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Abstract: This article studies a biological population model in the context of a fractional Caputo-
Fabrizio operator using double Laplace transform combined with the Adomian method. The condi-
tions for the existence and uniqueness of solution of the problem under consideration is established
with the use of the Banach principle and some theorems from fixed point theory. Furthermore, the con-
vergence analysis is presented. For the accuracy and validation of the technique, some applications
are presented. The numerical simulations present the obtained approximate solutions with a variety
of fractional orders. From the numerical simulations, it is observed that when the fractional order
is large, then the population density is also large; on the other hand, population density decreases
with the decrease in the fractional order. The obtained results reveal that the considered technique is
suitable and highly accurate in terms of the cost of computing, and can be used to analyze a wide
range of complex non-linear fractional differential equations.

Keywords: biological model; caputo-fabrizio operator; double laplace transform

1. Introduction

For a long time, the theory of differential equations has been employed as a promis-
ing approach in several disciplines of science, engineering, and technology. Differential
equations specifically, partial differential equations of various orders emerge in many
realistic conditions, such as Brownian motion, fluid dynamic systems, populace increase,
and numerous challenges to highways and gas dynamics [1,2]. The classical operators are
local and do not have the property to preserve memory about the past. Due to this, these
operators were not applicable to model certain real-world phenomena such as parabolic
equations, groundwater flow equations, etc. On the other hand, non-integer order operators
are non-local and memory preserving.

Over the last few decades, fractional calculus (FC) has been frequently considered
in many areas, such as astronomy, viscoelasticity, mathematical biology, electrochemistry,
signal processing, physics, economics, and social sciences [3–6]. It has been successfully
used as a promising area to model real-world phenomena [7,8]. The fractional-order
derivatives and integrals play a vital role in analyzing a specific problem in an interval,
which is an advantage over classical derivatives and integrals. Various fractional operators,
which include Riemann–Liouville, Hilfer, and Caputo, have been developed in FC to
study real-world systems that are defined by convolution of the power-law with singular
kernels [3,4]. This idea was further generalized to exponential decay type kernel which is
the convolution of the exponential law with non-local kernels [9]. Since the Mittag–Leffler

Fractal Fract. 2022, 6, 446. https://doi.org/10.3390/fractalfract6080446 https://www.mdpi.com/journal/fractalfract

https://doi.org/10.3390/fractalfract6080446
https://doi.org/10.3390/fractalfract6080446
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com
https://doi.org/10.3390/fractalfract6080446
https://www.mdpi.com/journal/fractalfract
https://www.mdpi.com/article/10.3390/fractalfract6080446?type=check_update&version=1


Fractal Fract. 2022, 6, 446 2 of 15

function is the generalized version of the exponential function, so further generalization
of the fractional operators was made using the Mittag–Leffler kernel [10], which is non-
singular and non-local in nature. Further study revealed a new type of fractional operator,
combining Caputo and Proportional derivatives [11]. The aforesaid operators have a lot
of advantages because due to the complexities of fractional-order nonlinear differential
equations (FONDEs) integer-order operators cannot handle most of the problems to obtain
explicit solutions [12]. These operators play a significant role in analyzing different types of
FONDEs. Motivated by the above literature, we investigate the following biological model
of fractional order with the CF operator [13,14].

CFDα
t u(x, y, t) = (D2

x + D2
y)u

2 + kua − kru(a+b),

t > 0, x, y ∈ R, 0 ≤ α ≤ 1

u(x, y, 0) = f0.

(1)

The authors in [15], presented the numerical solution of fractional order biological
model using Caputo derivative in 2009. In 2012, D. Kumar et al. provided an algorithm of
the Homotopy analysis method using Caputo fractional derivative [16].

In the fractional order derivatives, the most famous two kernels are singular and
non-singular kernels. The prior one cannot model certain phenomena very effectively,
that is why the new non-singular kernel was presented in [9]. This operator was found
to be very efficient in predicting the dynamics of a biological model, for instance for the
benefits of the aforesaid operator we can study the research works [17,18]. Inspired by the
previous works, in this article we examine a general fractional-order biological population
model in the sense of CF operator. We apply fixed point theorems to achieve existence and
unique results. For the analytical solution of the considered model (1), we use the double
Laplace decomposition method (DLDM), which is the combination of the double Laplace
transform and decomposition method. We provide numerical examples for the accuracy
and validation of our results.

