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Abstract: This study is concerned with the dynamic investigation and fixed-time synchronization of
a fractional-order financial system with the Caputo derivative. The rich dynamic behaviors of the
fractional-order financial system with variations of fractional orders and parameters are discussed
analytically and numerically. Through using phase portraits, bifurcation diagrams, maximum Lya-
punov exponent diagrams, 0–1 testing and time series, it is found that chaos exists in the proposed
fractional-order financial system. Additionally, a complexity analysis is carried out utilizing approxi-
mation entropy SE and C0 complexity to detect whether chaos exists. Furthermore, a synchronization
controller and an adaptive parameter update law are designed to synchronize two fractional-order
chaotic financial systems and identify the unknown parameters in fixed time simultaneously. The
estimate of the setting time of synchronization depends on the parameters of the designed controller
and adaptive parameter update law, rather than on the initial conditions. Numerical simulations
show the effectiveness of the theoretical results obtained.

Keywords: fractional-order financial system; dynamic; fixed-time synchronization; parameter identification

1. Introduction

Fractional-order calculus, a generalization of integer-order calculus, has an equally
long history as integer-order calculus, but due to the limited computational power in the
past, fractional-order calculus has not received much attention until recent decades when
computational power improved. Fractional-order calculus can describe chaos and different
nonlinear phenomena more accurately than integer-order derivatives. Recently, with the
rapid progress of chaos theory and applied research, fractional-order chaotic systems [1–9]
have received wide attention and undergone rapid development. Yuan et al. [2] studied
chaos and the bifurcation of fractional semi-logistic maps based on the Lyapunov exponent,
the Schwarzian derivative, Shannon entropy and Kolmogorov entropy. Chen et al. [3] pro-
posed a three-dimensional fractional-order discrete Hopfield neural network; the dynamic
behavior and synchronization were studied, and the system constructed was applied to
image encryption. He et al. [4] investigated the dynamics and complexity of the fractional
order digital manufacturing supply chain system; the nonlinear feedback controllers were
designed to control and synchronize the chaos in the system. Mahmoud et al. [8] studied
the dynamic analysis of a fractional chaotic ecological model, and the chaos control of the
ecological model, using the adaptive sliding mode technique.

In the financial field, various economic problems are becoming increasingly complex
due to the influence of nonlinear factors, and financial systems present extremely com-
plex phenomena and characteristics. Therefore, it is necessary to investigate the dynamic
characteristics and analyze chaotic effects of such complex financial systems in depth. In
order to accurately grasp the operation laws of financial systems, researchers [10–16] have
established various integer-order financial models to study the complex dynamic behaviors
of the economy and society, revealing the intrinsic characteristics of economic development.
However, studies have shown that economics and finance are extremely complex nonlinear
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systems involving many subjective factors, and there are many characteristics that cannot be
described by the theory of integer calculus. Recently, the memory property of financial mar-
kets has attracted extensive interest, especially after Peters first proposed the Fractal Market
Hypothesis (FMH) in [17]. The economic variables of financial systems are frequently
affected by their historical information, and the concept of memory for economic processes
has been discussed in [17–19]. It has been proven that fractional calculus has more obvious
advantages in the memory and description of hereditary characteristics than integer calcu-
lus. So, the construction of financial systems is suited to fractional order description [20–30].
Xin et al. [20] introduced an investment incentive in a three-dimensional integer-order
chaotic financial system and expanded it into a four-dimensional fractional-order chaotic
financial system. Jahanshahi et al. [26] investigated hyperchaos and the predictive control
of an economic system with variable-order fractional derivatives. Zhang et al. [27] studied
the synchronization of fractal fractional-order hyperchaotic financial systems with model
uncertainties and external perturbations. In Ref. [29], the authors analyzed a new financial
chaotic model in fractional stochastic differential equations with the Atangana-Baleanu
operator. The chaotic phenomenon makes prediction impossible in the financial world, and
so it is very useful to avoid chaos in financial system.

On the other hand, many researchers [31–39] have shown great interest in the subjects
of chaotic synchronization and control. Various control methods have been developed
to regulate synchronization behavior, such as adaptive control [36], feedback control [37],
impulsive control [38], intermittent control [39], and so on. It is more regrettable that
all of the above techniques have only considered asymptotic stability. The asymptotic
stability of synchronization can be achieved when time grows to infinity. We know that the
convergence rate can effectively reflect the synchronization efficiency. Recently, finite-time
stability was proposed in [40], which can allow finite-time convergence, called setting
time. The finite-time synchronization of chaotic systems was studied in [41–43]. Although
finite-time synchronization can achieve faster convergence, the setting time is affected
by the initial conditions of the system, and there may be cases wherein the exact initial
values are unknown; in addition, extreme initial values can lead to inaccurate estimates
of the setting time. To overcome the drawbacks, fixed-time stability was proposed in [44],
where the setting time does not depend on the initial conditions. The fixed-time stability
of control systems has been a popular research topic in recent years [45–50]. However,
there are countries around the world that wish to come out of the financial crisis in a short
period of time. So, fixed-time synchronization and parameter identification are interesting
in the financial field, particularly in the fractional-order chaotic financial system. This is the
motivation for this paper.

