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Abstract: This paper investigates the switching-jumps-dependent quasi-synchronization issue for
fractional-order memristive neural networks (FMNNs). First, a simplied linear feedback controller is
applied. Then, in terms of several fractional order differential inequalities and two kinds of Lyapunov
functions, two quasi-synchronization criteria expressed by linear matrix inequality (LMI)-based form
and algebraic form are established, respectively. Meanwhile, the co-designed scheme for error bound
and control gain is established. Compared with the previous quasi-synchronization results, a strong
assumption that the system states must be bounded is removed. Finally, some simulation examples
are carried out to display the feasibility and validity of the proposed analysis methods.

Keywords: quasi-synchronization; fractional-order memristive neural networks; error bound;
switching-jumps

1. Introduction

Neural networks have self-organization ability, fault tolerance, adaptability, fast com-
puting speed, and strong associative ability, and they are widely used in image process-
ing [1], fault diagnosis [2], signal processing [3], pattern recognition [4], fluid mechanics [5]
and other fields with broad application prospects and are a research hotspot. A rich body
of research has studied FMNNs and developed neural network models such as convolution
neural network [6], Hopfield neural network [7], artificial neural network [8], fuzzy rough
neural network [9], and spiking neural network [10]. In recent decades, many scholars
nationally and internationally have found that fractional calculus operators have mem-
ory and non-locality [11], and they are widely used in neural networks because of these
characteristics. Fractional neural networks have achieved many excellent results, such as
in [12,13]. Chua [14] pioneered the concept of the memristor, which was discovered by
Hui Pu Labs [15] as the fourth basic circuit element. Memristors have the characteristics
of low energy consumption, high storage, small size and non-volatility. They have very
similar functions to biological neuron synapses and can act as synapses of artificial neurons.
Therefore, the fractional-order neural network based on a memristor is established, namely
the fractional-order memristive neural network. Many excellent works on FMNNs have
been studied in [16–18].

Synchronization is an interesting research hotspot. Up to now, some published works
have been published for FMNNs. For example, the Mittag–Leffler synchronization issue
has been investigated for complex-valued FMNNs by designing complex-valued adaptive
controller and using fractional-order Lyapunov theory [19]. The pinging synchronization
control issues have been addressed along with delay pulse FMNNs and multi-delays
FMNNs in [20,21], respectively. Combining open-loop control with time-delay feedback
control, the projection synchronization issue has been considered for a class of multi-delay
FMNNs [22]. By designing a chatter-free sliding mode controller, the synchronization of
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fractional-order chaotic systems has been discussed in combination with a neural network
observer [23]. Using the interval matrix method, a linear state feedback controller was
constructed, and then, the quasi-synchronization problem of FMNNs was solved [24].
In [25], the error system was processed by the closure algorithm. In addition, the linear
state feedback controller has been applied, and the robust synchronization of the fractional
Hopfield memristive neural network has been realized. Nevertheless, almost all the
mentioned works are focused on the complete synchronization. Only a few works focus
on the quasi-synchronization of FMNNs in the presence of switching jumps. In addition,
most existing synchronization controllers may be too complex for FMNNs. Therefore,
it is necessary to study the potential mechanism of the impact of switching jumps on
synchronization. However, as far as we know, this is still an outstanding issue which
deserves further investigation. As such, we need to study the switching-jumps-dependent
quasi-synchronization issue for FMNNs.

It is worth noting that the previous works associated with the synchronization, the
stability, and the stabilization problems of FMNNs are all expressed in terms of algebraic
conditions [26–29]. Nevertheless, the defect of this method is that it requires a large amount
of calculation because the conditions must be checked n times one by one. To overcome
this defect, the LMI-based approach, based on which and with the help of MATLAB LMI
toolbox the feasible solutions can be easily obtained, is considered to be a convenient and
effective method. Unfortunately, the existing LMI-based approach is not applicable to the
FMNNs systems studied in this paper. To this end, two new inequalities in differential
inclusion are identified and the criterion of quasi-synchronization in the form of LMIs is
obtained. On the other hand, the previous works on quasi-synchronization [30] cannot
be derived unless there is a strong assumption that the system states must be bounded.
This implies that the trajectory boundary needs to be given beforehand. That is to say,
the state estimation issue is a prerequisite for the research of dynamic systems control
design. Therefore, such a problem has become particularly meaningful and achieved a
lot of excellent results. However, it indeed poses a difficult and challenging problem for
obtaining the real-time status information. The main reason lies in that the boundaries
of chaotic systems are dependent on the initial value, and then the boundary must be
recalculated as long as the initial value changes. To address this issue, we will develop a
novel analysis method that is not limited by chaotic trajectories so as to implement some
improved quasi-synchronization criteria.

