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Abstract: Autonomous underwater vehicles (AUVs) have broad applications owing to their ability
to undertake long voyages, strong concealment, high level of intelligence and ability to replace
humans in dangerous operations. AUV motion control systems can ensure stable operation in
the complex ocean environment and have attracted significant research attention. In this paper,
we propose a single-input fractional-order fuzzy logic controller (SIFOFLC) as an AUV motion
control system. First, a single-input fuzzy logic controller (SIFLC) was proposed based on the signed
distance method, whose control input is the linear combination of the error signal and its derivative.
The SIFLC offers a significant reduction in the controller design and calculation process. Then, a
SIFOFLC was obtained with the derivative of the error signal extending to a fractional order and
offering greater flexibility and adaptability. Finally, to verify the superiority of the proposed control
algorithm, comparative numerical simulations in terms of spiral dive motion control were conducted.
Meanwhile, the parameters of different controllers were optimized according to the hybrid particle
swarm optimization (HPSO) algorithm. The simulation results illustrate the superior stability and
transient performance of the proposed control algorithm.

Keywords: fractional calculus; autonomous underwater vehicle; fuzzy logic control; particle swarm
optimization algorithm

1. Introduction

Autonomous underwater vehicles (AUVs) are a crucial technical platform for ocean
information acquisition and autonomous operation. They have extensive application
prospects, such as marine environment observation, marine resources exploration and secu-
rity defense. Nevertheless, motion control systems for AUV have become very challenging
due to their high nonlinearity, strong coupling, model parameter uncertainties and external
disturbances. In addition, an AUV system is usually designed to be underactuated to save
cost and improve propulsion efficiency.

With regard to the motion control of underactuated AUV, a variety of control algo-
rithms are available, including proportional-integral-derivative (PID) control, backstepping
control, fuzzy logic control, and sliding mode control [1–7]. In [4], a single-input fuzzy
logic controller (SIFLC) was proposed for AUV depth control. Simulation results show that
the SIFLC gives an identical response as Mamdani and T-S type FLC to the same input sets,
while its execution time is more than two orders of magnitude faster than the conventional
FLC. In [6], a switching control algorithm based on active disturbance rejection control
(ADRC) and fuzzy logic control was applied to the depth control of a self-developed AUV.
Numerical simulations showed that the proposed method is more efficient in suppressing
external disturbances and inner signal transmission disturbance than PID controller.

Fractional calculus is an extension of traditional integral calculus, it describes the
fractal dimension of space. In recent years, its applications in the control field, such as
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fractional-order model [8,9], fractional-order control algorithm [10–12], fractional-order
optimization algorithm [13,14], have attracted significant research attention. Furthermore,
stability analysis for fractional-order control systems have been proposed in several stud-
ies [15–17]. A fractional-order, proportional–integral–derivative (FOPID) controller has
been proposed by Podlubny. Their proposed controller has two additional parameters:
integral order and differential order compared with a PID controller [18]. In [19], an op-
timized FOPID controller for improved transient control performance was applied to an
AUV yaw control system. In addition, a fractional-order Mamdani fuzzy logic controller
has been proposed for vehicle nonlinear active suspension, which effectively improves ride
comfort and handling stability [20]. However, there has been no report on the application
of fractional-order fuzzy logic control in AUV motion.

In this paper, a single-input fractional-order fuzzy logic controller (SIFOFLC) is pro-
posed and applied to an AUV motion control system. Its control input was simplified to a
single variable known as distance variable by applying the signed distance method [21],
which aims to reduce the computation burden and complex parameter tuning process.
Furthermore, a fractional calculus operator was applied to the enhanced FLC due to its
recognized ability to increase the controller’s flexibility and adaptability. With respect to
the controller parameters, we developed and applied a hybrid particle swarm optimization
(HPSO) algorithm to obtain optimal control performance. Unlike a conventional PSO
algorithm, this includes the local optimal particle term to avoid falling into local optimal
region, and the fitness value function includes both steady-state performance and transient
performance of an AUV motion control system. To verify the effectiveness of SIFOFLC, we
conducted comparative numerical simulations of spiral dive motion control. The object of
study, REMUS-100 AUV, was developed by Woods Hole Oceanographic Institution [22],
while the simulation was performed using the marine systems simulator (MSS) by Fossen
and Perez [23]. Simulation results show that, compared with a FOPID controller and con-
ventional T-S FLC, the SIFOFLC is more efficient in reducing angular velocity oscillations,
shortening settling time and improving control accuracy.

