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Abstract: In this paper, the adaptive finite-time control problem for fractional-order systems with un-
certainties and unknown dead-zone fault was studied by combining a fractional-order command filter,
radial basis function neural network, and Nussbaum gain function technique. First, the fractional-
order command filter-based backstepping control method is applied to avoid the computational
complexity problem existing in the conventional recursive procedure, where the fractional-order
command filter is introduced to obtain the filter signals and their fractional-order derivatives. Second,
the radial basis function neural network is used to handle the uncertain nonlinear functions in the
recursive design step. Third, the Nussbaum gain function technique is considered to handle the
unknown control gain caused by the unknown dead-zone fault. Moreover, by introducing the com-
pensating signal into the control law design, the virtual control law, adaptive laws, and the adaptive
neural network finite-time control law are constructed to ensure that all signals associated with the
closed-loop system are bounded in finite time and that the tracking error can converge to a small
neighborhood of origin in finite time. Finally, the validity of the proposed control law is confirmed by
providing simulation cases.

Keywords: uncertain fractional-order systems; finite-time control; unknown dead-zone fault; neural
network; command filter

1. Introduction

Over the past several decades, control problems of uncertain nonlinear systems [1], non-
smooth nonlinear systems [2], strict-/nonstrict-feedback systems [3,4], and pure-feedback
systems [5] have been widely studied, and to achieve the specified control objectives, vari-
ous control laws have been constructed by scholars. It should be pointed out that the order
of the above-mentioned systems is integer order, namely, the so-called integer-order sys-
tems. In fact, some systems, such as hyper-chaotic economic systems and heat conduction
and viscoelastic structures [6,7], cannot be modeled by integer-order systems. Therefore, as
the extension of integer-order systems, the control problems of fractional-order systems
have been developed by many scholars. Currently, whether it is the solution problem of
fractional calculus or the control problem, the research results of fractional calculus can be
found in many literatures [8–12].

Because fractional-order systems break through the limitation of integer-order systems,
they can better describe the historical information of control objects [13,14], which have
attracted more and more attention in recent years [15–17]. An adaptive control law based
on neural network was presented in [15], which guarantees that the tracking error of the
switched fractional-order nonlinear systems can converge to a small neighborhood of
the origin under arbitrary switching. In [16], an L1 adaptive control law for the control

Fractal Fract. 2022, 6, 494. https://doi.org/10.3390/fractalfract6090494 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6090494
https://doi.org/10.3390/fractalfract6090494
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract6090494
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6090494?type=check_update&version=2


Fractal Fract. 2022, 6, 494 2 of 22

problem of fractional-order systems with matched uncertainties and external disturbances
was solved. The authors of [17] addressed an adaptive sliding mode observer for a class of
Takagi–Sugeno fuzzy descriptor fractional-order systems, in which the assumption that
the local input matrices are identical was eliminated by applying a fuzzy sliding surface.
In addition, some excellent control strategies, such as the adaptive backstepping control
law [18,19], the adaptive event-triggered control law [20], the observer-based adaptive
fuzzy control law [21], the active disturbance rejection control-based backstepping control
law [22], and their references have also been studied and applied.

It should be emphasized that the occurrence of actuator faults can sometimes not
be predicted in advance. How to solve the control problems of fractional-order sys-
tems with unknown actuator faults is a problem worth studying. Moreover, for the
actual control needs, it is usually hoped that the given systems can achieve the desired
control in finite time. However, these problems have not been deeply studied in the
above-mentioned literature.

Actuator faults are inevitable in most engineering problems. If these faults are not
handled in time, these cases may lead to the weakening of the system’s performance or
even the complete failure of the control system. Therefore, it is important and necessary to
study the control problems of fault systems (see [3,5,23–25], for example). The same is true
for fractional-order systems. Recently, many interesting results have been gained for control
schemes for fractional-order systems. In [26,27], adaptive fault-tolerant control laws with
fuzzy logic systems were designed to solve the control problems of fractional-order systems,
where the actuator faults involve partial failures, the loss of control effectiveness, and stuck
faults. Considering the existence of saturation fault, the adaptive neural network constraint
control law for fractional-order nonstrict-feedback systems was addressed in [28]. In [29],
a stabilization criterion with linear matrix inequalities was proposed. This guarantees
the robust stability of a class of variable-order fractional interval systems. Based on the
designed neural network decentralized state observer and decentralized control law, the
authors of [30] investigated the output–feedback control problem for fractional-order
nonstrict-feedback large-scale systems with unknown dead-zone faults. Also, it should
be pointed out that the problem of unknown control direction may be triggered when the
system appears as an unknown failure. Since the sign of the control direction is unknown,
this will bring great difficulties to the design of control laws of the systems. To solve
the control problem of unknown control direction, the Nussbaum gain function control
technique was proposed [31], and many related results have been proposed by scholars to
solve the control problems of the systems with unknown control directions [32–35].

It should be noted that the solution to the above control problems is achieved in
infinite time. However, some practical engineering applications, such as the chemical
reaction process and spacecraft attitude control, need to achieve stability within finite time.
Compared with the infinite time control strategy, the finite-time control strategy has a faster
convergence rate and better robustness against uncertainty [36–38]. Correspondingly, some
interesting results on the finite-time control of fractional-order systems were developed
in [39–41]. Based on the backstepping control technique, a fractional finite-time adaptive
fuzzy sliding control scheme for uncertain fractional order systems with uncertainties
and external disturbances was designed in [39]. This ensures that the closed-loop system
reaches the desired sliding mode surface in finite time. Different from [39], an adaptive
finite-time control law with a fractional-order command filter was presented in [40], which
can eliminate the computational complexity problem in the traditional backstepping design
and the tracking error can be guaranteed to converge in a finite time. In [41], the finite-time
event-triggered control problem for fractional-order systems was studied, and a finite-
time control law combined with the event-triggered mechanism and the neural network
was proposed.

Moreover, the control problems of fractional-order systems with unknown actuator
fault can be found in some papers without further discussion of the finite time control
problems [26,27,30]. Although a few studies have investigated the finite-time control prob-
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lems of fractional-order systems [39–41], they did not consider the existence of unknown
dead-zone fault. Inspired by the above discussion, the objective of this paper is to address
the finite-time control for fractional-order systems with unknown dead-zone fault and
uncertain dynamics. Based on the application of the fractional-order command filter, the
radial basis function neural network, and the Nussbaum gain function technique, an adap-
tive neural network finite-time control law was developed. The main contributions of this
paper are as follows:

(1) A class of uncertain fractional-order systems with unknown dead-zone fault is
investigated. Compared with [30,39,40], the model considered in this paper is more general.