Inspired by the above discussion, this paper mainly discusses the quasi-synchronization
of FMNNs based on linear feedback control. The main contributions are listed as follows:

(1) In contrast with the previous results [24,30], a strong assumption that the system
states must be bounded is removed.

(2) In view of several fractional order differential inequalities and two kinds of Lya-
punov functions, two quasi-synchronous criteria given by LMIs-based form and algebraic
form are developed, respectively. In addition, the co-designed scheme for the error bound
and control gain is established.

In addition, some useful notations are displayed in Table 1.

Table 1. Notations and Descriptions.

Notation Description

λmax(Q) the maximum eigenvalue of matrix Q
QT(or Q−1) transpose (or inverse) of matrix Q

∗ the symmetric element
Q > 0 Q is a positive

(or Q ≥ 0) definite (or semi-definite) matrix
diag(. . . ) a block diagonal matrix
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2. Preliminaries and Model Description

Consider the following FMNNs as the drive system

0Dι
tνp(t) = −δpνp(t) +

n

∑
q=1

αpq
(
νq(t)

)
ψq
(
νq(t)

)
, p = 1, . . . , n, (1)

where order 0 < ι < 1; νp(t) denotes the state of the pth neuron; δp > 0 denotes the system
state; αpq(νq(t)) is the memristive connection weights; and

αpq(νq(t)) =
W f pq

ιp
× ιpq,

where ιpq = 1 if p 6= q, otherwise ιpq = −1. W f pq is the memductances of voltage-controlled
memristors M f pq, respectively; M f pq is the memristor connecting ψq

(
νq(t)

)
and νp(t); ψq(·)

is the activation functions satisfying ψq(0) = 0, |ψq(ν)− ψq(µ)| ≤ ψq|ν− µ|, where ψq is
Lipschitz constant, and ν, µ ∈ R and q = 1, . . . , n. The initial condition νp(t) = φp(t), for
p = 1, . . . , n. The memristive synaptic weights αpq

(
νq(t)

)
is represented by

αpq
(
νq(t)

)
=

{
α̂pq,

∣∣νq(t)
∣∣ < Tq,

α̌pq,
∣∣νq(t)

∣∣ > Tq,

for p, q = 1, . . . , n, where α̂pq, α̌pq, are constants and the switching jumps Tq > 0.
Accordingly, consider the response system

0Dι
tµp(t) = −δpµp(t) +

n

∑
q=1

αpq
(
µq(t)

)
ψq
(
µq(t)

)
+ up(t), p = 1, . . . , n, (2)

where up(ν(t)) is the stabilizing control law, µp(t) denotes the state of the pth neuron; and

αpq
(
µq(t)

)
=

{
α̂pq,

∣∣µq(t)
∣∣ < Tq,

α̌pq,
∣∣µq(t)

∣∣ > Tq,

where Tq > 0 denotes the switching jumps. The initial condition µp(t) = ϑp(t), for
p = 1, . . . , n.

Based on [31], define the multivalued maps for system (1) as

K
[
αpq
(
νq(t)

)]
=


α̂pq,

∣∣νq(t)
∣∣ > Tq,

co
{

α̂pq, α̌pq
}

,
∣∣νq(t)

∣∣ = Tq,
α̌pq,

∣∣νq(t)
∣∣ < Tq.