Adomian proposed the Adomian decomposition method in 1980, which is an excellent
approach for finding numerical and explicit solutions to a wide range of differential equa-
tions reflecting physical issues. This approach is effective for both initial and boundary
value issues, PDEs and ODEs, linear, nonlinear equations, and also for stochastic systems.
This approach does not require any perturbation or linearizations. ADM contributed signif-
icantly to the analytical solutions of nonlinear equations and the solution of FNDEs. We
use the Double Laplace transform approach in this research work, which is a strong tool
in engineering and mathematical analysis. We use this approach to transform fractions
into algebraic equations, which could then be solved using DLADM (see [19,20]). The only
limitation of the considered method is that it requires some space and analytical work
which is a little bit time consuming.

The article is organized as follows. In Section 2 some definitions of the technique and
fractional calculus are presented. Section 3 presents the existence and unique results of the
proposed model. Section 4 presents the convergence analysis of the technique. In Section 5,
the applications of the technique are presented while in Section 6 iterative examples are
included. In Section 6.1, the numerical discussion is presented, while Section 7 concludes
the article.

2. Preliminaries

Here we include some definitions regarding this article.

Definition 1 ([9]). Consider that Θ ∈ H1[0, T] is a function, such that 0 < T, δ ∈ (0, 1], then
the definition of CFFD is

CFDδ(Θ(t)) =
M(δ)

(1− δ)

∫ t

0
Θ′(t) exp

[
− δ

t− ρ

1− δ

]
dρ,
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where M(δ) is M(δ) = 2
2−δ , 0 < δ ≤ 1. Further M(0) = 1. If Θ /∈ in H1(0, T), then the CF

operator is
CFDδ(Θ(t)) =

M(δ)

(1− δ)

∫ t

0
(Θ(t)−Θ(ρ)) exp

[
− δ

t− ρ

1− δ

]
dρ.

Definition 2 ([9]). Consider δ ∈ (0, 1], then CF integral with the order δ of Θ is

CF Iδ[Θ(t)] = GΘ(t) + Ḡ
∫ t

0
Θ(ρ)dρ, t ≥ 0.

When δ = 1, one can obtain classical integral of Θ, here

G =
(1− δ)

M(δ)
, Ḡ =

δ

M(δ)
.

Definition 3 ([21]). Let φ(x, t) be a function and for x, t > 0 defined in the xt-plane, then the
DLT of φ(x, t) is presented as

LxLt[Θ(x, t)] =
∫ ∞

0
e−px

∫ ∞

0
e−st Θ(x, t) dt dx,

where, p and s are complex numbers.

Definition 4. The DLT of CF operator is

LxLt

{
CFDδ+n

x Θ(x, t)
}
=

M(δ)

p + (1− p)δ

[
pn+1 Θ(p, s)−

n

∑
k=0

pn−kLt

{
∂kΘ(0, t)

∂xk

}]
,

and

LxLt

{
CFDδ+m

t Θ(x, t)
}
=

M(δ)

s + (1− s)δ

[
sm+1 Θ(p, s)−

m

∑
k=0

sm−kLx

{
∂kΘ(x, 0)

∂tk

}]
,

where, n = [δ] + 1, m = [δ] + 1.

Lemma 1 ([22]).

CFDδ
t u(x, y, t) = (D2

x + D2
y)u

2 + kru(a+b)kua, t > 0, x, y ∈ R, 0 ≤ δ ≤ 1

u(x, y, 0) = f0 ∈ R,

in the terms of the following integral the above equation has a solution as

u(t) = u0 +
2(1− δ)

(2− δ)M(δ)
(E(t, ω(t))− E(0, ω(0))) +

(2δ)

(2− ζ)M(δ)

∫ t

0
f (τ, u(τ))dτ.

3. Existence Uniqueness of Results for Fractional Order Biological Model (1)

To present the results, we provide the following notions and lemma.
Consider ϑ = [0, 1] and C(ϑ) represents the space containing function which is contin-

uous on ϑ. Furthermore, consider set B = Q(t)/Q(t) ∈ C(ϑ) with ||Q(t)||b ≤ maxt∈ϑ|Q(t)|
represents Banach space. By Lemma 1, model (1) in integral form is

Q(t) = Q0 +
2(1− δ)

(2− δ)M(δ)
(E(t, ω(t))− E(0, ω(0))) +

(2δ)

(2− δ)M(δ)

∫ t

0
E(ξ,Q(ξ))dξ.
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Let suppose an operator T : B→ B defined as

TQ(t) = Q0 +
2(1− δ)

(2− δ)M(δ)
(E(t, ω(t))− E(0, ω(0))) +

(2δ)

(2− δ)M(δ)

∫ t

0
E(ξ,Q(ξ))dξ.

then operator T has same fixed-point (FP) as (1).

Theorem 1. Suppose that f : ϑ×R → R is continuous. Furthermore, consider in the following
at-least one is satisfied.