(2) A fractional-order command filter is introduced to obtain the filter signals and their
fractional-order derivatives, which avoids the computational complexity problem existing
in the conventional backstepping recursive procedure.

(3) To deal with uncertain nonlinear functions in the step of recursive design and
unknown control gain caused by the unknown dead-zone fault, the radial basis function
(RBF) neural network and Nussbaum gain function technique are applied in this paper.
Then, the virtual control laws, adaptive laws and finial adaptive neural network finite-time
control law are designed.

(4) By using the designed adaptive neural network finite-time control law, it can be
guaranteed that all signals associated with the closed-loop system are bounded in finite
time, and the tracking error converges to a small neighborhood of origin in finite time.

The rest of this paper consists of the following sections. The problem formulation and
preliminaries are given in Section 2. In Section 3, the main design processes of the control
law are provided, and the stability analysis is also shown in this section. In what follows,
we give the simulation results and brief conclusions in Sections 4 and 5, respectively.

Notations: Throughout this paper, R, C, and N represent, respectively, the sets of real
numbers, complex numbers, and integers; Rn represents the set of n− dimensional real
vectors; | · | stands for the absolute value of a constant; ‖·‖ is the induction norm of a matrix
or the Euclidean norm of a vector; CT stands for the transpose of matrix C or vector C; and
min(X) or max(X) represent the minimum value or maximum value of X.

2. Problem Formulation and Preliminaries

This section will introduce the problem formulation for uncertain fractional-order
systems, and some preliminaries, such as the fractional calculation, Nussbaum gain function
technique, and some lemmas are given for the subsequent analysis.

2.1. Problem Formulation

Consider the uncertain fractional-order systems with unknown dead-zone fault, which
is described as

CDα
t x1 = g1(x)x2 + f1(x) + γT

1 ϕ1(x)
CDα

t x2 = g2(x)x3 + f2(x) + γT
2 ϕ2(x)

...
CDα

t xn−1 = gn−1(x)xn + fn−1(x) + γT
n−1ϕn−1(x)

CDα
t xn = gn(x)uF(t) + fn(x) + γT

nϕn(x)
y = x1

(1)

where α is the fractional order; x = [x1, · · · , xn]
T ∈ Rn, uF(t) ∈ R, and y ∈ R are the

state vector, the control input, and the output of system, respectively; gi(x) and fi(x),
i = 1, · · · , n, represent the known nonzero smooth functions and uncertain nonlinear
functions, respectively; γi and ϕi(x), for i = 1, · · · , n, stand for the unknown constant
vectors and known nonlinear function vectors, respectively. For convenience, the functions
gi(x), fi(x) and ϕi(x) are denoted by gi, fi, and ϕi, respectively.
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In this paper, the control input uF(t) is subjected to the dead-zone fault, where “F” is
the first letter of “Fault”. Based on [42], uF(t) is given as

uF(t) =


kd(u(t)− br), u(t) ≥ br
0, −bl < u(t) < br

kd(u(t) + bl), u(t) ≤ −bl

(2)

where kd > 0 represents an unknown bounded constant and is defined as the slope of the
dead zone; bl > 0 is the left breakpoint of dead-zone, and br > 0 is the right breakpoint of
the dead zone.

By applying the mean value theorem, the control input (2) can be rewritten as

uF(t) = kdu(t) + φ(t) (3)

and there exists
∣∣uF(t)

∣∣ ≤ |u(t)| ≤ U, where U represents the maximum value allowed by
the system; φ(t) is a bounded function that satisfies |φ(t)| ≤ φ, and φ(t) is shown as

φ(t) =


−kdbr, u(t) ≥ br
−kdu(t), −bl < u(t) < br
kdbl , u(t) ≤ −bl

(4)

For the system (1), the control goal of this paper is to construct an adaptive neural
network finite-time control law u(t) such that all signals of the closed-loop system are
bounded in finite time, and the system output y = x1 can track the reference signal yd in
finite time.

To achieve the desired control objective, some assumptions are provided as follows.

Assumption 1. The reference signal yd and its fractional-order derivative CDα
t yd are smooth

and bounded.

Assumption 2. The smooth functions gi, i = 1, · · · , n are bounded and the signs are identical;
namely, there exist positive constants gi,min and gi,max such that gi,min ≤ |gi| ≤ gi,max.

Remark 1. Assumptions 1 and 2 are common in the control law design of fractional-order systems
and can be found in most existing results [18,20,28]. Assumption 2 implies that the time-varying
control gains gi are either strictly positive or strictly negative with the same sign. Moreover, the
purpose of introducing positive constants gi,min and gi,max is to analyze the boundlessness of all
signals and the stability of the system.

2.2. Fractional Calculation

Definition 1 ([43]). The αth Caputo derivative of a smooth function f (t) is described as

CDα f (t) =
1

Γ(q− α)

∫ t

0
(t− s)q−α−1 f (q)(s)ds (5)

where CDα denotes the Caputo fractional operator with q − 1 < α < q for q ∈ N; Γ(·) is the
Gamma function, which is given as Γ(q) =

∫ +∞
0 sq−1e−sds.

For the Caputo fractional operator, the following properties hold.

CDα
t λ1 = 0 (6)

CDα
t (λ1x1(t) + λ2x2(t)) = λ1

CDα
t x1(t) + λ2

CDα
t x2(t) (7)

where λ1 and λ2 are constants; x1(t) and x2(t) are smooth nonlinear functions.
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Remark 2. In the following analysis, only the case of 0 < α < 1 is considered. In addition, the
notation CDα for the Caputo operator is replaced by Dα.

Definition 2 ([43]). The two-parameter Mittag–Leffler function is

Ea1,a2(χ) =
∞

∑
k=0

χk

Γ(a1k + a2)
(8)

where a1 > 0, a2 > 0, and χ ∈ C. In particular, E1,1(χ) = eχ. The Laplace transform of (8) is

L(ta2−1Ea1,a2(−bta1)) =
sa1−a2

sa1 + b
, b ∈ R (9)

Lemma 1 ([43]). There exist a1 ∈ (0, 2) and a2 ∈ R such that if πa1/2 < a3 ≤ min{π, πa1} is
satisfied, then ∣∣∣∣Ea1,a2(χ)

∣∣∣∣≤ d
1+|χ| (10)

where d > 0, a3 ≤|arg(χ)|≤ π , and |χ|≥ 0 .