Clearly, co
{

α̂pq, α̌pq
}

=
[
αpq, αpq

]
for p, q = 1, . . . , n, where αpq = min

{
α̂pq, α̌pq

}
,

αpq = max
{

α̂pq, α̌pq
}

.
For p = 1, . . . , n, the set-valued map

νp(t) 7→ −δpνp(t) +
n

∑
q=1

K
[
αpq
(
νq(t)

)]
ψq
(
νq(t)

)
,

is compact, nonempty and convex. In addition, it is upper semi-continuous [32].
From (1), it yields

0Dι
tνp(t) ∈ −δpνp(t) +

n

∑
q=1

K
[
αpq
(
νq(t)

)]
ψq
(
νq(t)

)
. (3)
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Moreover, in view of the measurable selection theorem [33], there exists γpq
(
νq(t)

)
∈

K
[
αpq
(
νq(t)

)]
such that

0Dι
tνp(t) = −δpνp(t) +

n

∑
q=1

γpq
(
νq(t)

)
ψq
(
νq(t)

)
. (4)

Similarly, for response system (2), define

K
[
αpq
(
µq(t)

)]
=


α̂pq,

∣∣µq(t)
∣∣ > Tq,

co
{

α̂pq, α̌pq
}

,
∣∣µq(t)

∣∣ = Tq,
α̌pq,

∣∣µq(t)
∣∣ < Tq.

Then, from (2), it yields

0Dι
tµp(t) ∈ −δpµp(t) +

n

∑
q=1

K
[
αpq
(
µq(t)

)]
ψq
(
µq(t)

)
+ up(t). (5)

Moreover, there exists γpq
(
µq(t)

)
∈ K

[
αpq
(
µq(t)

)]
such that

0Dι
tµp(t) = −δpµp(t) +

n

∑
q=1

γpq
(
µq(t)

)
ψq
(
µq(t)

)
+ up(t). (6)

Let εp(t) = µp(t)− νp(t), and the controller

up(t) = −kpεp(t), (7)

where kp > 0, p = 1, 2, . . . , n. Then, according to (4) and (6), one has

0Dι
tεp(t) = −(δp + kp)εp(t) +

n

∑
q=1

[
γpq
(
µq(t)

)
ψq
(
µq(t)

)
− γpq

(
νq(t)

)
ψq
(
νq(t)

)]
. (8)

The initial condition is defined by εp(0) = Φp(0), where Φp(s) = ϑµp(s)− ϑνp(s).
Denote ν(t) = [ν1(t), . . . , νn(t)]T , µ(t) = [µ1(t), . . . , µn(t)]T , ε(t) = [ε1(t), . . . , εn(t)]T ,

and φ(s) = [φ1(s), . . . , φn(s)]T .

Remark 1. During the dynamic evolution of FMNN, asynchronous switching time interval (ASTI)
and synchronous switching time interval (SSTI), i.e., αpq(νq(t)) 6= αpq(µq(t)) and αpq(νq(t)) =
αpq(µq(t)), appear alternately. The drive-response systems are sometimes consistent and sometimes
different. When the drive-response systems switch with consistent jumps and inconsistent initial
values, it is impossible to eliminate errors for ensuring complete synchronization, because fractional
nonlinear systems based on continuous controllers do not have finite time stability [34]. Therefore,
the error that is not completely eliminated will result in the state of the drive-response systems
not reaching the switch jump Tq at the same time. This means that the drive-response systems
cannot be switched synchronously, which will result in αpq(νq(t)) 6= αpq( muq(t)). In other
words, ASTI will appear. On the other hand, mismatches between join weights can also lead
to new synchronization errors. Therefore, the linear feedback controller cannot achieve complete
synchronisation due to the total error of two different subsystems in ASTI. After analysis, ASTI
plays an important role in FMNN synchronization. In fact, even if the initial value is the same, if
the switch jumps are not equal, i.e., ∆T 6= 0, the linear feedback control systems (1)–(2) may not be
able to achieve full synchronization, because ASTI does exist.

To facilitate the analysis, the following definition and lemmas are proposed.
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Definition 1 ([35]). The Caputo fractional derivative of order 0 < ι < 1 of a function χ(t) is
defined as

t0 Dι
tχ(t) =

1
Γ(1− ι)

∫ t

t0

(t− τ)−ιχ′(τ)dτ.

Lemma 1 ([36]). If continuously differentiable function h(t) ∈ C1([0,+∞), R), for any ι ∈ (0, 1),
one has

0Dι
tν(t) ≤ sign(h(t))0δι

th(t).