Driven by the above discussions, in this paper, a fractional-order financial model is
proposed by applying the Caputo fractional derivative operator to the integer case [29].
The dynamic behaviors of the fractional-order financial system are analyzed by bifurcation
diagrams, maximum Lyapunov exponent diagrams, phase portraits, complexity diagrams
and p–s plots by 0–1 testing. The results show that the fractional-order financial system
has rich dynamics. Furthermore, the fixed-time synchronization and parameter identifica-
tion problem of fractional-order chaotic financial systems are investigated by designing
appropriate controllers and adaptive parameter update laws, in which synchronization
can be achieved and parameters can be identified within the setting time regardless of the
initial conditions. Finally, the effectiveness of the present theory is verified by numerical
simulations. The contributions of this paper are summarized as follows:

1. A financial model with a Caputo operator is constructed, which reflects the memory
property of the financial system. The dynamic behaviors of the fractional-order
financial system with variations of fractional orders and parameters are studied;

2. The fixed-time synchronization and identification of the unknown parameters are
realized. The resulting setting time of the fractional-order control system depends only
on the parameters of the controller and the order of the fractional-order derivative;
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3. The proposed fixed-time synchronization method is applied to fractional-order chaotic
financial systems, which has theoretical and practical significance.

The rest of this paper is organized as follows. Firstly, preliminaries and algorithms
are given, and the model is established in Section 2. Then, in Section 3, the dynamic
behaviors and the equilibrium points of the fractional-order financial system are discussed.
Afterwards, in Section 4, a fixed-time synchronization controller and an adaptive parameter
update law are designed. Lastly, the conclusion is presented in Section 5.

2. Preliminaries, Algorithms and Modeling
2.1. Preliminaries

There are many definitions of fractional order calculus [51,52], among which are the
Grunwald–Letnikov (G-L) definition of fractional-order calculus, the Riemann–Liouville
(R-L) definition of fractional-order calculus and the Caputo definition of fractional-order
calculus. In this paper, the Caputo fractional derivative will be used.

Definition 1 [51,52]. The fractional integral of function f (t) is

t0 Iq
t f (t) =

1
Γ(q)

∫ t

t0

(t− τ)q−1 f (τ)dτ, (1)

where t ≥ t0 and q > 0, and the gamma function is defined as

Γ(s) =
∫ ∞

0
ts−1e−tdt. (2)

Definition 2 [51,52]. The Caputo fractional derivative of function f (t) of orderq is

C
t0

Dq
t f (t) =

1
Γ(n− q)

∫ t

t0

f (n)(τ)
(t− τ)q−n+1 dτ, (3)

where t ≥ t0, and n− 1 < q < n denotes a derivative order, in which n ∈ N+.

Lemma 1 [51,52]. If the Caputo fractional derivative C
t0

Dq
t f (t) is integrable, then for 0 < q ≤ 1

and t ∈ [t0, ∞), t0 Iq
t

C
t0Dq

t f (t) = f (t)− f (t0).

Lemma 2 [53]. Consider a fractional-order system as follows:

dqx(t)
dtq = f (x(t)), (4)

where x(0) = (x1(0), x2(0), · · · , xn(0))
T ∈ Rn, x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈ Rn,
f : [ f1, f2, . . . , fn]

T : Rn → Rn , and q = (q1, q2, · · · , qn)
T , 0 < qi < 1(i = 1, 2, · · · , n). All

equilibrium points of the system satisfy f (x(t)) = 0, so we substitute the above equilibrium
points into the Jacobi matrix J = ∂ f

∂x = ∂( f1, f2,..., fn)
∂(x1,x2,...,xn)

; then, an equilibrium point is asymp-

totically stable if all eigenvalues λi of J satisfy |arg(λi)| >
πqm

2 , where qm = max{qi} and
i = 1, 2, · · · , n.

2.2. Algorithms

Several numerical solution algorithms exist for fractional-order continuous systems,
such as the frequency domain method (FDM), the Adams–Bashforth–Moulton algorithm
(ABM), and the Adomian decomposition method (ADM) [35]. Due to its higher computa-
tional accuracy, the ADM is used in this paper.
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The complexity measurement of nonlinear time series is an important technique for
analyzing the dynamics of chaotic system, and is currently a hot topic in the field of
nonlinear research, which uses several algorithms to measure how close a chaotic sequence
is to a random sequence; the complexity value is larger when the sequence is closer to a
random sequence. Among these algorithms are the statistical complexity measure (SCM),
fuzzy entropy, sample entropy, the C0 algorithm and spectral entropy (SE). In particular, C0
and SE algorithms can accurately estimate the complexity of time series, so they are used
in this paper.

For a given time series, {x(n), n = 0, 1, 2, · · · , N − 1}, the new time series is obtained
by removing its average value

x(n) = x(n)− x, (5)

where
−
x = 1

N

N−1
∑

n=0
x(n). Then, the Fourier transform of the time series is given by

X(k) =
N−1

∑
n=0

x(n)e−j 2π
N nk, (6)

where k = 0, 1, 2, · · · , N − 1.
Set the

P(K) =
|X(k)|2

N
2 −1
∑

k=0
|X(k)|2

, (7)

then spectral entropy (SE) [54] is defined as

SE = − 1

ln
(

N
2

) N
2 −1

∑
k=0

P(k) ln(P(k)). (8)

Set the

GN =
1
N

N−1

∑
k=0
|X(k) |2, (9)

and introduce a control parameter r; the new series is obtained as

X̃(k) =

{
X(k), i f |X(k)|2 > rGN

0, i f |X(k)|2 ≤ rGN
. (10)

Then the C0 complexity [55] is defined by

C0(r, N) =

N−1
∑

n=0
|x(n)− x̃(n)|2

N−1
∑

n=0
|x(n) |2

, (11)

where x̃(n) = 1
N

N−1
∑

k=0
X̃(k)e

j2πnk
N and n = 0, 1, · · · , N − 1.