Lemma 2 ([44]). Let h(t) be a smooth function, then

1
2
Dα

t

(
hT(t)h(t)

)
≤ hT(t)Dα

t h(t) (11)

Lemma 3 ([45]). If the αth fractional derivative of a smooth function V(t) : [0, ∞)→ R satisfies

Dα
t V(t) ≤ −a4V(t) + a0 (12)

where 0 < α < 1, a0 > 0 and a4 > 0, then one can obtain

V(t) ≤ a0ς

a4
(13)

where ς = max{1, d}, and d is defined as shown in Lemma 1.

Lemma 4 ([46]). Consider the fractional-order system Dα
t x(t) = f (x(t)), 0 < α < 1 and

x(t) ∈ Rn. If there exist continuous and positive-definite function V(x(t)), K− functions c1 and
c2, and constants b1 > 0, b2 > 0, 0 < β < 1 with β being a constant to be designed, satisfying

c1(‖x(t)‖) ≤ V(x(t)) ≤ c2(‖x(t)‖)
Dα

t V(x(t)) ≤ −b1V(x(t))β + b2
(14)

and ‖x(t)‖ ≤ X∗ holds with X∗ being a sufficient small positive constant, and there exists

V(x(t)) ≤
[

b2

b1(1− µ)

] 1
β

, t ≥ Tf (15)

where µ ∈ (0, 1), Tf is the finite setting time, which satisfies

Tf ≤

V1−β
0 −

(
b2

b1(1− µ)

) 1−β
β

 1
α
Γ(2− β)Γ

(
1 + 1

1−β

)
Γ(1 + α)

Γ
(

1 + 1
1−β − α

)
b1µ


1
α

(16)

where V0 = V(x(0)).
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2.3. Nussbaum-Type Gain Function

Definition 3 ([47]). A function N (s) is defined as a Nussbaum-type gain function if the following
properties satisfy

lim
s→∞

sup 1
s
∫ s

0 N (s)ds = +∞

lim
s→∞

inf 1
s
∫ s

0 N (s)ds = −∞
(17)

Lemma 5 ([9,48]). Let V(t) and κi(t), for i = 1, · · · , n, be smooth functions defined on [0, t0)
with V(t) ≥ 0 for ∀t ∈ [0, t0). N (κi) is a special Nussbaum-type gain function, if the following
inequality holds:

Dα
t V(t) ≤ −vV +

n

∑
i=1

(ξi(t)N (κi) + 1)
.
κi + C1 (18)

where v > 0 and C1 > 0 are constants, and ξi(t) stands for a bounded smooth function
that has ξi,min ≤ |ξi(t)| ≤ ξi,max with ξi,min > 0 and ξi,max > 0. Then κi(t), V(t), and
∑n

i=1 (ξi(t)N (κi) + 1)
.
κi will be bounded on [0, t0) for i = 1, · · · , n. Particularly, for i = 1, the

boundedness of (ξ(t)N (κ) + 1)
.
κ(t)can be maintained.

To facilitate the analysis of finite time problems, the following lemmas are provided.

Lemma 6 ([30]). For any continuous function F(x) over a compact set Ω ∈ Rn, there exists an
RBF neural network (W∗)T

Φ(x) such that

F(x) = (W∗)T
Φ(x) + ε(x), ∀x ∈ Ω (19)

where W∗ ∈ Rl is the optimal weight vector, l > 1 is the neural network node number, ε(x) is
the approximation error and there exists |ε(x)| ≤ ε∗, and Φ(x) = [ϕ1(x), · · · , ϕl(x)]

T ∈ Rl

represents a Gaussian-like basis function vector with

ϕi(x) = exp

(
− (x− ιi)

T(x− ιi)

}2

)
(20)

where ιi = [ιi1, · · · , ιin]
T and } are the center of the basis function and the width of the Gaussian

function, respectively.

Lemma 7 ([48]). A fractional-order second-order command filter with ψi,1(0) = υi(0) and
ψi,2(0) = 0 as its initial conditions is given as

Dα
t ψi,1 = ωψi,2
Dα

t ψi,2 = −2τωψi,2 −ω(ψi,1 − υi−1)
(21)

where i = 2, · · · , n, υi−1, and ψi,1 are the input and output of the fractional-order command filter,
respectively. Then for any
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Lemma 9 ([38]). For αk ∈ R, k = 1, · · · , n and 0 < p < 1, the following relationship holds:(
n

∑
k=1
|αk|

)p

≤
n

∑
k=1
|αk|p ≤ n1−p

(
n

∑
k=1
|αk|

)p

(23)

Lemma 10 ([19]). Let b ∈ R and ϑ > 0; for the hyperbolic tangent function tanh, there exists
0 < |b| − btanh(b/ϑ) ≤ 0.2785ϑ.

3. Control Law Design Process and Stability Analysis

For this section, the adaptive neural network finite-time control law for uncertain
fractional-order systems with unknown dead-zone fault (1) is proposed. This can not only
ensure that all signals of the closed-loop system are bounded in finite time, but it also
makes the output of the system track the reference signal in finite time.

3.1. Adaptive Neural Network Finite-Time Control Law Design

We define the following coordinate transformation:

ei = xi − yi,d, i = 1, · · · , n (24)

where y1,d = yd, yi,d for i = 2, · · · , n, and yi,d = ψi,1 is the output of the fractional-order
second-order command filter (see Lemma 7) with the virtual control law υi−1 as the input.

The compensated tracking error zi is defined as

zi = ei − si, i = 1, · · · , n (25)

where si is the compensating signal to be designed.
Step 1 (i = 1): Considering (1), (24), and (25), the αth fractional-order derivative of

z1 is
Dα

t z1 = Dα
t e1 −Dα

t s1
= Dα

t x1 −Dα
t yd −Dα

t s1
= g1e2 + g1(y2,d − υ1) + g1υ1 + f1 + γT

1 ϕ1 −Dα
t yd −Dα

t s1

(26)

According to Lemma 6, an RBF neural network is introduced to approximate the unknown
nonlinear function f1. Then we have

f1 = (W∗1)
T

Φ1 + ε1, |ε1| ≤ ε∗1 (27)

Design the compensating signal s1 as

Dα
t s1 = −λ1s1 + g1s2 + g1(y2,d − υ1)− `1sign(s1) (28)

where λ1 > 0 and `1 > 0 are design constants.
Substituting (27) and (28) into (26) yields

Dα
t z1 = λ1s1 + g1z2 + g1υ1 + (W∗1)

T
Φ1 + ε1 + γT

1 ϕ1 −Dα
t yd + `1sign(s1) (29)