The remainder of this paper is organized as follows. Section 2 discusses the six degrees
of freedom nonlinear motion equations of AUV. The SIFOFLC design is introduced in
Section 3, along with its advantages compared with traditional T-S FLC. In Section 4, the
HPSO algorithm is described and is applied to various control systems to obtain optimal
parameters. To verify the effectiveness of the proposed method, simulations and numerical
comparisons are carried out in Section 5. Finally, some concluding remarks are presented
in Section 6.

2. Kinematic and Dynamic Modeling of AUV

Six degrees of freedom motion equations of AUV can be described using the earth-
fixed coordinate system and body-fixed coordinate system shown in Figure 1, both of which
are right-handed. The earth-fixed coordinate system O− xyz has its origin O fixed to the
earth, and the body-fixed coordinate system Ob − xbybzb is a moving reference frame with
its origin Ob fixed to AUV center of buoyancy.

The general motion of a vehicle in six degrees of freedom can be described with the
following vectors:

η1 = [ x y z ]
T

η2 = [ φ θ ψ ]
T

v1 = [ u v w ]
T v2 = [ p q r ]

T

τ1 = [ X Y Z ]
T

τ2 = [ K M N ]
T

where η describes the position and orientation of the vehicle with respect to the earth-fixed
reference frame, v denotes the linear and angular velocities with respect to the body-fixed
reference frame, and τ describes the total forces and moments acting on the vehicle in the
body-fixed reference frame.
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The coordinate transformation of the translational velocity between earth-fixed and
body-fixed coordinate systems can be expressed as .

x
.
y
.
z

 = J1

u
v
w

 (1)

where

J1 =

cos ψ cos θ − sin ψ cos φ + cos ψ sin θ sin φ sin ψ sin φ + cos ψ sin θ cos φ

sin ψ cos θ cos ψ cos φ + sin ψ sin θ sin φ − cos ψ sin φ + sin ψ sin θ cos φ

− sin θ cos θ sin φ cos θ cos φ


The coordinate transformation relates rotational velocity between two coordinate systems
and can be described as 

.
φ
.
θ
.
ψ

 = J2

p
q
r

 (2)

where

J2 =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ/ cos θ cos φ/ cos θ


The locations of the AUV centers of gravity and buoyancy are defined in the body-fixed

coordinate system as follows:

rG = [xg yg zg]
T rB = [xb yb zb]

T

Based on the theory of rigid body dynamics and the analysis of total forces and
moments acting on AUV, the nonlinear motion equations for the REMUS vehicle in six
degrees of freedom can be expressed as follows [24]:
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m[
.
u− vr + wq− xg(q2 + r2) + yg(pq− .

r) + zg(pr +
.
q)] = XHS + Xu|u|u|u|+

X .
u

.
u + Xwqwq + Xqqqq + Xvrvr + Xrrrr + Xprop

m[
.
v− wp + ur− yg(r2 + p2) + zg(qr− .

p) + xg(pq +
.
r)] = YHS + Yv|v|v|v|+ Yr|r|r|r|+

Y .
v

.
v + Y.

r
.
r + Yurur + Ywpwp + Ypq pq + Yuvuv + Yuuδr u2δr

m[
.

w− uq + vp− zg(p2 + q2) + xg(rp− .
q) + yg(rq +

.
p)] = ZHS + Zw|w|w|w|+ Zq|q|q|q|+

Z .
w

.
w + Z .