The 0–1 testing method is a reliable and effective binary testing algorithm to detect
chaos, which was proposed by Gottwald and Melbourne [56] and also has already been
successfully tested for various discrete and continuous systems [5,20]. The basic idea is
to create a stochastic dynamic process for the data, and then study how the size of that
stochastic process changes over time. The bounded trajectories in the p–s plane indicate
that the system is a regular dynamic system, while the unbounded trajectories similar to
Brownian motion indicate that the system is a chaotic dynamic system.
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For a given time series, {x(n), n = 0, 1, 2, · · · , N − 1}, define the new coordinates
(pc(n), sc(n)) as follows 

pc(n) =
n
∑

j=1
x(j) cos(θ(j))

sc(n) =
n
∑

j=1
x(j) sin(θ(j))

, (12)

where θ(j) = jc +
j

∑
i=1

x(i), c ∈
[

π
5 , 4π

5

]
.

2.3. Modeling

The financial model is one of the more basic models used to simulate macroeconomic
dynamics, which studies the nonlinear interaction between the interest rate, the investment
demand and the price index. An integer-order three-dimensional financial model was
designed by Chen et al. [29], and it is given as follows

x′ = z + (y− a1)x

y′ = 2− a2y− x2

z′ = xy− x− a3z

, (13)

where x, y and z express the interest rate, the investment demand and the price index,
respectively. a1 is the saving amount, a2 is the cost per investment, and a3 is the elasticity of
the demand of the commercial markets, and all three constants a1, a2 and a3 are nonnegative.

Our aim is to replace the usual derivative in the financial model (13) with the Caputo
fractional derivative; in this way, the fractional-order form is shown as

C
t0

Dq
t x = z + (y− a1)x

C
t0

Dq
t y = 2− a2y− x2

C
t0

Dq
t z = xy− x− a3z

, (14)

where q ∈ (0, 1] denotes the order of the derivative. Evidently, system (14) degenerates to
model (13) when q = 1.

Here, we let the system (14) parameter a2 = a3 = 0.1, and the present work focuses on
the impact of the saving quantity on the financial system (14); therefore, we choose different
values of parameter a1 and order q in the equations to perform parameter sensitivity
analysis. An approximate solution to the fractional-order financial system (14) can be

expressed as follows: x̃j = c0
j + c1

j
(t−t0)

q

Γ(q+1)+c2
j
(t−t0)

2q

Γ(2q+1) + · · ·+ c6
j
(t−t0)

6q

Γ(6q+1) , where j = 1, 2, 3, and

the detailed derivation of c1
j , c2

j , · · · , c6
j is shown in Appendix A.

2.4. Equilibrium Points Analysis

The equilibrium of system (14) satisfies the following equations: Dqx = 0, Dqy = 0,
and Dqz = 0. By simple computation, one can determine that the system (14) has three
equilibrium points, in which the condition 2 + 2a3 − a2 − a1a2a3 ≥ 0 holds. These points
can be respectively described as

E1 =
(

0, 2
a2

, 0
)

,

E2 =

(
(a3 + 1)

√
2+2a3−a1a2a3−a2

(a3+1)3 , a1a3+1
a3+1 , (a1 − 1)

√
2+2a3−a1a2a3−a2

(a3+1)3

)
,

E3 =

(
−(a3 + 1)

√
2+2a3−a1a2a3−a2

(a3+1)3 , a1a3+1
a3+1 , −(a1 − 1)

√
2+2a3−a1a2a3−a2

(a3+1)3

)
.
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For system (14), the Jacobian matrix is given by the following matrix:

J =

y− a1 x 1
−2x −a2 0
y− 1 x −a3

.

Taking the parameter values a1 = 0.3, a2 = a3 = 0.1, it is easy to derive the eigen-
values corresponding to the equilibrium E1 as follows: λ1 = 20.6171, λ2 = −1.0171 and
λ3 = −0.1. On the other hand, the eigenvalues of E2 and E3 are λ1 = 0.6484 + 2.1105i,
λ2 = 0.6484− 2.1105i and λ3 = −0.8604. Based on Lemma 2, the equilibrium point E1 is
unstable, while E2 and E3 are asymptotically stable when 0 < q < 0.8103, and they are
unstable when 0.8103 ≤ q < 1.

3. Dynamics Analysis

In this section, the numerical solutions given by ADM of fractional-order financial
system (14) are obtained, then the sensitivity analysis of parameter a1 and the fractional-order
q is conducted to study their influence and effectiveness in relation to the financial system
(14). Bifurcation diagrams, maximum Lyapunov exponent diagrams, complexity diagrams,
phase portraits, p− s plots and time series are drawn to show the rich dynamic behaviors,
including periodic and chaotic motions. The equilibrium point analysis is finally performed.

3.1. Dynamics of the Financial System with the Variation in the Parameter a1

In order to study the influence of parameter a1 on the dynamic behaviors of the
financial system (14), we take the parameter values a2 = a3 = 0.1, fractional-order q = 0.95
and initial state (x0, y0, z0)= (1, 3, 2), and choose parameter a1 as the critical variable.
Figure 1 is the bifurcation diagram, which shows rich dynamic behaviors as a1 changes
within the interval [0, 1]; the diagram implies that system (14) shows inverse period-
doubling bifurcation, that is, the system goes from periodic states to chaotic states with
the period-doubling bifurcation process, as the parameter a1 decreases within the interval
[0, 1]. Specifically, the system is in period one when a1 ∈ [0.9, 1], and then period-doubling
bifurcation occurs for a1 = 0.9; period-two appears when a1 ∈ [0.83, 0.9), and period-
doubling bifurcation occurs for a1 = 0.83. As the parameter a1 decreases from 0.7 to 0, the
system is always in a state of chaos. Figure 2, showing the maximum Lyapunov exponent
diagram, is an important component when exploring chaotic characteristics, where a1 varies
from 0 to 1. As presented in Figure 3, the C0 and SE complexity values of system (14) are
low for a1 ∈ [0.7, 1], while the complexity fluctuates around higher values for a1 ∈ [0, 0.7).
The results in Figures 2 and 3 are consistent with the bifurcation diagram.

