ) =
−1

ςκ ln(ρ)
. (42)

11. For ϕ = 0 and υ 6= 0,

P35(κ) = −
mυ

ς
(

coshρ(υκ) − sinhρ(υκ) + m
) , (43)

P36(κ) = −
υ
(

sinhρ(υκ) + coshρ(υκ)
)

ς
(
sinhρ(υκ) + coshρ(υκ) + n

) . (44)

12. For υ = p, ς = pq, (q 6= 0 and ϕ = 0),

P37(κ) = −
mρpκ

m− qnρpκ . (45)

sinhρ(κ) =
mρκ − nρ(−κ)

2
, coshρ(κ) =

mρκ + nρ(−κ)

2
, tanhρ(κ) =

mρκ − nρ(−κ)

mρκ + nρ(−κ)
, (46)

ρ(κ) =
2

mρκ − nρ(−κ) ρ(κ) =
2

mρκ + nρ(−κ)
, cothρ(κ) =

mρκ + nρ−κ

mρκ − nρ−κ
, (47)

sinρ(κ) =
mρiκ − nρ(−iκ)

2i
, cosρ(κ) =

mρiκ + nρ(−iκ)

2
, tanρ(κ) = −i

mρiκ − nρ(−iκ)

mρiκ + nρ(−iκ)
, (48)

cscρ(κ) =
2i

mρκ − nρ(−κ)
secρ(κ) =

2
mρκ + nρ(−κ)

, cotρ(κ) = i
mρiκ + nρ(−iκ)

mρiκ − nρ(−iκ)
, (49)

where m and n are arbitrary constants that have a value greater than zero, and they are also
known as deformation parameters.

3.2. Imposition of the Technique on Equation (4)

In order to find the solution, we used the ansatz in Equation (3),

U(x, t) = U(κ)eiφ, κ = αx + µt, Φ = k1x + λt, (50)

where α is the wave number and µ is the speed of the soliton. By imposing the considered
transformation in Equation (50) on Equation (3), we produce the following real parts:
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aα2U′′ − (ak2
1 + λ)U + bU3 = 0. (51)

The homogeneous balancing constant of Equation (51) is one; thus, the solution is
given as follows:

U(κ) = a0 + a1P(κ), (52)

where,
P′(κ) = ln(ρ)(ϕ + υP + ς(P(κ))2. (53)

By plugging in the solution of Equation (52) along with Equations (51)–(53) and by
calculating the coefficients of the different powers of P(κ), we get the system of equations.
This system is a system of algebraic equations, and it was solved with the help of the
Mapple software; the results are as follows:

ao = ∆υ, a1 = 2∆ς, (54)

where ∆ = ±
√
−a
2b αln(ρ).

We get the general solution of Equation (3) by plugging Equation (54) into Equation (52):

U(x, t) = ∆υ + 2∆ςPi(κ), (55)

Here, v = υ2 − 4ϕς. It should be seen that by placing different values of Pr from
Equations (9)–(45), we can get many solutions.

(1) For υ2 − 4ϕ ς < 0, ς 6= 0,

U1(x, t) =

[
∆
√
−v tanρ

(√
−v

2
κ

)]
eιΦ, (56)

U2(x, t) = −
[

∆
√
−v cotρ

(√
−v

2
κ

)]
eιΦ, (57)

U3(x, t) =

[
∆
√
−v

(
tanρ

(√
−v κ

)
±
√

mn secρ

(√
−v κ

))]
eιΦ, (58)

U4(x, t) =

[
∆
√
−v

(
cotρ

(√
−v κ

)
±
√

mn cscρ

(√
−v κ

))]
eιΦ, (59)

U5(x, t) =

[
∆

√
−v

4

(
tanρ

(√
−v

4
κ

)
− cotρ

(√
−v

4
κ

))]
eιΦ. (60)

(2) For υ2 − 4ϕ ς > 0, ς 6= 0,

U6(x, t) = −
[

∆
√

v tanhρ

(√
v

2
κ

)]
eιΦ, (61)

U7(x, t) = −
[

∆
√

v cothρ

(√
v

2
κ

)]
eιΦ, (62)

U8(x, t) =

[
∆
√

v
(
− tanhρ

(√
v κ
)
± i
√

mnρ

(√
v κ
))]

eιΦ, (63)