Lemma 2 ([37]). If vector ν(t) ∈ Rn denotes a differentiable function. Then, for t ≥ t0, one has

1
2 t0

Dι
tν

T(t)Pν(t) ≤ νT(t)Pt0 Dι
tν(t) ∀ι ∈ (0, 1],

where P > 0 ∈ Rn×n.

Lemma 3 ([38]). The LMI

O =

[
O11 O12
OT

12 O22

]
< 0,

is equivalent to

• O11 < 0, O22 −OT
12O

−1
11 O12 < 0,

• O22 < 0, O11 −O12O−1
22 OT

12 < 0,

where O11 = OT
11, O22 = OT

22.

3. Main Results

Theorem 1. If the following algebraic condition

min
1≤p≤n

{
δp + kp −

n

∑
q=1

αu
qpLp

}
> 0

holds, then systems (1)–(2) achieve quasi-synchronization with error bound θ
λ via the controller (7) ,

where λ = min1≤p≤n

{
δp + kp −∑n

q=1 αu
qpLp

}
, θ = ∑n

p=1 ∑n
q=1
∣∣∆αpq

∣∣LqTmax.

Proof. Take the following Lyapunov function:

V(t) =
n

∑
p=1
|εp(t)|.

or any given p, q = 1, 2, . . . , n, and νq, µq ∈ R, one has
If
∣∣νq(t)

∣∣ < Tq,
∣∣µq(t)

∣∣ < Tq, then∣∣K[αpq
(
µq(t)

)]
ψq
(
µq(t)

)
− K

[
αpq
(
νq(t)

)]
ψq
(
νq(t)

)∣∣ = ∣∣α̂pqψq
(
µq(t)

)
− α̂pqψq

(
νq(t)

)∣∣
≤
∣∣α̂pq

∣∣ | ψq
(
µq(t)

)
− ψq

(
νq(t)

)∣∣
≤ αu

pqLq
∣∣εq(t)

∣∣,
where αu

pq = max{|α̂pq|, |α̌pq|}.
If
∣∣νq(t)

∣∣ > Tq,
∣∣µq(t)

∣∣ > Tq, then∣∣K[αpq
(
µq(t)

)]
ψq
(
µq(t)

)
− K

[
αpq
(
νq(t)

)]
ψq
(
νq(t)

)∣∣ = ∣∣α̌pqψq
(
µq(t)

)
− α̌pqψq

(
νq(t)

)∣∣
≤
∣∣α̌pq

∣∣∣∣ψq
(
µq(t)

)
− ψq

(
νq(t)

)∣∣
≤ αu

pqLq
∣∣εq(t)

∣∣.
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If
∣∣νq(t)

∣∣ ≤ Tq,
∣∣µq(t)

∣∣ ≥ Tq, then∣∣K[αpq
(
µq(t)

)]
ψq
(
µq(t)

)
− K

[
αpq
(
νq(t)

)]
ψq
(
νq(t)

)∣∣
=
∣∣α̌pqψq

(
µq(t)

)
− α̂pqψq

(
νq(t)

)∣∣
=
∣∣α̌pq

[
ψq
(
µq(t)

)
− ψq

(
νq(t)

)]
+
(
α̌pq − α̂pq

)
ψq
(
νq(t)

)∣∣
≤αu

pqLq
∣∣εq(t)

∣∣+ ∣∣α̂pq − α̌pq
∣∣Lq
∣∣νq(t)

∣∣
≤αu

pqLq
∣∣εq(t)

∣∣+ ∣∣∆αpq
∣∣LqTmax.

If
∣∣νq(t)

∣∣ ≥ Tq,
∣∣µq(t)

∣∣ ≤ Tq, we also have∣∣K[αpq
(
µq(t)

)]
ψq
(
µq(t)

)
− K

∣∣αpq
(
νq(t)

)]
ψq
(
νq(t)

)
|

≤αu
pqLq

∣∣εq(t)
∣∣+ ∣∣∆αpq

∣∣LqTmax.