Figure 1. Bifurcation diagram of system (14) with a1 varying from 0 to 1 for q = 0.95.
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Figure 2. Maximum Lyapunov exponent of system (14) with a1 varying from 0 to 1 for q = 0.95.

Figure 3. Complexity of system (14) with a1 varying from 0 to 1 for q = 0.95. (a) C0 complexity; (b) SE
complexity.

Taking some values of a1 to view the dynamic properties of system (14) more directly,
Figure 4 presents the phase portraits and the p–s plots of the 0–1 testing of the system for
some different values of parameter a1. System (14) is in a chaotic state when a1 = 0.3, and
the chaotic attractor is shown in Figure 4a. In Figure 4b, system (14) appears in period
two when a1 rises to 0.85, which implies that the stability of the system is improved. From
Figure 4c, we can see that the system is in period one when a1 = 1. Correspondingly, the
0–1 testing algorithm is applied and the p− s plots are figured in Figure 4d–f, thus the
existence of chaos is further verified and it can be seen that the chaos of the system rises
as the value of a1 decreases. These numerical images are consistent with the bifurcation
diagram, the maximum Lyapunov exponent diagram and the complexity diagram, which
actually reflect the complex connections between the interest rate, the investment demand
and the price index of the financial system.

If the financial system (14) is in a periodic state, then the interest rate, investment
demand and price index would show periodic oscillation in a certain range. As the
amount of savings decreases, the financial system (14) enters into chaos, and this is often
harmful for the actual financial system; it may be accompanied by financial crises and an
uncontrolled financial system, and it will have damaging effects on the whole national
economy. Therefore, it is necessary to keep the amount of savings at an appropriate level.
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Through the effective and appropriate control of such parameters by the government, the
financial system will evolve into a more orderly state.

Figure 4. Phase portraits and p − s plots of system (14) for q = 0.95. (a) a1 = 0.3; (b) a1 = 0.85;
(c) a1 = 1; (d); a1 = 0.3; (e) a1 = 0.85; (f) a1 = 1.

3.2. Dynamics of the Financial System with the Variation in the Fractional Order q

In order to analyze the effects of fractional order variation on system (14), let the
parameters a1 = 0.3, a2 = a3 = 0.1 and the initial state (x0, y0, z0) = (1, 3, 2), and the
fractional-order q is chosen as the control variable. The bifurcation diagram with respect
to q within the interval [0.37, 1) is shown in Figure 5. The system is in periodic states for
q ∈ [0.37, 0.51], and the system is sustainably in chaotic states while q ∈ (0.51, 1). Corre-
spondingly, the maximum Lyapunov exponent diagram and the complexity diagram illus-
trate consistent results with the bifurcation diagram, which are shown in Figures 6 and 7.
In Figure 6, q varies from 0.37 to 1. Figure 7 demonstrates that the C0 and SE complexity
values of system (14) are low for q ∈ [0.37, 0.51], and the complexity oscillates at higher
values for q ∈ (0.51, 1). In Figure 8, the values of complexity change as q and a1 vary;
darker colors represent larger values of complexity, and the chaos is mainly in the region
with large values of q and small values of a1.

Figure 5. Bifurcation diagram of system (14) with q varying from 0.37 to 1 for a1 = 0.3.
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Figure 6. Maximum Lyapunov exponent of system (14) with q varying from 0.37 to 1 for a1 = 0.3.

Figure 7. Complexity of system (14) with q varying from 0.37 to 1 for a1 = 0.3. (a) C0 complexity.
(b) SE complexity.

Figure 8. Complexity contour plot of system (14) in the q− a1 plane. (a) C0 contour plot. (b) SE
contour plot.
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Figure 9 illustrates the p − s plots of 0 − 1 testing, which verify the chaos of the
system (14) with some different values of q. More visually, Figure 10 shows the evolution of
the interest rate, the investment demand and the price index of system (14), which display
complex interactions with each other and vary with fractional orders. Figure 11 is a time
series diagram of three state variables of different orders.

Figure 9. Plots of system (14) for a1 = 0.3; (a) q = 1; (b) q = 0.95; (c) q = 0.85; (d) q = 0.45.

Figure 10. Phase portrait of system (14) with some different orders for a1 = 0.3.
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1 

 

 Figure 11. Time series of x, y and z of system (14) with some different orders for a1 = 0.3.

From the figures, it is easy to see that both the fractional-order and the saving amount
affect the financial system. In fact, when the amount of savings in the financial system
is determined, the system gradually moves from order to chaos as the fractional-order
increases. When the fractional-order is determined, the financial system gradually moves
from the chaos region to the order region as the amount of savings increases. Therefore,
high order and low savings can complicate the financial system and make financial markets
unstable and unpredictable. On the other hand, if the financial system is in a state of
chaos, the financial markets would be out of control. For the government, instability and
complexity make it difficult to give accurate economic forecasts, and impossible to predict
the future state of the financial markets for a long time; therefore, it is important to achieve
the goal of avoiding and removing chaos in fractional-order financial systems.

4. Fixed-Time Synchronization of Fractional-Order Chaotic Financial Systems

The analysis in Section 3 shows that the fractional-order financial system will be
in a chaotic state when the value of the saving amount is low, and the trajectories of
two financial systems with different initial conditions will exhibit different behaviors
if an appropriate synchronization controller is not applied. To achieve the fixed-time
synchronization between two chaotic financial systems, we design a synchronization
controller and an adaptive parameter update law, which can be used to synchronize two
chaotic financial systems and identify the unknown parameters respectively in the setting
time, which does not depend on the initial conditions.