Design the Lyapunov function candidate as

V1 =
1
2

z2
1 +

1
2A1

W̃
T
1 W̃1 +

1
2B1

γ̃T
1 γ̃1 (30)

where A1 and B1 are the designed positive constants; W̃1 = W∗1 − Ŵ1 and γ̃1 = γ1 − γ̂1,
where Ŵ1 and γ̂1 are the estimations of W∗1 and γ1, respectively. Considering (6), (7), and
Lemma 2, the fractional derivative of V1 is given as
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Dα
t V1 ≤ z1(Dα

t z1) +
1

A1
W̃

T
1

(
Dα

t W̃1

)
+ 1

B1
γ̃T

1 (Dα
t γ̃1)

= λ1z1s1 + g1z1z2 + z1

(
g1υ1 + (W∗1)

T
Φ1 + ε1 + γT

1 ϕ1 −Dα
t yd

)
+ `1z1sign(s1)

− 1
A1

W̃
T
1
(
Dα

t Ŵ1
)
− 1

B1
γ̃T

1 (Dα
t γ̂1)

(31)

Design the virtual control law υ1 as

υ1 =
1
g1

(
−λ1e1 − c1z2β−1

1 − ŴT
1 Φ1 − γ̂T

1 ϕ1 − ε∗1tanh(
ε∗1z1

ϑ
) +Dα

t yd

)
(32)

where c1 > 0 and β ∈ (0, 1).
Substituting (32) into (31) has

Dα
t V1 ≤ −λ1z2

1 − c1z2β
1 + g1z1z2 + `1z1sign(s1) +

1
A1

W̃
T
1
(
A1z1Φ1 −Dα

t Ŵ1
)

+ 1
B1

γ̃T
1 (B1z1ϕ1 −Dα

t γ̂1) + ε1z1 − ε∗1z1tanh( ε∗1z1
ϑ )

(33)

Design the adaptive laws Ŵ1 and γ̂1 as

Dα
t Ŵ1 = A1z1Φ1 − η1Ŵ1 (34)

Dα
t γ̂1 = B1z1ϕ1 − δ1γ̂1 (35)

where η1 > 0 and δ1 > 0 are design constants.
Substituting (34) and (35) into (33), and considering Lemma 10, gives

Dα
t V1 ≤ −λ1z2

1 − c1z2β
1 + g1z1z2 +

η1

A1
W̃

T
1 Ŵ1 +

δ1

B1
γ̃T

1 γ̂1 + `1z1sign(s1) + 0.2785ϑ (36)

Step i (i = 2, · · · , n− 1): Considering (1), (24), and (25), the fractional derivative of
zi is

Dα
t zi = giei+1 + gi(yi+1,d − υi) + giυi + fi + γT

i ϕi −Dα
t yi,d −Dα

t si (37)

Similarly, an RBF neural network is introduced to approximate the unknown nonlinear
function fi. Then we obtain

fi = (W∗i )
T

Φi + εi, |εi| ≤ ε∗i (38)

Design the compensating signal si as

Dα
t si = −λisi + gisi+1 − gi−1si−1 + gi(yi+1,d − υi)− `isign(si) (39)

where λi > 0 and `i > 0 are design constants.
Substituting (38) and (39) into (37) yields

Dα
t zi = λisi + gizi+1 + gi−1si−1 + giυi + (W∗i )

T
Φi + εi + γT

i ϕi −Dα
t yi,d + `isign(si) (40)

Design the Lyapunov function candidate as

Vi =
1
2

z2
i +

1
2Ai

W̃
T
i W̃i +

1
2Bi

γ̃T
i γ̃i (41)
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where Ai and Bi are the designed positive constants; W̃i = W∗i − Ŵi and γ̃i = γi− γ̂i, where
Ŵi and γ̂i are the estimations of W∗i and γi, respectively. Then, the fractional derivative of
Vi is

Dα
t Vi ≤ zi(Dα

t zi) +
1

Ai
W̃

T
i

(
Dα

t W̃i

)
+ 1

Bi
γ̃T

i (Dα
t γ̃i)

= λizisi + gizizi+1 + gi−1si−1zi + zi

(
giυi + (W∗i )

T
Φi + εi + γT

i ϕi −Dα
t yi,d

)
− 1

Ai
W̃

T
i
(
Dα

t Ŵi
)
− 1

Bi
γ̃T

i (Dα
t γ̂i) + `izisign(si)

(42)

Design the virtual control law υi as

υi =
1
gi

(
−λiei − gi−1ei−1 − ciz

2β−1
i − ŴT

i Φi − γ̂T
i ϕi − ε∗i tanh(

ε∗i zi

ϑ
) +Dα

t yi,d

)
(43)

where ci > 0 and β ∈ (0, 1).
Substituting (43) into (42) has

Dα
t Vi ≤ −λiz2

i − ciz
2β
i + gizizi+1 − gi−1zi−1zi + εizi − ε∗i zitanh( ε∗i zi

ϑ ) + `izisign(si)

+ 1
Ai

W̃
T
i
(
AiziΦi −Dα

t Ŵi
)
+ 1

Bi
γ̃T

i (Biziϕi −Dα
t γ̂i)

(44)

Design the adaptive laws Ŵi and γ̂i as

Dα
t Ŵi = AiziΦi − ηiŴi (45)

Dα
t γ̂i = Biziϕi − δiγ̂i (46)

where ηi > 0 and δi > 0 are design constants.
Substituting (45) and (46) into (44), and considering Lemma 10, one has

Dα
t Vi ≤ −λiz2

i − ciz
2β
i + gizizi+1 − gi−1zi−1zi +

ηi
Ai

W̃
T
i Ŵi +

δi
Bi

γ̃T
i γ̂i + `izisign(si) + 0.2785ϑ (47)

Step n (i = n): In this step, the adaptive neural network finite-time control law is
derived. Considering (1), (3), (24), and (25), the fractional derivative of zn is given as

Dα
t zn = kdgnu(t) + φ(t)gn + fn + γT

nϕn −Dα
t yn,d −Dα

t sn (48)

The unknown nonlinear function fn in (48) is approximated by using the RBF neural
network, that is

fn = (W∗n)
T

Φn + εn, |εn| ≤ ε∗n (49)

Design the compensating signal sn as

Dα
t sn = −λnsn − gn−1sn−1 − `nsign(sn) (50)

where λn > 0 and `n > 0 are the design constants.
Substituting (49) and (50) into (48) yields

Dα
t zn = Gnu(t) + (W∗n)

T
Φn + εn + γT

nϕn −Dα
t yn,d + λnsn + gn−1sn−1 + `nsign(sn) (51)

where Gn = kdgn and εn = gnφ(t) + ε∗n. Considering the boundlessness of gn, kd, and φ(t),
there exist |Gn| ≤ G∗ and |εn| ≤ ε∗n with unknown constants G∗ > 0 and ε∗n > 0.