U9(x, t) =

[
∆
√

v
(
− cothρ

(√
v κ
)
±
√

mnρ

(√
v κ
))]

eιΦ, (64)

U10(x, t) =

[
∆
2
√

v

(
tanhρ

(√
v

4
κ

)
+ cothρ

(√
v

4
κ

))]
eιΦ. (65)
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(3) For ϕς > 0 and υ = 0,

U11(x, t) =

[
2∆
√

ςϕ

(
tanρ(

√
ϕς κ)

)]
eιΦ, (66)

U12(x, t) = −
[

2∆
√

ϕς

(
cotρ(

√
ϕς κ)

)]
eιΦ, (67)

U13(x, t) =

[
2∆
√

ϕς

(
tanρ(2

√
ϕς κ)±

√
mn secρ(2

√
ϕς κ)

)]
eιΦ, (68)

U14(x, t) =

[
2∆
√

ϕς

(
− cotρ(2

√
ϕς κ)±

√
mn cscρ(2

√
ϕς κ)

)]
eιΦ, (69)

U15(x, t) =

[
∆
√

ϕς

(
tanρ

(√
ϕς

2
κ

)
− cotρ

(√
ϕς

2
κ

))]
eιΦ. (70)

(4) For ϕς < 0 and υ = 0,

U16(x, t) = −
[

2∆
√
−ϕς

(
tanhρ

(√
−ϕς κ

))]
eιΦ, (71)

U17(x, t) = −
[

2∆
√
−ϕς

(
cothρ

(√
−ϕς κ

))]
eιΦ, (72)

U18(x, t) =

[
2∆
√
−ϕς

(
− tanhρ

(
2
√
−ϕς κ

)
± i
√

mnρ

(
2
√
−ϕς κ

))]
eιΦ, (73)

U19(x, t) =

[
2∆
√
−ϕς

(
− cothρ

(
2
√
−ϕςκ

)
±
√

mnρ

(
2
√
−ϕς κ

))]
eιΦ, (74)

U20(x, t) = −
[

∆
√
−ϕς

(
(tanhρ

(√−ϕς

2
κ

)
+ cothρ

(√−ϕς

2
κ

))]
eιΦ. (75)

(5) For υ = 0 and ς = ϕ,

U21(x, t) =

[
2∆ϕ

(
tanρ(ϕκ)

)]
eιΦ, (76)

U22(x, t) = −
[

2∆ϕ

(
cotρ(ϕκ)

)]
eιΦ, (77)

U23(x, t) =

[
2∆ϕ

(
tanρ(2ϕκ) ±

√
mn secρ(2ϕκ)

)]
eιΦ, (78)

U24(x, t) =

[
2∆ϕ

(
− cotρ(2ϕκ) ±

√
mn cscρ(2ϕκ)

)]
eιΦ, (79)

U25(x, t) =

[
∆ϕ

(
tanρ(

ϕ

2
κ) − cotρ(

ϕ

2
κ)

)]
eιΦ. (80)

(6) For υ = 0 and ς = −ϕ,

U26(x, t) =

[
2∆ϕ

(
tanhρ(ϕκ)

)]
eιΦ, (81)

U27(x, t) =

[
2∆ϕ

(
cothρ(ϕκ)

)]
eιΦ, (82)
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U28(x, t) = −
[

2∆ϕ

(
− tanhρ(2ϕκ) ± i

√
mn sechρ(2ϕκ)

)]
eιΦ, (83)

U29(x, t) = −
[

2∆ϕ

(
− cothρ(2ϕκ) ±

√
mn cschρ(2ϕκ)

)]
eιΦ, (84)

U30(x, t) =

[
∆ϕ

(
tanhρ(

ϕ

2
κ) + cothρ(

ϕ

2
κ)

)]
eιΦ. (85)

(7) For υ2 = 4ϕς,

U31(x, t) =

[
−2∆

κ ln(ρ)

]
eιΦ. (86)

(8) For υ = p, ϕ = pq, and ς = 0,

U32(x, t) = [∆p] eιΦ. (87)

(9) For υ = ς = 0,
U33(x, t) = 0. (88)