Consider the following nonlinear fractional-order system:

C
t0

Dq
t x(t) = F(t, x(t), Θ)= f (t, x(t)) + g(t, x(t))Θ, (15)

where f (t, x(t)) and g(t, x(t)) are the sum of the two parts of F(t, x(t), Θ),
x(t) = (x1(t), x2(t), . . . , xn(t))

T ∈ Rn is the state vector, Θ = (Θ1, Θ2, · · · , Θm)
T ∈ Rm

is the unknown parameter vector, f (t, x(t)) : R+ ×Rn → Rn is the continuous function
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vector, and g(t, x(t)) : R+ ×Rn → Rn×m is the continuous function matrix, 0 < q < 1,
t0 ≥ 0.

The following fractional-order chaotic system as the driving system is presented as

C
t0

Dq
t x(t) = F(t, x(t), Θ), (16)

where 0 < q < 1; x(t) = (x1(t), x2(t), · · · , xn(t))
T ∈ Rn denotes the drive state vector, and

the controlled response system is given by

C
t0

Dq
t y(t) = F(t, y(t), Θ̂(t)) + u(t), (17)

where 0 < q < 1; y(t) = (y1(t), y2(t), · · · , yn(t))
T ∈ Rn denotes the response state vector,

and Θ̂(t) is the estimation of the unknown parameter Θ. Then, the estimation error of
unknown parameter Θ̃(t) = Θ̂(t) − Θ. u(t) = (u1(t), u2(t), · · · , un(t))

T ∈ Rn is the
synchronization controller, to be designed later.

We denote the error variables as e(t) = y(t)− x(t), where e(t) = (e1(t), e2(t), . . . ,
en(t))

T ∈ Rn, and then the fractional-order error system is obtained as

C
t0

Dq
t e(t) = F(t, y(t), Θ̂(t))− F(t, x(t), Θ) + u(t)

= F(t, y(t), Θ(t))− F(t, x(t), Θ) + g(t, y(t))(Θ̂(t)−Θ) + u(t).
(18)

The next assumption and lemma are helpful for the analysis in the following Section 4.1.

Assumption 1 . For any x(t),y(t) ∈ Rn,F(t, x(t)) andF(t, y(t)) are Lipschitz continuous, and
there exists a matrixL = (lij)n×n in whichlij ≥ 0, such that

|Fi(t, y(t))− Fi(t, x(t))| ≤
n

∑
j=1

lij
∣∣∣yj(t)− xj(t)

∣∣∣, i = 1, 2, · · · , n.

Lemma 3 [57]. If f (t) ∈ C1([t0,+∞),R) is a continuously differentiable function, then

C
t0

Dq
t | f (t)| ≤ sign( f (t))C

t0
Dq

t f (t),0 < q < 1.

Lemma 4 [58]. If z1, z2, · · · , zn > 0,r > 1 and0 < l ≤ 1, then the following inequalities hold,

n

∑
i=1

zr
i ≥ n1−r

(
n

∑
i=1

zi

)r

,
n

∑
i=1

zl
i ≥

(
n

∑
i=1

zi

)l

.

Lemma 5 [47]. For a fractional-order system t0Dq
t = f (t, x(t)), the origin is fixed-time stable if

there exists a positive definite functionV(t, x(t)) , V(t), such that

0Dq
t V(t) ≤ λ1Γ(1− γ)

Γ(2− q)Γ(q− γ + 1)
V1−q+γ(t)− λ2Γ(1−v)

Γ(2− q)Γ(q−v + 1)
V1−q+v(t) (19)

with λ1 > 0, λ2 > 0, 1 < γ < q + 1 and q− 1 < v < q. The setting time is estimated by

T =

(
Γ(1 + q)

λ1

) 1
q
+

(
Γ(1 + q)

λ2

) 1
q
, (20)

which is independent of the initial conditions.
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4.1. Fixed-Time Synchronization Implementation

Let system (14) be the drive financial system, and the response financial system is
correspondingly given as follows:

C
0 Dq

t x1 = −â1x1 + z1 + x1y1 + u1(t)
C
0 Dq

t y1 = 2− â2y1 − x1
2 + u2(t)

C
0 Dq

t z1 = −x1 − â3z1 + x1y1 + u3(t)

, (21)

where â1, â2 and â3 are the estimations of the unknown parameters a1, a2 and a3.
The estimation errors of unknown parameters are as follows: ã1 = â1− a1, ã2 = â2− a2

and ã3 = â3−a3, and the synchronization error is defined as e1 = x1 − x, e2 = y1 − y and
e3 = z1 − z.

The controller is designed as follows:
u1(t) = −le1(t)−m11e1(t)|e1(t)|α −m21e1(t)|e1(t)|β

u2(t) = −le2(t)−m12e2(t)|e2(t)|α −m22e2(t)|e2(t)|β

u3(t) = −le3(t)−m13e3(t)|e3(t)|α −m23e3(t)|e3(t)|β
, (22)

and the adaptive update law of estimated parameters is designed as
C
t0

Dq
t â1 = −max{|x1|, |y1|, |z1|}(ã1)−m11 ã1|ã1|α −m21 ã1|ã1|β

C
t0

Dq
t â2 = −max{|x1|, |y1|, |z1|}(ã2)−m12 ã2|ã2|α −m22 ã2|ã2|β

C
t0

Dq
t â3 = −max{|x1|, |y1|, |z1|}(ã3)−m13 ã3|ã3|α −m23 ã3|ã3|β

, (23)

where l > 0 is the control gain, and m1i and m2i (i = 1, 2, 3) are adjustable positive
constants.