Hence, one can obtain∣∣K[αpq
(
µq(t)

)]
ψq
(
µq(t)

)
− K

[
αpq
(
νq(t)

)]
ψq
(
νq(t)

)∣∣ ≤ αu
pqLq

∣∣εq(t)
∣∣+ ∣∣∆αpq

∣∣LqTmax.

In view of Lemma 1, one has

0δι
tV(t) =δι

t

n

∑
p=1

∣∣εp(t)
∣∣ ≤ n

∑
p=1

sign
(
εp(t)

)
δι

tεp(t)

=
n

∑
p=1

sign
(
εp(t)

)
{−
(
δp + kp

)
εp(t)

+
n

∑
q=1

[
γpq
(
µq(t)

)
ψq
(
µq(t)

)
− γpq

(
νq(t)

)
ψq
(
νq(t)

)]
}

≤−
n

∑
p=1

(
δp + kp

)∣∣εp(t)
∣∣+ n

∑
p=1

n

∑
q=1

αu
pqLq

∣∣εq(t)
∣∣+ n

∑
p=1

n

∑
q=1

∣∣∆αpq
∣∣LqTmax

=−
n

∑
p=1

(
δp + kp −

n

∑
q=1

αu
qpLp

)∣∣εp(t)
∣∣+ n

∑
p=1

n

∑
q=1

∣∣∆αpq
∣∣LqTmax.

Let λ = min1≤p≤n

{
δp + kp −∑n

q=1 αu
qpLp

}
, θ = ∑n

p=1 ∑n
q=1
∣∣∆αpq

∣∣Lq Tmax, Tmax =

max{Tq}. Then, one has

δι
tV(t) ≤ −λ

n

∑
p=1

∣∣εp(t)
∣∣+ θ

= −λV(t) + θ.

Based on Fractional Halanay inequality [39], it yields

‖ε(t)‖1 ≤
θ

λ
, t→ +∞.

Obviously, the synchronization error belongs to region D, where

D =

{
ε(t) : ‖ε(t)‖1 ≤

θ

λ

}
, t→ +∞,

which means that the quasi-synchronization of systems (1)–(2) can be achieved with error
bound θ

λ .
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Theorem 2. For given matrices P > 0, Q1 > 0, Q2 > 0, G, a scalar λ > 0, and −2PC− 2G + PÃL + LÃT P + λP 0 P
∗ −Q1 0
∗ ∗ −Q2

 < 0,

holds, then the quasi-synchronization of systems (1)–(2) can be achieved with error bound
√

θ
min(pp)λ

,

where C = diag(δ1, . . . , δn), M = diag(M1, . . . , Mn), L = diag(L1, . . . , Ln), θ = HTQ2H,
H = ∆ALT̃max, T̃max = (Tmax, . . . , Tmax)T , Ã =

(
αu

pq

)
n×n

, ∆A =
(∣∣∆αpq

∣∣)
n×n. Moreover,

feedback gain K = P−1G, P = diag(p1, . . . , pn) and K = diag(k1, . . . , kn).

Proof. Consider the Lyapunov function

V(t) = |ε(t)|T P|ε(t)|.

where |ε(t)| = (|e1(t)|, |e2(t)|, . . . , |en(t)|)T , P = diag(p1, p2, . . . , pn)
In view of Lemmas 1–3, one has

0δι
tV(t) ≤2|ε(t)|T P0δι

t|ε(t)| = 2
n

∑
p=1

∣∣εp(t)
∣∣ppδι

t
∣∣εp(t)

∣∣
≤2

n

∑
p=1

∣∣εp(t)
∣∣ppsign

(
εp(t)

)
0δι

tεp(t)

=2
n

∑
p=1

∣∣εp(t)
∣∣ppsign(εp(t)){−

(
δp + kp

)
εp(t)

+
n

∑
q=1

[
γpq
(
µq(t)

)
ψq
(
µq(t)

)
− γpq

(
νq(t)

)
ψq
(
νq(t)

)]
}

≤− 2
n

∑
p=1

∣∣εp(t)
∣∣pp
(
δp + kp

)∣∣εp(t)
∣∣

+
n

∑
p=1

n

∑
q=1

∣∣εp(t)
∣∣pp
∣∣γpq

(
µq(t)