Design the Lyapunov function candidate as

Vn =
1
2

z2
n +

1
2An

W̃
T
n W̃n +

1
2Bn

γ̃T
n γ̃n (52)
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where An and Bn are the designed positive constants; W̃n = W∗n − Ŵn and γ̃n = γn − γ̂n,
where Ŵn, and γ̂n are the estimations of W∗n and γn, respectively. The fractional derivative
of Vn is given as

Dα
t Vn ≤ λnznsn + gn−1sn−1zn + Gnznu(t) + zn

(
(W∗n)

T
Φn + εn + γT

nϕn −Dα
t yn,d

)
− 1

An
W̃

T
n
(
Dα

t Ŵn
)
− 1

Bn
γ̃T

i (Dα
t γ̂n) + `nznsign(sn)

(53)

Design the adaptive neural network finite-time control law u(t) as

u(t) = N (κ)θ(t) (54)

θ(t) = λnen + gn−1en−1 + cnz2β−1
n + ŴT

n Φn + γ̂T
nϕn + ε∗ntanh(

ε∗nzn

ϑ
)−Dα

t yn,d (55)

.
κ(t) = znθ(t) (56)

Substituting (54)–(56) into (53), one gets

Dα
t Vn ≤ −λnz2

n − gn−1zn−1zn − cnz2β
n + (GnN (κ) + 1)

.
κ(t) + εnzn − ε∗nzntanh( ε∗nzn

ϑ )

+ 1
An

W̃
T
n
(
AnznΦn −Dα

t Ŵn
)
+ 1

Bn
γ̃T

i (Bnznϕn −Dα
t γ̂n) + `nznsign(sn)

(57)

Design the adaptive laws Ŵn and γ̂n as

Dα
t Ŵn = AnznΦn − ηnŴn (58)

Dα
t γ̂n = Bnznϕn − δnγ̂n (59)

where ηn > 0 and δn > 0 are the design constants.
Substituting (58) and (59) into (57), and considering Lemma 10, one obtains

Dα
t Vn ≤ −λnz2

n − cnz2β
n − gn−1zn−1zn + (GnN (κ) + 1)

.
κ(t) + ηn

An
W̃

T
n Ŵ + δn

Bn
γ̃T

n γ̂n

+`nznsign(sn) + 0.2785ϑ
(60)

3.2. Stability Analysis

Based on the virtual control laws, adaptive laws, and adaptive neural network finite-
time control law designed above, the main results can be summarized as follows.

Theorem 1. Consider an uncertain fractional-order system (1) that is subject to unknown dead-zone
fault (2). Under Assumptions 1 and 2, if the compensating signals are selected as (28), (39), and
(50), the virtual control laws are designed as shown in (32) with adaptive laws (34) and (35), and
(43) with adaptive laws (45) and (46), and the adaptive neural network finite-time control law is
designed as shown in (54) with adaptive laws (58) and (59). Then, all signals of the closed-loop
system are bounded in finite time and the tracking error e1 can converge to a small neighborhood of
origin in finite time.

Proof. Design the following Lyapunov function as

V =
n

∑
i=1

Vi (61)

Invoking (36), (47), and (60), the αth fractional-order derivative of V is

Dα
t V =

n
∑

i=1
Dα

t Vi

≤ −
n
∑

i=1
λiz2

i −
n
∑

i=1
ciz

2β
i +

n
∑

i=1

ηi
Ai

W̃
T
i Ŵi +

n
∑

i=1

δi
Bi

γ̃T
i γ̂i +

n
∑

i=1
`izisign(si)

+(GnN (κ) + 1)
.
κ(t) + 0.2785ϑn

(62)
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By applying Lemma 8, the following results can be obtained:

W̃
T
i Ŵi = W̃

T
i

(
W∗i − W̃i

)
≤ 1

2
(W∗i )

TW∗i −
1
2

W̃
T
i W̃i (63)

γ̃T
i γ̂i = γ̃T

i (γi − γ̃i) ≤
1
2

γT
i γT

i −
1
2

γ̃T
i γ̃i (64)

`izisign(si) ≤ `iz2
i +

1
4
`i (65)

Substituting (63)–(65) into (62) yields

Dα
t V ≤ −

n
∑

i=1
(λi − `i)z2

i −
n
∑

i=1
ciz

2β
i −

n
∑

i=1

ηi
2Ai

W̃
T
i W̃i −

n
∑

i=1

δi
2Bi

γ̃T
i γ̃i + (GnN (κ) + 1)

.
κ(t)

+ν1

(
n
∑

i=1

1
2Ai

W̃
T
i W̃i

)β

− ν1

(
n
∑

i=1

1
2Ai

W̃
T
i W̃i

)β

+ ν2

(
n
∑

i=1

1
2Bi

γ̃T
i γ̃i

)β

−ν2

(
n
∑

i=1

1
2Bi

γ̃T
i γ̃i

)β

+
n
∑

i=1

ηi
2Ai

(
W∗i
)TW∗i +

n
∑

i=1

δi
2Bi

γT
i γT

i

+
n
∑

i=1

`i
4 + 0.2785ϑn

(66)

where ν1 and ν2 are positive constants. �

Considering Lemma 8 again, let x = 1, y = ∑n
i=1

(
W̃

T
i W̃i

)
/2Ai or y = ∑n

i=1
(
γ̃T

i γ̃i
)
/2Bi,

o1 = 1− β, o2 = β and o3 = ββ/(1−β), respectively. Thus, the following inequalities hold

ν1

(
n

∑
i=1

1
2Ai

W̃
T
i W̃i

)β

≤ ν1

n

∑
i=1

1
2Ai

W̃
T
i W̃i + ν1(1− β)β

β
1−β (67)

ν2

(
n

∑
i=1

1
2Bi

γ̃T
i γ̃i

)β

≤ ν2

n

∑
i=1

1
2Bi

γ̃T
i γ̃i + ν2(1− β)β

β
1−β (68)

By substituting (67) and (68) into (66), and applying Lemma 9, the following result is
satisfied by choosing appropriate parameters satisfying λi > `i, ηi > ν1, and δi > ν2, that is