q
.
q + Zuquq + Zvpvp + Zrprp + Zuwuw + Zuuδs u2δs

Ixx
.
p + (Izz − Iyy)qr + m[yg(

.
w− uq + vp)− zg(

.
v− wp + ur)] = KHS + Kp|p|p|p|+ K .

p
.
p + Kprop

Iyy
.
q + (Ixx − Izz)rp + m[zg(

.
u− vr + wq)− xg(

.
w− uq + vp)] = MHS + Mw|w|w|w|+ Mq|q|q|q|+

M .
w

.
w + M .

q
.
q + Muquq + Mvpvp + Mrprp + Muwuw + Muuδs u2δs

Izz
.
r + (Iyy − Ixx)pq + m[xg(

.
v− wp + ur)− yg(

.
u− vr + wq)] = NHS + Nv|v|v|v|+ Nr|r|r|r|+

N .
v

.
v + N.

r
.
r + Nurur + Nwpwp + Npq pq + Nuvuv + Nuuδr u2δr

(3)

where m is AUV’s mass, Ixx, Iyy, Izz are the moments of inertia of AUV to three coordinate axes,
XHS, YHS, ZHS, KHS, MHS, NHS are hydrostatics, Xu|u|, Yv|v|, Yr|r|, Zw|w|, Zq|q|, Kp|p|, Mw|w|,
Mq|q|, Nv|v|, Nr|r| are hydrodynamic drag coefficients, Yuv, Yuuδr , Zuw, Zuuδs , Muw, Muuδs ,Nuv,
Nuuδr are lift coefficients and lift moment coefficients of body and control fins, respectively,
Xprop, Kprop are propeller thrust and torque, respectively, and δr, δs are rudder angle and stern
plane angle, respectively. The remaining coefficients are added mass coefficients.

Separate the acceleration terms from the other terms in the equations of AUV motion
so that the equations can be summarized in matrix form as follows:

.
u
.
v
.

w
.
p
.
q
.
r


=



m− X .
u 0 0 0 mzg −myg

0 m−Y .
v 0 −mzg 0 mxg −Y.

r
0 0 m− Z .

w myg −mxg − Z .
q 0

0 −mzg myg Ixx − K .
p 0 0

mzg 0 −mxg −M .
w 0 Iyy −M .

q 0
−myg mxg − N .

v 0 0 0 Izz − N .
r



−1

∑ X
∑ Y
∑ Z
∑ K
∑ M
∑ N


(4)

where ∑ X · · ·∑ N refer to the sum of terms without acceleration. So far, six degrees of freedom nonlinear
motion equations of AUV can be obtained by combining (4) with (1) and (2).

3. Design of SIFOFLC
3.1. Fundamentals of Fractional Calculus

Fractional calculus, essentially the non-integer order calculus, has the same history
as integer order calculus. The three frequently used definitions of fractional calculus
are the Grunwald–Letnikov definition, the Riemann–Liouville definition and the Caputo
definition [25].

We consider the Caputo definition in this study because of its wide applications in engi-
neering problems, the fractional integral and derivative by Caputo definition are as follows:

t0
D−α

t f (t) =
1

Γ(α)

∫ t

t0

f (τ)

(t− τ)1−α
dτ (5)

t0
Dα

t f (t) =
1

Γ(m− α)

∫ t

t0

f (m)(τ)

(t− τ)1+α−m dτ (6)

where t0
Dα

t represents the fractional calculus operator, f (t) is a continuous function and
t0 denotes the initial time. α represents the fractional-order, m = dαe. Γ(·) denotes the
Gamma function as in (7).

Γ(z) =
∫ ∞

0
e−ttz−1dt (7)

In the numerical simulations, we adopt the standard Oustaloup approximation method
to obtain the consistent frequency characteristics as fractional differential operator. A rational
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transfer function in the form of zero-pole type is described according to the Oustaloup method,
that N is the order of filter, [ωb, ωh] is the selected frequency bound. The zero and pole are
defined as ω′k and ωk, which divide the frequency band into 2N + 1 intervals.