)
ψq
(
µq(t)

)
− γpq

(
νq(t)

)
ψq
(
νq(t)

)∣∣
≤− 2

n

∑
p=1

∣∣εp(t)
∣∣pp
(
δp + kp

)∣∣εp(t)
∣∣+ 2

n

∑
p=1

n

∑
q=1

∣∣εp(t)
∣∣pp

(
αu

pqLq
∣∣εq(t)

∣∣
+
∣∣∆αpq

∣∣LqTmax
)

=− 2
n

∑
p=1

∣∣εp(t)
∣∣pp
(
δp + kp

)∣∣εp(t)
∣∣

+ 2
n

∑
p=1

n

∑
q=1

∣∣εp(t)
∣∣ppαu

pqLq
∣∣εq(t)

∣∣+ 2
n

∑
p=1

n

∑
q=1

∣∣εq(t)
∣∣pp
∣∣∆αpq

∣∣LqTmax

=− 2|ε(t)|T P(C + K)|ε(t)|+ 2|ε(t)|T PÃL|ε(t)|+ 2|ε(t)|T PH

≤− 2|ε(t)|T P(C + K)|ε(t)|+ 2|ε(t)|T PÃL|ε(t)|
+ |ε(t)|TQ−1

2 P2|ε(t)|+ HTQ2H

=|ε(t)|T
(
−2PC− 2PK + PÃL + LÃT P + Q−1

2 P2 + λP
)
|ε(t)|

− λ|ε(t)|T P|ε(t)|+ HTQ2H.

By Lemma 3, the LMI of Theorem 2 is equivalent to

−2PC− 2PK + PÃL + LÃT P + Q−1
2 P2 + λP < 0.



Fractal Fract. 2023, 7, 12 8 of 13

Hence, one has
0δι

tV(t) ≤ −λ|ε(t)|T P|ε(t)|+ HTQ2H

≤ −λ|ε(t)|T P|ε(t)|+ θ

= −λV(t) + θ.

Based on Fractional Halanay inequality [39], one has

V(t) ≤ θ

λ
, t→ +∞. (9)

From V(t) = |ε(t)|T P|ε(t)| = ∑n
p=1 pp

∣∣εp(t)
∣∣2, one has

min
(

pp
)
‖ε(t)‖2

2 ≤ V(t) ≤ max
(

pp
)
‖ε(t)‖2

2. (10)

According to (9) and (10), one can obtain

min
(

pp
)
‖ε(t)‖2

2 ≤ V(t) ≤ θ

λ
, t→ +∞

Hence, it has

‖ε(t)‖2 ≤
√

θ

min
(

pp
)
λ

, t→ +∞,

which means that the quasi-synchronization of systems (1)–(2) can be achieved with error

bound
√

θ
min(pp)λ

.

Remark 2. Because of the fractional derivative definition, some traditional methods applied for
MNNs, i.e., the Lyapunov Krasovskii functional, cannot be simply used to find conclusions and apply
them to FMNNs. By employing the existing LMI-based analysis techniques and by constructing an
appropriate fractional Lyapunov function, the LMI-based conditions of FMNNs are given, which are
easy to solve. The analysis technology in this paper provides a new idea for the research of FMNNs.

4. Numerical Examples

Example 1. Consider a 2−neurons FMNNs (1), ι = 0.78, ψq(νq) = tanh(νq), q = 1, 2. Take
δ1 = 2.6, δ2 = 2.6, Tq = 1 and

α11(ν1) =

{
2.0, |ν1| < 1
1.2, |ν1| > 1

, α12(ν2) =

{
−2.0, |ν2| < 1
−2.1, |ν2| > 1

,

α21(ν1) =

{
−0.35, |ν1| < 1
−0.30, |ν1| > 1

, α22(ν2) =

{
2.55, |ν2| < 1
2.60, |ν2| > 1

.

Assume that the response system (2) is different from the drive system only by switching jumps
Tq = 0.1, q = 1, 2, and ϑν(s) = ϑµ(s) = (0.8, −0.5)T .