Dα
t V ≤ −

n
∑

i=1
(λi − `i)z2

i −
n
∑

i=1

ηi−ν1
2Ai

W̃
T
i W̃i −

n
∑

i=1

δi−ν2
2Bi

γ̃T
i γ̃i −

n
∑

i=1
ciz

2β
i − ν1

(
n
∑

i=1

1
2Ai

W̃
T
i W̃i

)β

−ν2

(
n
∑

i=1

1
2Bi

γ̃T
i γ̃i

)β

+
n
∑

i=1

ηi
2Ai

(
W∗i
)TW∗i +

n
∑

i=1

δi
2Bi

γT
i γT

i + ν1(1− β)β
β

1−β

+ν2(1− β)β
β

1−β + (GnN (κ) + 1)
.
κ(t) +

n
∑

i=1

`i
4 + 0.2785ϑn

= −aV − bVβ + (GnN (κ) + 1)
.
κ(t) + D1

(69)

where a, b and D1 are respectively given as

a = min{2(λi − `i), (ηi − ν1), (δi − ν2)}

b = min
{

2βci, ν1, ν2

}
D1 =

n

∑
i=1

ηi
2Ai

(W∗i )
TW∗i +

n

∑
i=1

δi
2Bi

γT
i γT

i + (ν1 + ν2)(1− β)β
β

1−β +
n

∑
i=1

`i
4
+ 0.2785ϑn

Next, we verify our results in three steps.
Step 1. Considering (69) and the definition of V, it can be easily obtained that bVβ ≥ 0.

Then, we have
Dα

t V ≤ −aV + (GnN (κ) + 1)
.
κ(t) + D1 (70)
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By applying Lemma 5, there exist a positive constant G∗ such that
max(GnN (κ) + 1)

.
κ(t) = G∗ for t ∈ [0, t0). Therefore, (69) can be written as

Dα
t V ≤ −aV − bVβ + D∗1 (71)

where D∗1 = G∗ + D1.
Step 2. Based on the results of Step 1, from (71), we have

Dα
t V ≤ −aV + D∗1 (72)

Applying Lemma 1 and Lemma 3, then there is a positive constant ς such that

V ≤
D∗1 ς

a
(73)

which means that V is bounded, and it further implies that the signals zi, W̃i, and γ̃i are
also bounded. Noting W̃i = W∗i − Ŵi and γ̃i = γi − γ̂i, then the boundlessness of Ŵi and
γ̂i can be also obtained.

Step 3. From the definition of z1 = e1 − s1, if z1 and s1 are finite-time stable, then the
tracking error e1 is also finite-time stable. Considering (71) and the fact that aV ≥ 0, then
we have

Dα
t V ≤ −bVβ + D∗1 (74)

By applying Lemma 4, it can be held that

V(t) ≤
[

D∗1
b(1− µ1)

] 1
β

(75)

and the setting time Tf 1 is

Tf 1 ≤

V1−β
0 −

(
D∗1

b(1− µ1)

) 1−β
β


1
αΓ(2− β)Γ

(
1 + 1

1−β

)
Γ(1 + α)

Γ
(

1 + 1
1−β − α

)
bµ1


1
α

(76)

where µ1 ∈ (0, 1) and V0 = V(0).
According to the definition of V, one gives

|z1| ≤
√

2

[
D∗1

b(1− µ1)

] 1
2β

(77)

Now, we show that the compensated signal s1 is finite-time stable.
Choose the following Lyapunov function candidate:

Y =
n

∑
n=1

1
2

s2
i (78)

Invoking (28), (39), and (50), the αth fractional-order derivative of Y is

Dα
t Y =

n
∑

n=1
si(Dα

t si)

≤ −λ1s2
1 + g1s1s2 + s1g1(y2,d − υ1)− `1s1sign(s1)− λ2s2

2 + g2s2s3 − g1s1s2

+s2g2(y3,d − υ2)− `2s2sign(s2) + · · · − λns2
n − gn−1sn−1sn − `nsnsign(sn)

= −
n
∑

n=1
λis2

i +
n−1
∑

n=1
sigi(yi+1,d − υi)−

n
∑

n=1
`i|si|

(79)
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Considering Lemma 7, it can be obtained that
∣∣yi+1,d − υi

∣∣ ≤
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i in finite time Tf 2. In
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Dα
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Noting Lemma 4, and similar to the proof of z1, it can be obtained that the compensat-
ing signal s1 is finite time stable and satisfies

|s1| ≤
√

2
[

D∗2
c(1− µ2)

] 1
2β

(83)

and the setting time Tf 3 is

Tf 3 ≤

Y1−β
0 −

(
D∗2

c(1− µ2)

) 1−β
β

 1
α
Γ(2− β)Γ

(
1 + 1

1−β

)
Γ(1 + α)

Γ
(

1 + 1
1−β − α

)
cµ2


1
α

(84)

where µ2 ∈ (0, 1) and Y0 = Y(0).
Considering (25), (77), and (83), the tracking error e1 satisfies

|e1| ≤ |z1|+ |s1| ≤
√

2

[
D∗1

b(1− µ1)

] 1
2β

+
√

2
[

D∗2
c(1− µ2)

] 1
2β

(85)

Observing (85), it can be seen that the tracking error e1 is the sum of the compensating
signal s1 and the compensated tracking error z1. Accordingly, the convergence time T also
satisfies this relationship. Moreover, it can be found that the tracking error e1 depends on
parameters λi, `i, ci, ηi, δi, Ai and Bi, i = 1, · · · , n. It also implies that the tracking error e1
converge to the specified small neighborhood of origin in finite time within the setting time
T = Tf 1 + Tf 2 + Tf 3 by selecting the appropriate parameters. This completes the proof.

Remark 3. Noting (85), the tracking error e1 can be made arbitrarily small by adjusting parameters
λi, `i, ci, ηi, δi, Ai and Bi, i = 1, · · · , n. We can decrease D∗1 by decreasing the values of parameters
ηi and δi or increasing Ai and Bi, and we can decrease D∗2 by increasing `i. We can also increase b by
increasing the value of parameter ci, and we can increase c by increasing λi. Based on the adjustment
of D∗1 , D∗2 , b, and c, it can be guaranteed that the tracking error e1 can converge to the specified
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small neighborhood of origin in finite time within the setting time. However, it should be emphasized
that the change of `i simultaneously affects D∗1 and D∗2 , and the change of λi simultaneously affects
D∗2 and c. Moreover, the adjustment of these parameters may be bringing about an increase in the
amplitude of the control signal. Therefore, when selecting suitable parameters, a trade-off should be
made between the control performance of the tracking and the amplitude of the control signal.

4. Simulation Analysis

In this section, the simulation cases are given to verify the validity of the control law
designed in this paper.