The Oustaloup rational approximation is described as

sα ≈ G(s) = K
N

∏
k=1

s + ω′k
s + ωk

(8)

where ω′k = ωbω
(2k−1−α)/N
u , ωu =

√
ωh/ωb, ωk = ωbω

(2k−1+α)/N
u , K = ωα

h .

3.2. Structure Design of SIFOFLC

A fuzzy logic controller has four components: knowledge base, inference engine,
fuzzification interface, and defuzzification interface [26]. The basic structure of a two-
dimensional fuzzy logic controller is described as in Figure 2, where the continuous input
signal, e and

.
e, convert to the membership degree vector of the fuzzy variables through a

fuzzification interface, the inference engine carries out rule inference and actual output signal
is obtained through defuzzification interface. The data base denotes membership functions of
the total input and output variables and the rule base is performed using a collection of fuzzy
if–then rules by expert experience, both of which make up the knowledge base.
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Compared with the linear controller, fuzzy logic control method is more robust and
suitable for complex control requirements, while its complex decision-making process
brings a challenge for real-time operation. Thus, we aim to adjust the controller structure
to reduce computation burden and achieve better performance.

Typically, a fuzzy logic controller has two control inputs, namely error (e) and its
derivative (

.
e). It is common for its rule table to have the same output membership in a

diagonal direction, something known as the Toeplitz structure, as shown in Table 1 [4]. In
addition, each position on a diagonal line has the same distance from the main diagonal line
of rule table. Thus, instead of using two-variable input sets (e,

.
e), the corresponding control

output can be obtained using the distance between input signal and the main diagonal
line. This finding was first proposed by Choi et al. and is known as the signed distance
method [21]. To derive the distance, d, a two-dimensional space of e and

.
e is established as

shown in Figure 3.

Table 1. Rule table with the Toeplitz structure.

.
e

e
PL PM PS Z NS NM NL

NL Z NS NM NL NL NL NL
NM PS Z NS NM NL NL NL
NS PM PS Z NS NM NL NL
Z PL PM PS Z NS NM NL
PS PL PL PM PS Z NS NM
PM PL PL PL PM PS Z NS
PL PL PL PL PL PM PS Z
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The main diagonal line of the rule table is presented as a straight line crossing over
the origin, whose function is Lz :

.
e + λe = 0. In this case, the distance from point P(e1,

.
e1)

to Lz can be obtained as d =
.
e1+λe1√

1+λ2 .
Furthermore, in order to achieve better control performance, we extend the derivative

of error signal to fractional order, thus the distance variable is described as

d =
Dα

t e + λe√
1 + λ2

(9)

where α is the fractional order of error signal and it further increases degrees of freedom
and complexity of the controller.

Based on the above analysis, the overall structure of SIFLC can be depicted as in
Figure 4. The distance variable is obtained through linear combination of error signal and
its fractional derivative, the inner fuzzy logic controller is single input single output (SISO)
and the final output u is obtained by multiplying u0 with the scale factor, which is denoted
as r. We set λ to 1. Thus, in addition to the membership functions, there are two adjustable
parameters in the SIFOFLC, namely α and r.
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3.3. Characteristics of SIFOFLC

In this section, the SIFOFLC and T-S FLC used in the simulation research of Section 4
are proposed and the superiority of SIFOFLC is presented through comparison.

To the SIFOFLC, the fuzzy sets of d and u0 are both {NL, NM, NS, Z, PS, PM, PL}
and the membership functions are shown in Figure 5. The membership functions of d
include both S shape and triangular shape membership functions, with a singleton value
membership function for u0. In this case, the rule table is reduced to the one-dimensional
vector as shown in Table 2.
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Table 2. Rule table for the above SIFOFLC.

d NL NM NS Z PS PM PL

u0 NL NM NS Z PS PM PL

Based on the work mentioned above, the proposed SIFOFLC has the following advan-
tages compared to conventional FLC:

(1) Simplified design process.