Then, the fractional-order error system can be obtained by subtracting the drive
financial system (14) from the response financial system (21), which is given by

C
0 Dq

t e1 = −0.3e1 + e3 + x1e2 + ye1 − x1(ã1)− le1 −m11e1(t)|e1(t)|α −m21e1(t)|e1(t)|β

C
0 Dq

t e2 = −0.1e2 − (x + x1)e1 − y1(ã2)− le2 −m12e2(t)|e2(t)|α −m22e2(t)|e2(t)|β

C
0 Dq

t e3 = −e1 − 0.1e3 + x1e2 + ye1 − z1(ã3)− le3 −m13e3(t)|e3(t)|α −m23e3(t)|e3(t)|β
(24)

The main result is stated as follows.

Theorem 1. Under Assumption 1, the controller (22) and the adaptive law (23), if there exists a
constant l that satisfies

l ≥ max

{
3

∑
i=1

lij, j = 1, 2, 3

}
, (25)

and 1− q < α < 1,−1 < β < 0, m1i > 0, and m2i > 0 (i = 1, 2, 3), then the drive system
(14) and the response system (21) can be synchronized, and the unknown parameters a1, a2 and a3

can also be successfully identified as â1, â2 and â3 in fixed-time T =
(
− Γ(1+q)Γ(1−q−α)

m1·6−αΓ(2−q)Γ(1−α)

) 1
q
+(

Γ(1+q)Γ(1−q−β)
m2Γ(2−q)Γ(1−β)

) 1
q , where m1 = mini{m1i}, and m2 = mini{m2i}.

Proof. We construct the Lyapunov function as

V(t) =
3

∑
i=1
|ei(t)|+

3

∑
j=1

∣∣ãj
∣∣.
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�

Calculating the Caputo fractional-order derivative of V(t) and using Lemma 3, As-
sumption 1, the fractional-order error system (24) and the adaptive law (23), we obtain

C
t0

Dq
t V(t) = C

t0
Dq

t

(
3
∑

i=1
|ei(t)|+

3
∑

j=1

∣∣ãj
∣∣)

≤
3
∑

i=1
sign(ei(t))C

t0
Dq

t ei(t) +
3
∑

j=1
sign(ãj)

C
t0

Dq
t (ãj)

= (sign(e(t)))T


−0.3e1 + e3 + x1e2 + ye1

−0.1e2 − (x1 + x)e1

−e1 − 0.1e3 + x1e2 + ye1


+

−x1 0 0

0 −y1 0

0 0 −z1


ã1

ã2

ã3

− le(t)

−


m11e1(t)|e1(t)|α + m21e1(t)|e1(t)|β

m12e2(t)|e2(t)|α + m22e2(t)|e2(t)|β

m13e3(t)|e3(t)|α + m23e3(t)|e3(t)|β




+
(

sign(Θ̃)
)T

−max{|x1|, |y1|, |z1|}(Θ̃)−


m11 ã1|ã1|α + m21 ã1|ã1|β

m12 ã2|ã2|α + m22 ã2|ã2|β

m13 ã3|ã3|α + m23 ã3|ã3|β




≤ |sign(e1)||−0.3e1 + e3 + x1e2 + ye1|
+|sign(e2)||−0.1e2 − (x1 + x)e1|
+|sign(e3)||−e1 − 0.1e3 + x1e2 + ye1|

+max{|x1|, |y1|, |z1|}
∥∥∥Θ̃
∥∥∥

1

−l(sign(e(t)))Te(t)−m1

(
3
∑

i=1
|ei(t)|α+1 +

3
∑

j=1

∣∣ãj
∣∣α+1

)

−m2

(
3
∑

i=1
|ei(t)|β+1 +

3
∑

j=1

∣∣ãj
∣∣β+1

)
−
(

sign(Θ̃)
)T

max{|x1|, |y1|, |z1|}
(

Θ̃
)

= |sign(e1)||−0.3e1 + e3 + x2e2 + y1e1|
+|sign(e2)||−0.1e2 − (x + x1)e1|
+|sign(e3)||−e1 − 0.1e3 + x1e2 + ye1|

−l(sign(e(t)))Te(t)−m1

(
3
∑

i=1
|ei(t)|α+1 +

3
∑

j=1

∣∣ãj
∣∣α+1

)

−m2

(
3
∑

i=1
|ei(t)|β+1 +

3
∑

j=1

∣∣ãj
∣∣β+1

)

≤
3
∑

i=1

3
∑

k=1
lik|ek(t)| −

3
∑

k=1
l|ek(t)| −m1

(
3
∑

i=1
|ei(t)|α+1 +

3
∑

j=1

∣∣ãj
∣∣α+1

)

−m2

(
3
∑

i=1
|ei(t)|β+1 +

3
∑

j=1

∣∣ãj
∣∣β+1

)
.
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From the condition (25) and Lemma 4, we get

C
t0

Dq
t V(t) ≤ −m1

(
3
∑

i=1
|ei(t)|α+1 +

3
∑

j=1

∣∣ãj
∣∣α+1

)
−m2

(
3
∑

i=1
|ei(t)|β+1 +

3
∑

j=1

∣∣ãj
∣∣β+1

)

≤ −m1 · 6−α

(
3
∑

i=1
|ei(t)|+

3
∑

j=1

∣∣ãj
∣∣)α+1

−m2

(
3
∑

i=1
|ei(t)|+

3
∑

j=1

∣∣ãj
∣∣)β+1

= −m1 · 6−αVα+1(t)−m2Vβ+1(t).