Figure 1a,b show the state trajectories of drive-response systems, respectively. Taking
k1 = 12.5958, k2 = 4.7486, by simple calculation, one has Tmax = 1,

λ = min
1≤p≤n

{
δp + kp −

n

∑
q=1

αu
qpLp

}
= 2.6486,

θ =
n

∑
p=1

n

∑
q=1

∣∣∆αpq
∣∣LqTmax = 1.
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Figure 1. (a) Time responses of ν1(t), ν2(t); (b) µ1(t), µ2(t).

In view of Theorem 1, the quasi-synchronization can be achieved for systems (1)–(2)
in the presence of error bound ‖ε(t)‖1 ≤ θ

λ = 0.3776, which is verified by Figure 2. From
Figure 3, one can conclude that the synchronization error can be influenced by ∆T.
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0

0.05
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0.15
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Figure 2. Error bound and ‖ε(t)‖1 of Example 1.
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Figure 3. ‖ε(t)‖1 with different ∆T.
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Example 2. Consider a 3−neuron FMNN (1), ι = 0.85, ψq(νq) = tanh(νq). Set δ1 = 2.2,
δ2 = 1.2, δ3 = 1.8, ϑν(s) = (1,−0.5, 0.7)T , Tq = 1, q = 1, 2, 3, and

α11(ν1) =

{
2.2, |ν1| ≤ Tq

2, |ν1| > Tq
, α12(ν2) =

{
−2, |ν2| ≤ Tq

−2.1, |ν2| > Tq
,

α13(ν3) =

{
2, |ν3| ≤ Tq

1.8, |ν3| > Tq
, α21(ν1) =

{
−0.8, |ν1| ≤ Tq

−0.6, |ν1| > Tq
,

α22(ν2) =

{
5.71, |ν2| ≤ Tq

5.68, |ν2| > Tq
, α23(ν3) =

{
1.15, |ν3| ≤ Tq

1.1, |ν3| > Tq
,

α31(ν1) =

{
−4.75, |ν1| ≤ Tq

−4.5, |ν1| > Tq
, α32(ν2) =

{
−1, |ν2| ≤ Tq

−0.8, |ν2| > Tq
,

α33(ν3) =

{
1.2, |ν3| ≤ Tq

1.25, |ν3| > Tq
.

Assume that the response system (2) is different from the drive system only by switching jumps
Tq = 0.2, q = 1, 2, 3.

Figure 4a,b display the state trajectories of systems (1)–(2) with ϑν(s) = (1.5,−0.6, 0.3)T

and ϑµ(s) = (−1.5, 5.1,−4.6)T , respectively.
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4

5

i(t
)

(b)

1
(t)

2
(t)

3
(t)

Figure 4. (a) Time responses of νp(t); (b) µp(t), p = 1, 2, 3.

Taking λ = 6, the values of P, G, Q1, Q2, K are given by solving the LMI in Theorem 2.

P =

 0.4924 0 0
0 0.7393 0
0 0 0.3226

,

G =

 4.1480 0 0
0 8.2232 0
0 0 3.4612

,

Q1 = Q2 =

 5.3417 0 0
0 5.3417 0
0 0 5.3417

,

K = P−1G =

 8.4243 0 0
0 11.1226 0
0 0 10.7301

.
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By simple calculation, one has

H = ∆ALT̃max = (0.2, 0.03, 0.05)T ,

θ =
∥∥∥HTQ2H

∥∥∥
2
= 0.2137.

Based on Theorem 2, the quasi-synchronization can be ensured for systems (1)–(2) with

error bound ‖ε(t)‖2 ≤
√

θ
min(pp)λ

= 0.3322, which is verified by Figure 5.

0 5 10 15 20

t/s

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2

2

2

Figure 5. Error bound and ‖ε(t)‖1 of Example 2.

5. Conclusions

This paper investigates the switching-jumps-dependent quasi-synchronization prob-
lem for FMNNs. To derive the quasi-synchronization criteria, a simple linear feedback
controller is applied. To obtain the improved results, a strong assumption that the system
states must be bounded is removed. In combination with several fractional-order differ-
ential inequalities and two kinds of Lyapunov functions, two quasi-synchronous criteria
expressed by LMIs-based conditions and algebraic conditions are derived, respectively.
Finally, the theoretical results are verified by two numerical examples.
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