For the two-dimensional FLC, the membership functions for error input and its deriva-
tive are required simultaneously, which means a lengthy complex tuning process. With the
only input, d, the parameter tuning process for SIFOFLC is significantly reduced. Further,
in a two-dimensional FLC, the number of fuzzy rules to be inferred is the square of n, which
is the size of the fuzzy set. The distinguishing feature of SIFLC is that it requires only n
rules, which is an exponential decay. Typically, better performance can be obtained with
more a complicated control algorithm, such as the increase of fuzzy sets and rules, which
further reveals the superiority of SIFOFLC.

(2) Reduced computation burden.

The control surfaces for the SIFOFLC and conventional T-S FLC are respectively
shown in Figures 6 and 7. Compared with the complex curved surface of T-S FLC, the
control surface of SIFOFLC has been simplified to a linear with different slopes. Thus, the
computation burden of controller operation, which includes fuzzification, fuzzy inference
and defuzzification, has been significantly reduced.
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4. Parameter Optimization for Three Controllers with HPSO Algorithm

In this section, the HPSO algorithm is developed and applied to optimize the controller
parameters. Except for the SIFOFLC, the T-S FLC and FOPID control systems are optimized
for further comparison in Section 5, as the SIFOFLC algorithm essentially originates from
the T-S FLC, and because the FOPID controller is the most extensively used fractional order
control algorithm.

It is necessary to mention that our optimization and research scenario is the spiral dive
motion control of REMUS-100 AUV. It is performed using Marine Systems Simulator (MSS),
which is a MATLAB toolbox and offers a set of tools for marine engineering researchers [23].
Some research details are as follows: The target depth of AUV motion linearly increases
from 0 m to 30 m and the target yaw angle from 0◦ to 720◦. The simulation time is 300 s
and the input constraint of fins is set to 13.8◦ in accordance with [24]. Furthermore, the
external disturbances are ignored.

Figure 8 illustrates the block diagram of an AUV motion control system. The propeller
speed is fixed at 1500 r/m so that the cruise speed maintains a constant value. In this case,
the target trajectory is obtained with heading controller and depth controller.
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4.1. HPSO Algorithm

Because of the uncertainty and nonlinearity of the control system, adjusting parameters
of the controller by manual experience is usually hard, thus optimization algorithms are
applied to obtain the optimal or suboptimal solution. PSO is a typical swarm intelligence
algorithm developed in 1995, stemming from research on the foraging behavior of birds [27].
Studies in [28] have shown that it lacks the capability to achieve sustainable development
and the swarm becomes stagnant after a certain number of iterations. To improve this, the
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term of local optimal particle is introduced in the HPSO algorithm and the velocity and
position of particles are updated according to the following two equations:

VK+1
i = ω ·VK

i + c1rand(pK
i − XK

i ) + c2(q · rand(SK
i − XK

i ) + (1− q) · rand(pK
iL − XK

i )) (10)

XK+1
i = XK

i + VK+1
i · dt (11)

where K is the current number of evolution and at the K-th evolution, VK
i denotes the

velocity of the i-th particle; XK
i represents the position of the i-th particle; pK

i depicts the
best position of i-th particle; SK

i is the best position of the particle swarm; pK
iL is the position

of the local optimal particle for the i-th particle, and the introduction of pK
iL avoids falling

into the local optimal region. ω is inertia weight, which decreases as evolution unfolds and
aids in global search in the early stage and local optimization in the late stage. c1 and c2 are
learning factors, q represents social factor, and dt denotes time interval coefficient.

Instead of single-object optimization, we consider multiple objects in our study, in-
cluding the steady-state performance and transient performance of AUV motion control
system. And the objective function is defined as follows:

F = log(1 + p_vibration
p_vibration0 ) + log(1 + q_vibration

q_vibration0 ) + log(1 + r_vibration
r_vibration0 ) + log(1 + p_ts

p_ts0 )

+ log(1 + q_ts
q_ts0 ) + log(1 + r_ts

r_ts0 ) + log(1 + z_ITAE
z_ITAE0 ) + log(1 + ψ_ITAE

ψ_ITAE0 )
(12)

where (·)_vibration represents oscillation times of AUV angular velocity; (·)_ts is the
settling time in which the angular velocity is kept within a ±5% range of the steady state
value; (·)_ITAE describes the ITAE index of track error;p_(vibration0) which denotes the
expected value and is set artificially, all of the expected values are presented in Appendix A.