According to Lemma 5, we choose λ1 = −m1·6−αΓ(2−q)Γ(q−γ+1)
Γ(1−γ)

, λ2 = m2Γ(2−q)Γ(q−v+1)
Γ(1−v)

,
α + 1 = 1− q + γ and β + 1 = 1− q + v, and then we have V(t) = 0, i.e., e1 = e2 = e3 = 0
and ã1 = 0, ã2 = 0, ã3 = 0, ∀t ≥ T. That means the synchronization between the
drive system (14) and the response system (21) can be realized within the fixed time

T =
(
−Γ(1+q)Γ(1−q−α)

m1·6−αΓ(2−q)Γ(1−α)

) 1
q
+
(

Γ(1+q)Γ(1−q−β)
m2Γ(2−q)Γ(1−β)

) 1
q , and the unknown parameters can also be

identified in fixed time T. The proof is completed.

4.2. Numerical Simulation

The illustrative examples are provided to show the effectiveness of the results obtained.
The fixed-time synchronization of the drive system (14) and the response system (21) with
different initial states for some different fractional orders are studied. In order to ensure
that (14) and (21) are in a chaotic state, we take the fractional orders q = 0.95, q = 0.9,
and q = 0.85, respectively, and choose the system parameters a1 = 0.3, a2 = a3 = 0.1
according to the dynamic analysis in Section 3. The initial state values of the drive sys-
tem (x1(0), y1(0), z1(0))= (1, 3, 2), the response system (x2(0), y2(0), z2(0))= (2, 1, 3), and
Θ̂(0) = (1, 2, 3)T . From the phase portrait, we can determine that |x| < 4.5, |y| < 3.5,

|z| < 2.8; then, according to Assumption 1, we can easily get the matrix L =

3.2 4.5 1
9 0.1 0

2.5 4.5 0.1

.

Based on Theorem 1, let l = 14.8 > max
{

3
∑

i=1
lij, j = 1, 2, 3

}
= 14.7, and the other

parameters in (22) and (23) are chosen as m11 = m21 = 5, m12 = m22 = 8, m13 = m23 = 8,
α = 0.35 and β = −0.05; then we have m1 = m2 = 5. We obtain the setting times
T|q=0.95 = 3.2264, T|q=0.9 = 2.7134, and T|q=0.85 = 2.6805.

As shown in Figures 12 and 13, the synchronization errors obviously eventually con-
verge to zero, and the unknown parameters are successfully identified within the fixed
times T|q=0.95, T|q=0.9 and T|q=0.85 for these different fractional orders, respectively. This
demonstrates that the two chaotic financial systems realize fixed-time synchronization un-
der the designed controller. Meanwhile, for the fractional-order control systems, the setting
time of fixed-time stability depends not only on the parameters of the controller, but also
on the order of the fractional-order derivative. Moreover, the fixed-time synchronization
between (14) and (21) is achieved faster as the fractional derivative order decreases. The
numerical simulation illustrates the effectiveness of fixed-time synchronization controller
designed, and it implies that the interest rate, the investment demand and the price index
in chaotic financial systems can be synchronized within a fixed time with an appropriate
synchronization controller.

Synchronization between two financial systems helps maintain the consistency be-
tween these two financial systems. That is to say, achieving synchronization implies that
two financial systems in different regions and countries still maintain similar dynamic
behaviors. From the economic point of view, the drive economic system can be regarded
as the intended economic objective, while the response system is forced to achieve this
goal. The fractional order has an important impact on the time required to achieve the
synchronization of the financial systems, and we all want the financial system to reach
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the desired goal as soon as possible, independent of the differences in initial economic
conditions. Therefore, achieving chaos synchronization under a realistic assumption of the
drive economic system with an appropriate fractional order is of great significance.

Based on the above analysis, analyzing the fixed-time synchronization of the proposed
fractional-order financial models without considering the initial economic gap between the
two economies is useful for control, regulation, and maintaining consistency between two
asynchronous financial systems.

Figure 12. Synchronization error of (a) e1; (b) e2; (c) e3; (d) e1, e2 and e3 with some different frac-
tional orders.

Figure 13. Identification of unknown parameters (a) a1; (b) a2; (c) a3; (d) a1, a2 and a3 with some
different fractional orders.



Fractal Fract. 2022, 6, 507 17 of 21

5. Conclusions

In this paper, we establish a fractional-order financial system with the Caputo deriva-
tive, and the numerical solutions are obtained by ADM. The complex interactions and
dynamic behaviors are analyzed by numerical tools and methods. Both the system parame-
ter and the fractional order can be taken as bifurcation parameters, which show that the
fractional-order financial model has complex and abundant dynamics. In particular, chaotic
behavior in the financial system is unfavorable to the market, and must be controlled.
Thus, based on the properties of fractional calculus and some analysis techniques, the
control scheme is designed to achieve fixed-time synchronization and parameter identi-
fication in fractional-order financial systems, where the setting time of synchronization
is independent of the initial conditions. Finally, numerical simulations indicate that the
proposed controlling scheme is effective and feasible. The results can help to improve
the understanding of the dynamic behaviors of financial system, and provide theoretical
support for the formulation of financial intervention strategies.