(10) For υ = ϕ = 0,

U34(x, t) = −
[

2∆
κ ln(ρ)

]
eιΦ. (89)

(11) For ϕ = 0 and υ 6= 0,

U35(x, t) = ±∆υ

[
1 − 2m

coshρ(υκ)− sinhp(υκ) + m

]
eιΦ. (90)

U36(x, t) = ±∆υ

[
1 − 2

[
coshρ(υκ) + sinhp(υκ)

coshρ(υκ) + sinhp(υκ) + n

]]
eιΦ (91)

(12) For υ = p, ς = pq, where q 6= 0 and ς = 0,

U37(x, t) = ∆p
[

1 − 2mq ρpκ

m − nqρpκ

]
eιΦ (92)

3.3. The First Integral and Exact Solution with Nucci’s Reduction Method

This portion contains the application of Nucci’s reduction method, along with the
implications of this technique. Let us assume the change of variables Ψ1(κ) = U(κ),
Ψ2(κ) = U′(κ), and we get a dynamic system of ODEs of the first order by using the
following Galilean transformation:

dΨ1

dκ
= Ψ2,

dΨ2

dκ
=

ak2
1 + λ

aα2 Ψ1 −
b

aα2 Ψ2
1.

(93)

Since this is an autonomous system of equations, we can assume that Ψ1 is a new
independent variable. At the same time, Equation (93) can be simplified to

dΨ2

dΨ1
=

ak2
1 + λ

aΨ2α2 Ψ1 −
b

aΨ2α2 Ψ2
1. (94)
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Equation (94) is a separable ODE, and exact solution is acquired through an integra-
tion process:

Ψ2(Ψ1) =

√
2
√

aα
(
2 aΨ2

1k2
1 − bΨ4

1 + 2θ aα + 2 λ Ψ2
1
)

√
2aα

, (95)

with an arbitrary constant θ. The first integral can be obtained with a constant value of θ:

θ =
Ψ2

1
(
2 ak2

1 − bΨ2
1 + 2 λ

)
aα

. (96)

Substituting Equation (95) into Equation (93) yields

dΨ1(κ)

dκ
=

1
2

√
4 aΨ2

1k2
1 − 2 bΨ4

1 + 4 λ Ψ2
1 + 4θ, (97)

Equation (97) is also a first-order separable equation, and with same pattern, we can
get the general solution as follows:

U(x, t) = 2aαΩ

√
4 aλk2

1 + 2λ2 + a2k2
1 + a2k4

1
4a4α4b2(a2k4

1 + 2aλk2
1 + λ2) + 4 Ω2a2α2b(ak2

1 + λ) + Ω4
, (98)

whenever θ = 0 and Ω = e−
ln(2)aα−

√
a2α κ2k1

2+aα κ2λ

aα .

U(x, t) =
√

2θ aα√
−ak1

2 +
√

a2k1
4 + 2 aα bθ + 2 aλ k1

2 + λ2 − λ

JacobiSN
(√(−ak1

2 + Ξ− λ
)

κ

√
2aα

,

√
− a2k1

4 + Ξak1
2 + aα bθ + 2 aλ k1

2 + Ξλ + λ2

aα bθ

)
,

(99)

whenever θ 6= 0 and Ξ =
√

a2k1
4 + 2 aα bθ + 2 aλ k1

2 + λ2.

4. Graphical Discussion

In this section, we present a detailed graphical analysis of the model under discussion.
The complex solution U3(x, t) is graphically presented by taking appropriate values of
ρ = 5, m = 7, n = 2, a = 5, b = 0.4, $ = 3, ζ = 2, ν = 4, k1 = 2, µ = 0.2, and λ = 5.
Figures 1 and 2 presented the graphical impact of the wave number on the propagating
wave profile for the real part of the solution U3(x, t). Figures 3 and 4 presented the graphical
impact of the wave number on the propagating wave profile for the imaginary part of the
solution U3(x, t). Figures 5 and 6 presented the graphical impact of the soliton speed on the
propagating wave profile for the real and imaginary parts of the solution in Equation (98)
at α = 0.09, ρ = 5, a = 0.5, b = 0.4, $ = 3, k1 = 0.1, and λ = 5.
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(a) 3D wave profile at α = 0.02 (b) Contour wave profile at α = 0.02 (c) 2D wave profile at α = 0.02