The flowchart of optimization is shown in Figure 9 and the implementation procedure
of the HPSO algorithm is summarized as follows:

Step 1: Specify the population size and the maximum number of evolutions, as well as
other coefficients that can be noted from Equations (10)–(12). Determine the value range of
controller parameters and initialize a population of particles with random positions.

Step 2: Evaluate the fitness value of all particles according to Equation (12), let pK
i of

each particle equal to its current position and let SK
i equal the position of the best initial

particle. After that, the local optimal position of each particle, pK
iL, is obtained in accordance

with Appendix A.
Step 3: Update the particles’ velocities and positions in terms of Equations (10) and

(11). Compare the fitness value of each particle with its own best fitness value, if the current
one is better, update the pK

i . Similarly, compare the best fitness value of the new generation
with the fitness value of the global best position SK

i and decide whether it has to be updated.
The local optimal position of each particle is also updated.

Step 4: The optimization is terminated when it reaches the maximum number of
evolutions. Then the global best position is output, which is the target parameters of the
controller. The convergence curve of optimal fitness value is also printed.
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4.2. Optimization Experiments and Result Analysis

Here we conduct optimization of three control systems by using the HPSO algorithm
mentioned above. To the SIFOFLC system, the particle dimension is four with the fractional
order of the error signal and the scale factor of the depth controller and heading controller.
We adopted the standard Oustaloup filter module deriving from FOTF toolbox [29] to
perform fractional derivative operator, the frequency band was set to [0.001,1000] and the
filter order was 4. As for the FOPID control system, the dimension of particle is 10, so that
each FOPID controller has five unknown parameters. For the T-S FLC control system, only two
scale factors are to be optimized. The membership functions and fuzzy rules of T-S FLC were
determined through empirical approach, and its control surface is shown in Figure 6.

The coefficients of the HPSO algorithm are set as follows: the particle size is 10 and the
maximum number of evolution is 20. The limit of the inertia weight, ω, is set to between 1
and 0.7. The learning factors c1 and c2 are set as value 2, the social factor q is set as value 0.7
and the time interval coefficient dt is set as value 0.5. The searching range for parameters
are presented in Appendix A. Furthermore, we implement multiple optimizations and
adopt the optimal result to solve randomness.

Figures 10–12 respectively show the convergence curve of optimal fitness of three
control systems and the obtained target controller parameters are illustrated in Table 3. It
can be observed that all the curves tend to decline through evolution, which illustrates
the effectiveness of optimization. Actually, the optimal fitness of three control systems
respectively decreases by 19.8%, 37.9% and 9.6%. The FOPID controller clearly outperforms
the other two controllers as it has the highest degrees of freedom. The optimization effect
of the SIFOFLC system is twice as good as the T-S FLC system and its ultimate fitness
is significantly less than the others. These results demonstrate that the introduction of a
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fractional differential operator not only increases degrees of freedom and the flexibility of
the controller but also improves the control performance, as is particularly demonstrated
in the next section.

Table 3. Controller parameters optimized by HPSO algorithm.

Control System Parameter Heading Controller Depth Controller

SIFOFLC
α 1.08 1.21
r 131.02 −102.50

FOPID

Kp 19.88 −15.50
Ki 18.69 0
Kd 2.96 −50
λ 0.10 1.5
µ 1.11 1.12

T-S FLC r 33.20 −140.43
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5. Simulation and Analysis

In this section, we conduct comparative simulations to verify the effectiveness of the
proposed SIFOFLC algorithm for AUV motion control. The optimized controllers expressed
in Table 3 are applied and the target trajectory of AUV does not change.