Since time lag [22,25] is an important factor leading to instability in the financial system,
studying a financial system with time lags plays an important role in understanding and
managing financial markets. As such, our future works will focus on this issue.
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Appendix A

According to the Adomian decomposition method (ADM), system (14) can be rewritten
as follows:  x(t)

y(t)
z(t)

 =

 x(t0)
y(t0)
z(t0)

+ t0 Iq
t

 z− a1x
2− a2y
−x− a3z

+ t0 Iq
t

 xy
−x2

xy

. (A1)

The nonlinear terms in the equation are decomposed as

A0
−x2 = −x0x0

A1
−x2 = −(x1x0 + x0x1)

A2
−x2 = −(x2x0 + x1x1 + x0x2)

A3
−x2 = −(x3x0 + x2x1 + x1x2 + x0x3)

A4
−x2 = −(x4x0 + x3x1 + x2x2 + x1x3 + x0x4)

A5
−x2 = −(x5x0 + x4x1 + x3x2 + x2x3 + x1x4 + x0x5)

, (A2)
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

A0
xy = x0y0

A1
xy = x1y0 + x0y1

A2
xy = x2y0 + x1y1 + x0y2

A3
xy = x3y0 + x2y1 + x1y2 + x0y3

A4
xy = x4y0 + x3y1 + x2y2 + x1y3 + x0y4

A5
xy = x5y0 + x4y1 + x3y2 + x2y3 + x1y4 + x0y5

, (A3)

where the superscript in the decomposition formula denotes the number of ADM decom-
positions. The initial states are 

c0
1 = x(t0)

c0
2 = y(t0)

c0
3 = z(t0)

. (A4)

The coefficients we set are given as
c1

1 = c0
3 − a1c0

1 + c0
1c0

2

c1
2 = 2− a2c0

2 − c0
1c0

1

c1
3 = −c0

1 − a3c0
3 + c0

1c0
2

, (A5)


c2

1 = c1
3 − a1c1

1 + c1
1c0

2 + c0
1c1

2

c2
2 = 2− a2c1

2 − c1
1c0

1 − c0
1c1

1

c2
3 = −c1

1 − a3c1
3 + c1

1c0
2 + c0

1c1
2

, (A6)


c3

1 = c2
3 − a1c2

1 + c0
1c2

2 + c2
1c0

2 + c1
1c1

2
Γ(2q+1)
Γ2(q+1)

c3
2 = 2− a2c2

2 − c0
1c2

1 − c2
1c0

1 − c1
1c1

1
Γ(2q+1)
Γ2(q+1)

c3
3 = −c2

1 − a3c2
3 + c0

1c2
2 + c2

1c0
2 + c1

1c1
2

Γ(2q+1)
Γ2(q+1)

, (A7)


c4

1 = c3
3 − a1c3

1 + c3
1c0

2 + c0
1c3

2 + (c1
1c2

2 + c2
1c1

2)
Γ(3q+1)

Γ(q+1)Γ(2q+1)

c4
2 = 2− a2c3

2 − c3
1c0

1 − c0
1c3

1 − (c1
1c2

1 + c2
1c1

1)
Γ(3q+1)

Γ(q+1)Γ(2q+1)

c4
3 = −c3

1 − a3c3
3 + c3

1c0
2 + c0

1c3
2 + (c1

1c2
2 + c2

1c1
2)

Γ(3q+1)
Γ(q+1)Γ(2q+1)

, (A8)



c5
1 = c4

3 − a1c4
1 + c4

1c0
2 + c0

1c4
2 +

(
c3

1c1
2 + c1

1c3
2

) Γ(4q + 1)
Γ(q + 1)Γ(3q + 1)

+ c2
1c2

2
Γ(4q + 1)
Γ2(2q + 1)

c5
2 = 2− a2c4

2 − c4
1c0

1 − c0
1c4

1 −
(

c3
1c1

1 + c1
1c3

1

) Γ(4q + 1)
Γ(q + 1)Γ(3q + 1)

− c2
1c2

1
Γ(4q + 1)
Γ2(2q + 1)

c5
3 = −c4

1 − a3c4
3 + c4

1c0
2 + c0

1c4
2 +

(
c3

1c1
2 + c1

1c3
2

) Γ(4q + 1)
Γ(q + 1)Γ(3q + 1)

+ c2
1c2

2
Γ(4q + 1)
Γ2(2q + 1)

(A9)



c6
1 = c5

3 − a1c5
1 + c5

1c0
2 + c0

1c5
2 +

(
c4

1c1
2 + c1

1c4
2

) Γ(5q + 1)
Γ(q + 1)Γ(4q + 1)

+
(

c3
1c2

2 + c2
1c3

2

) Γ(5q + 1)
Γ(2q + 1)Γ(3q + 1)

c6
2 = 2− a2c5

2 − c5
1c0

1 − c0
1c5

1 −
(

c4
1c1

1 + c1
1c4

1

) Γ(5q + 1)
Γ(q + 1)Γ(4q + 1)

−
(

c3
1c2

1 + c2
1c3

1

) Γ(5q + 1)
Γ(2q + 1)Γ(3q + 1)

c6
3 = −c5

1 − a3c5
3 + c5

1c0
2 + c0

1c5
2 +

(
c4

1c1
2 + c1

1c4
2

) Γ(5q + 1)
Γ(q + 1)Γ(4q + 1)

+
(

c3
1c2

2 + c2
1c3

2

) Γ(5q + 1)
Γ(2q + 1)Γ(3q + 1)

(A10)
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According to the property of fractional-order calculus, the numerical solution is
obtained as:

x(t) = c0
1 + c1

1
hq

Γ(q+1) + c2
1

h2q

Γ(2q+1) + c3
1

h3q

Γ(3q+1) + c4
1

h4q

Γ(4q+1) + c5
1

h5q

Γ(5q+1) + c6
1

h6q

Γ(6q+1)

y(t) = c0
2 + c1

2
hq

Γ(q+1) + c2
2

h2q

Γ(2q+1) + c3
2

h3q

Γ(3q+1) + c4
2

h4q

Γ(4q+1) + c5
2

h5q

Γ(5q+1) + c6
2

h6q

Γ(6q+1)

z(t) = c0
3 + c1

3
hq

Γ(q+1) + c2
3

h2q

Γ(2q+1) + c3
3

h3q

Γ(3q+1) + c4
3

h4q

Γ(4q+1) + c5
3

h5q

Γ(5q+1) + c6
3

h6q

Γ(6q+1)

, (A11)

where h is the step size.
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