Case 1: Consider a class of uncertain fractional-order systems as follows:

Dα
t x1 = g1x2 + f1 + γT

1 ϕ1
Dα

t x2 = g2x3 + f2 + γT
2 ϕ2

Dα
t x3 = g3uF(t) + f3 + γT

3 ϕ3
y = x1

(86)

where g1 = 0.9, g2 = 0.5, g3 = 1 + 0.7 sin t, f1 = −x2 sin(x1), f2 = e−x2
2/15,

f3 = 2x2 − 2x3 − sin(x1x3), γ1 = γ2 = γ3 = [0.5, 1]T , ϕ1 = [cos(x1), x2]
T ,

ϕ2 = [− sin(x1x2),−x2 cos(x3)]
T , and ϕ3 =

[
x2, x2

1
]T . The dead-zone fault model is shown

in (2), and kd = 1.5, bl = 0.15 and br = 0.3. The reference signal is yd = 1.5(sin t + sin 2t);
the initial states are x1(0) = 1.2, x2(0) = 0.5 and x3(0) = 0.25; and the simulation time
is t = 20 s.

The RBFNN is used to approximate the unknown nonlinear functions f1, f2 and f3.
The node number for each RBF neural network is considered to be 9 with the width of basis
function being } = 4. The centers of the basis function ιi (i = 1, · · · , 9) for the function f1
are evenly spaced in [−8, 8]× [−8, 8]; for the function f2, they are evenly spaced in [−8, 8];
and for the function f3, they are evenly spaced in [−8, 8]× [−8, 8]× [−8, 8].

The other design parameters are ϑ = 0.01, β = 0.95, λ1 = 1.5, λ2 = 3.0, λ3 = 4.5,
`1 = 1.5, `2 = 2.0, `3 = 0.5, c1 = 20, c2 = 12, c3 = 2.0, A1 = 1.5, A2 = 2.5, A3 = 0.5,
η1 = 0.4, η2 = 1.5, η3 = 1.6, B1 = 4.5, B2 = 2.9, B3 = 1.5, δ1 = 0.5, δ2 = 3.0, δ3 = 5.5,
ε∗1 = ε∗2 = 0.5, ε∗3 = 1.0. The parameters for the second-order command filter are set as
ω = 3.0 and τ = 0.7. The initial conditions for adaptive laws are set as s1(0) = s2(0) =
s3(0) = 0.01, γ̂1(0) = γ̂2(0) = γ̂3(0) = [0.01]2×1, Ŵ1(0) = Ŵ2(0) = Ŵ3(0) = [0.01]9×1
and κ(0) = 0.

The simulation results for this case are shown in Figures 1–6. Figures 1 and 2 give the
curves of the tracking performance and the tracking error e1. It can be seen from Figure 1
that the system (86) can obtain a good tracking performance in finite time, although the
system suffers from the unknown dead-zone fault. From Figure 2, we can see that the
tracking error can converge to a small neighborhood of zero in finite time under the
proposed control law. The results of these two figures also further verify the validity of the
designed control law. Furthermore, the trajectories of the state variables x1, x2 and x3 are
displayed in Figure 3, the curves of the control law u(t) and adaptive laws

∥∥Ŵi
∥∥ and ‖γ̂i‖

(i = 1, 2, 3) are shown in Figures 4–6. Noting Figures 2–6, the signals of the closed-loop
system are bounded in finite time, which shows the validity of the theoretical analysis.



Fractal Fract. 2022, 6, 494 15 of 22

Fractal Fract. 2022, 6, x FOR PEER REVIEW 15 of 23 
 

 

The RBFNN is used to approximate the unknown nonlinear functions 1f , 2f  and 

3f . The node number for each RBF neural network is considered to be 9  with the width 

of basis function being 4= . The centers of the basis function i  ( 1, ,9i = ) for the 

function 1f  are evenly spaced in [ 8,8] [ 8,8]−  − ; for the function 2f , they are evenly 

spaced in [ 8,8]− ; and for the function 3f , they are evenly spaced in 

[ 8,8] [ 8,8] [ 8,8]−  −  − . 

The other design parameters are 0.01 = , 0.95 = , 1 1.5 = , 2 3.0 = , 3 4.5 = , 

1 1.5= , 2 2.0= , 3 0.5= , 1 20c = , 2 12c = , 3 2.0c = , 1 1.5 = , 2 2.5 = , 3 0.5 = , 

1 0.4 = , 2 1.5 = , 3 1.6 = , 1 4.5 = , 2 2.9 = , 3 1.5 = , 1 0.5 = , 2 3.0 = , 3 5.5 = , 
* *

1 2 0.5 = = , *

3 1.0 = . The parameters for the second-order command filter are set as 

3.0 =  and 0.7 = . The initial conditions for adaptive laws are set as 

1 2 3(0) (0) (0) 0.01s s s= = = ,  1 2 3 2 1
ˆ ˆ ˆ(0) (0) (0) 0.01


= = =   ,  1 2 3 9 1

ˆ ˆ ˆ(0) (0) (0) 0.01


= = =W W W  

and (0) 0 = . 

The simulation results for this case are shown in Figures 1–6. Figures 1 and 2 give 

the curves of the tracking performance and the tracking error 1e . It can be seen from 

Figure 1 that the system (86) can obtain a good tracking performance in finite time, alt-

hough the system suffers from the unknown dead-zone fault. From Figure 2, we can see 

that the tracking error can converge to a small neighborhood of zero in finite time under 

the proposed control law. The results of these two figures also further verify the validity 

of the designed control law. Furthermore, the trajectories of the state variables 1x , 2x  

and 3x  are displayed in Figure 3, the curves of the control law ( )u t  and adaptive laws 

ˆ
iW  and ˆ

i  ( 1, 2,3i = ) are shown in Figures 4–6. Noting Figures 2–6, the signals of the 

closed-loop system are bounded in finite time, which shows the validity of the theoretical 

analysis. 

 

Figure 1. Curves of tracking performance. 

0 2 4 6 8 10 12 14 16 18 20
-3

-2

-1

0

1

2

3

Time(s)

O
u

tp
u

t 
x 1

 a
n

d
 r

e
fe

re
n

c
e

 s
ig

n
a

l 
y d

 

 

y
d

x
1

Figure 1. Curves of tracking performance.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 2. Tracking error 1e . 

 

Figure 3. System states 1x , 2x  and 3x . 

 

Figure 4. Control law ( )u t . 