Figure 13 shows the trajectory of AUV under SIFOFLC and the state of the response is
depicted in Figure 14. Simulation results reveal that the trajectory tracking is accurate and
rapid with SIFOFLC. Actually, the steady state error of depth is within 0.01 m in 6.5 s and
gradually decreases to approximately 0.002 m in 7 s. Correspondingly, the maximum error
of yaw angle is 2.5◦ and it gradually decreases to 0.01◦ in 13 s. The cruise speed maintains
1.54 m/s and the peak overshoot of pitch angle is 10◦.

Figures 15 and 16 respectively illustrate the angular velocity of an AUV using FOPID
controller and T-S FLC. Furthermore, the oscillation and settling times of angular velocity,
the ITAE index of track error and the optimal fitness value are all presented in Table 4. The
responses with SIFOFLC algorithm have much shorter settling times and steady state errors.
Compared with the SIFOFLC, the control performance obtained via the FOPID controller
and T-S FLC requires a much longer settling time, and they also oscillate considerably
in the beginning, which may lead to an unstable performance of the controlled system.
Simulation results clearly reveal the superior stability and transient control performance of
the proposed SIFOFLC.
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Table 4. Quantitative analysis of system performance.

Characteristic

Control System
SIFOFLC FOPID T-S FLC

p_vibration 9 12 12
q_vibration 5 5 9
r_vibration 1 3 1

p_ts 8.15 10.62 10.17
q_ts 14.71 18.44 13.53
r_ts 4.97 3.87 5.43

z_ITAE 2.69 7.70 2.90
ψ_ITAE 12.21 14.84 20.38

Fitness value 6.83 8.39 7.92

6. Conclusions

In this study, we proposed a SIFOFLC algorithm for an AUV motion control system.
Unlike a conventional FLC algorithm, this is reduced to a SISO controller by using the
signed distance method, which provides a significant reduction to parameter tuning and
computation burden. In addition, a fractional derivative operator was applied to increase
degrees of freedom of the controller, hence the proposed control algorithm is more flexible
and adaptive to the AUV motion control system. Furthermore, we developed an HPSO
algorithm and applied it to optimize the controller parameters. The simulation results
show that the proposed controller enhances the stability and transient performance of the
controlled AUV motion system, which manifests in less oscillations of angular velocity,
shorter dynamic settling time, and higher control accuracy. In future studies, we will
perform experiments using the proposed controller to verify its practicability.
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Appendix A

Table A1 shows the searching area of parameters, they are established through trial
and error. The target values of characteristics of AUV motion control system, which are
defined in Equation (12), are depicted in Table A2. The MATLAB function code for particle
distance is given as follows:

function DM = Distance_Matrix (X,xmin,xmax)
n = size (X,1);
DM = zeros (n,n);
Normal = xmax-xmin;
for t = 1:n
Dif = (X (t,:)-X)./Normal;
Dis = sum (Dif.ˆ2,2);

DM (t,:) = Dis;
end

where X represents the parameters of particle swarm, xmin and xmax denote the searching
bound of parameters. DM is a square matrix and DM (i,j) is the distance between the i-th
particle and j-th particle. By the way, if the distance is less than 1, we consider them as
local particles.

Table A1. Searching range of parameters for three control systems.

Control System Parameter Heading Controller Depth Controller

SIFOFLC
α [0.1, 1.5] [0.1, 1.5]
r [5, 150] [−150, −5]

FOPID

Kp [0, 20] [−20, 0]
Ki [0, 20] [−20, 0]
Kd [0, 10] [−50, 0]
λ [0.1, 1.5] [0.1, 1.5]
µ [0.1, 1.5] [0.1, 1.5]

T-S FLC r [0, 150] [−150, 0]

Table A2. Target performance of control system.

Characteristics of Control System Target Value

p_vibration0 6
q_vibration0 4
r_vibration0 2

p_ts0 5
q_ts0 5
r_ts0 5

z_ITAE0 5
ψ_ITAE0 5
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