(d) 3D wave profile at α = 0.09 (e) Contour wave profile α = 0.09 (f) 2D wave profile α = 0.09

(g) 3D wave profile α = 0.2 (h) Contour wave profile α = 0.2 (i) 2D wave profile α = 0.2

Figure 1. 3D, Contour and 2D impact of wave number α on the Real part of solution U3.
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(a) 3D wave profile at α = 0.5 (b) Contour wave profile at α = 0.5 (c) 2D wave profile at α = 0.5

(d) 3D wave profile at α = 1 (e) Contour wave profile at α = 1 (f) 2D wave profile at α = 1

(g) 3D wave profile at α = 1.9 (h) Contour wave profile at α = 1.9 (i) 2D wave profile at α = 1.9

Figure 2. The influence of different wave numbers α on the Real part of solution U3.
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(a) 3D wave profile at α = 0.09 (b) Contour wave profile at α = 0.09 (c) 2D wave profile at α = 0.09

(d) 3D wave profile at α = 0.9 (e) Contour wave profile at α = 0.9 (f) 2D wave profile at α = 0.9

(g) 3D wave profile at α = 0.2 (h) Contour wave profile at α = 0.2 (i) 2D wave profile at α = 0.2

Figure 3. 3D, Contour and 2D impact of wave number α on the Imaginary part of solution U3.



Fractal Fract. 2023, 7, 38 14 of 18

(a) 3D wave profile at α = 0.5 (b) Contour wave profile at α = 0.5 (c) 2D wave profile at α = 0.5

(d) 3D wave profile at α = 1 (e) Contour wave profile at α = 1 (f) 2D wave profile at α = 1

(g) 3D wave profile at α = 1.9 (h) Contour wave profile at α = 1.9 (i) 2D wave profile at α = 1.9

Figure 4. The effect of different wave numbers α on the Imaginary part of solution U3.
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(a) 3D wave profile at velocity
µ = 0.09

(b) Contour wave profile at ve-
locity µ = 0.09

(c) 2D wave profile at velocity
µ = 0.09

(d) 3D wave profile at velocity
µ = 0.9

(e) Contour wave profile at ve-
locity µ = 0.9

(f) 2D wave profile at velocity
µ = 0.9

(g) 3D wave profile at velocity
µ = 1.9

(h) Contour wave profile at ve-
locity µ = 1.9

(i) 2D wave profile at velocity
µ = 1.9

Figure 5. For the real part of solution Equation (98), the impact of velocity is seen in 3D, 2D,
and contour.
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(a) 3D wave profile at velocity
µ = 0.09

(b) Contour wave profile at ve-
locity µ = 0.09

(c) 2D wave profile at velocity
µ = 0.09

(d) 3D wave profile at velocity
µ = 0.9

(e) Contour wave profile at ve-
locity µ = 0.9

(f) 2D wave profile at velocity
µ = 0.9

(g) 3D wave profile at velocity
µ = 1.9

(h) Contour wave profile at ve-
locity µ = 1.9

(i) 2D wave profile at velocity
µ = 1.9

Figure 6. For the Imaginary part of solution Equation (98), the impact of velocity is seen in 3D, 2D,
and contour graphs.

5. Conclusions

In this research, we utilized generalized approaches to examine the nonlinear dissipa-
tive Schrödinger equation. The established solitonic structures and exact solutions were
addressed with a new extended direct algebraic equation technique and Nucci’s reduction,
respectively. As a result, we obtained:

• The mixed complex solitary shock solution, singular solution, mixed shock singular
solution, mixed trigonometric solution, mixed singular solution, exact solution, mixed
periodic solution, and mixed hyperbolic solution, as well as the periodic solution.

• The first integral was developed for the nonlinear dissipative Schrödinger equation.



Fractal Fract. 2023, 7, 38 17 of 18

• A 2D, 3D, and contour visualization was presented, and it was observed that the dis-
sipative parameter and velocity of the soliton were responsible for controlling the
amplitude of the propagating wave.

It is hoped that this study will be important for analysts and researchers for improving
experimental work, and that it can be expanded in a way that includes multiple solitons,
lump interactions, and rogue wave breather types.
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