0 2 4 6 8 10 12 14 16 18 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

T
ra

c
k
in

g
 e

rr
o

r 
e 1

 

 

e
1

0 5 10 15 20
-4

-2

0

2

4

Time(s)

 

 

x
1

0 5 10 15 20
-10

-5

0

5

10

Time(s)

 

 

x
2

0 2 4 6 8 10 12 14 16 18 20
-500

0

500

Time(s)

 

 

x
3

0 2 4 6 8 10 12 14 16 18 20
-6,000

-4,000

-2,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Time(s)

C
o

n
tr

o
l 
la

w
 u

 

 

u

6.2 6.25 6.3 6.35 6.4

-50

0

50

100

 

 

Figure 2. Tracking error e1.

Fractal Fract. 2022, 6, x FOR PEER REVIEW 16 of 23 
 

 

 

Figure 2. Tracking error 1e . 

 

Figure 3. System states 1x , 2x  and 3x . 

 

Figure 4. Control law ( )u t . 

0 2 4 6 8 10 12 14 16 18 20
-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(s)

T
ra

c
k
in

g
 e

rr
o

r 
e 1

 

 

e
1

0 5 10 15 20
-4

-2

0

2

4

Time(s)

 

 

x
1

0 5 10 15 20
-10

-5

0

5

10

Time(s)

 

 

x
2

0 2 4 6 8 10 12 14 16 18 20
-500

0

500

Time(s)

 

 

x
3

0 2 4 6 8 10 12 14 16 18 20
-6,000

-4,000

-2,000

0

2,000

4,000

6,000

8,000

10,000

12,000

Time(s)

C
o

n
tr

o
l 
la

w
 u

 

 

u

6.2 6.25 6.3 6.35 6.4

-50

0

50

100

 

 

Figure 3. System states x1, x2 and x3.
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Case 2: Consider the uncertain fractional-order Arneodo system as [49]

Dα
t x1 = g1x2 + f1 ++γT

1 ϕ1
Dα

t x2 = g2x3 + f2 + γT
2 ϕ2

Dα
t x3 = −q1x1 − q2x2 − q3x3 − q4x3

1 + g3uF(t) + f3 + γT
3 ϕ3

y = x1

(87)

If f1 = f2 = f3 = 0, γT
1 ϕ1 = γT

2 ϕ2 = γT
3 ϕ3 = 0, uF(t) = 0 and α = 0.98, g1 = g2 = 1,

q1 = −5.5, q2 = 3.5, q3 = 0.8, q4 = −1.0, the initial conditions are considered to be
x1(0) = −0.2, x2(0) = 0.5, and x3(0) = 0.2. The system (87) will appear to have a chaotic
phenomenon, as shown in Figure 7.
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Figure 7. Phrase plots of x1, x2, and x3.

In system (87), let g3 = 1.2 sin x1 + 2, f1 = −x1e−10x2 , f2 = −2.5x2 cos x3,
f3 = −x1 sin(x3), γ1 = γ2 = γ3 = [0.5, 1]T , ϕ1 = [− sin x1, 0]T , ϕ2 = [0,− sin(x1x2)]

T ,
and ϕ3 = [3x2,−2x3]

T ; the initial states are x1(0) = 0.5, x2(0) = 0.25 and x3(0) = 0.1. The
parameters of the dead-zone fault model, the reference signal, and the simulation time are
consistent with Case 1.

The RBF neural network is applied to approximate the unknown nonlinear functions
f1, f2 and f3. Since there are only two variables in functions f1, f2, and f3, the node number
for each RBF neural network is chosen to be 9 with the centers of the basis function ιi
(i = 1, · · · , 9) evenly spaced in [−8, 8]× [−8, 8] and the width being } = 4.

The other design parameters are ϑ = 0.01, β = 0.95, λ1 = 10, λ2 = 5.5, λ3 = 7.5,
`1 = 2.5, `2 = 1.5, `3 = 2.0, c1 = 25, c2 = 18, c3 = 1.5, A1 = 0.9, A2 = 1.2, A3 = 0.2,
η1 = 0.5, η2 = 2.5, η3 = 3.0, B1 = 2.2, B2 = 1.6, B3 = 0.5, δ1 = 0.7, δ2 = 1.5, δ3 = 2.1,
ε∗1 = 0.5, ε∗2 = 0.7, and ε∗3 = 1.0. The parameters selection of the second-order command
filter and the initial conditions of the adaptive laws are the same as those described
for Case 1.

The simulation results of this case are displayed in Figures 8–13. Figure 8 shows the
curves of the system output x1 and the reference signal yd. It is not difficult to see from
Figure 8 that the system (87) can obtain a good tracking performance by applying the
proposed control law. The tracking error curve is given in Figure 9. One observes that
the tracking error e1 can converge to a small neighborhood of zero in finite time. From
Figures 8 and 9, although the system (87) is affected by unknown dead zone fault, the
tracking performance of the system can be guaranteed under the designed control law.
This also proves the effectiveness of the proposed control law from another perspective.
Furthermore, the curves of state variables x1, x2 and x3 are given in Figure 10, and the
curves of the control law u(t) and adaptive laws

∥∥Ŵi
∥∥ and ‖γ̂i‖ (i = 1, 2, 3) are depicted in

Figures 11–13. It can be found that the signals of the closed-loop system shown in these
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figures are bounded, which verifies the validity of the theoretical analysis. However, it is
not difficult to observe in Figures 9–11 that there are oscillations in these simulation results.
In fact, considering the existence of unknown dead-zone faults and uncertain dynamics in
the system, this makes it necessary to make a reasonable trade-off between system tracking
performance and control output.
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Figure 8. Curves of the tracking performance.
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Figure 9. Tracking error e1.
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Figure 10. System states x1, x2, and x3.
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5. Conclusions

The adaptive finite-time tracking control for uncertain fractional-order systems with
unknown dead-zone fault was considered in this paper. The fractional-order command
filter was applied to avoid the computational complexity problem existing in conventional
recursive procedures, and the neural network approximator was used to approximate the
unknown uncertain nonlinear functions. Through the application of the Nussbaum gain
function technique, the adaptive neural network finite-time control law was developed
to solve the finite-time control problem of the given fractional-order systems. It has been
proven that the desinged control law can not only ensure that all signals of the closed-loop
system are bounded in finite time but can also ensure that the tracking error converges
to a small neighborhood of the origin in finite time. However, it should be pointed out
that the control law presented in this paper is only suitable for the systems with known
state gains and measurable states. When the nonlinear system under consideration has
unknown state gains and unmeasurable states, the proposed control law will not work
effectively. Therefore, one of our future research directions is to design feasible control
laws to realize the adaptive finite-time control of uncertain fractional-order systems with
unknown control gain and partially unmeasurable states.
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