(H1) Let g(t) ∈ L[0, 1] be the exists function which is non-negative, 3

|E(t, x)| ≤ h(t) + c0|x|ξ , here, c0 ≥ 0, 0 < ξ < 1.

(H2) The function E satisfies |E(t, x)| ≤ c0|x|ξ , where c0 > 0, ξ > 1. Then model (1) has
one solution.

Proof. To prove the results, we use the Schauder FP theorem. To achieve our goal consider
that (H1) is satisfied. Let us consider G = {Q(t)|Q(t) ∈ B, ‖Q(t)‖B ≤ k, t ∈ ϑ}, where

k ≥ max (2Ac0)
1

1−ξ , 2l and l = maxy∈ϑ

(
Q0 +

4(1−δ)
(2−δ)M(δ)g(t) +

(2δ)
(2−δ)M(δ)

∫ t
0 |g(t)|dt

)
. Clearly

in B, G is a ball. Furthermore, we prove that T : G → G.
∀ u ∈ G we obtain

|TQ(t)| = |Q0 +
2(1− δ)

(2− δ)M(δ)
(E(t, ω(t))− E(0, ω(0))) +

(2δ)

(2− δ)M(δ)

∫ t

0
E(t,Q(t))dt|

≤ Q0 +
2(1− δ)

(2− δ)M(δ)
|E(t, ω(t))|+ 2(1− δ)

(2− δ)M(δ)
|E(0, ω(0))|+ (2δ)

(2− δ)M(δ)

∫ t

0
E(t,Q(t))dt

≤ Q0 +
4(1− δ)

(2− δ)M(δ)

(
g(t) + c0kξ

)
+

(2δ)

(2− δ)M(δ)

∫ t

0
(g(t) + c0kξ)dt

≤ Q0 +
4(1− δ)

(2− δ)M(δ)

(
g(t) + c0kξ

)
+

2δc0kξ t
(2− δ)M(δ)

+
(2δ)

(2− δ)M(δ)

∫ t

0
(g(t))dt

≤ Q0 +
4(1− δ)

(2− δ)M(δ)
g(t) +

(2δ)

(2− δ)M(δ)

∫ t

0
(g(t))dt +

(
4(1− δ)

(2− δ)M(δ)
+

2δt
(2− δ)M(δ)

)
c0kξ

≤ Q0 +
4(1− δ)

(2− δ)M(δ)
g(t) +

(2δ)

(2− δ)M(δ)

∫ t

0
(g(t))dt +

(
4(1− δ)

(2− δ)M(δ)
+

2c0kξ

M(δ)

)
.

Therefore

||TQ(t)||B = max
t∈ϑ
|TQ(t)| ≤ l +

2c0kξ

M(δ)
= l + Ac0kξ ≤ k

2
+

k
2
= k.

Hence TQ(t) is continuous on ϑ.
Next, suppose that (H2) is also satisfied. Selecting 0 ≤ k ≤ ( 1

Ac0
)( 1

ξ−1 ). Similarly, on
repeating the procedure as used above, we obtain

||TQ(t)||B ≤ Ac0kξ ≤ k.

As a result, we obtain T : G → G, clearly, that the operator T is continuous as a result of the
continuity E.

Next we show that the operator T is completely continuous. Let R = maxt∈ϑ |E(t, ω(t))|,
for any ϑ ∈ G. Let t1, t2 ∈ ϑ such that t1 < t2.
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Furthermore, let U1 = 2(1−δ)
(2−δ)M(δ)

and U2 = 2δ
(2−δ)M(δ)

, we obtain

| TE(t2)− TE(t1) |=| Q0 + U1[Q(t2, E(t2))−Q(0, ω(0))] + U2

∫ t2

0
f (t, u(t))dt

−Q0 −U1[Q(t1, E(t1))−Q(0, ω(0))] + U2

∫ t2

0
Q(t, u(t))dt |

=| U1[Q(t2, E(t2))−Q(t1, E(t1))] + U2

∫ t2

t1

E(t, u(t))dt |

≤ U1 | Q(t2, E(t2)) | +U1 | Q(t1, E(t1)) | +U2

∫ t2

t1

| Q(t, u(t)) | dt

≤ 2RU1 + RU2

∫ t2

t1

dt = R(2U1 + U2(t2 − t1)).

According to uniform continuity of the function (t2 − t1) on interval ϑ, we obtain that
TG is equi continuous set. It is also observed that the function is uniformly bounded and
TG ⊆ G, thus T is continuous completely. Therefore, using the Schauder FP theorem, ∃ a
solution for Equation (1) in the set G.

Corollary 1. Consider a function Q is bounded continuous on ϑ × R, then Equation (1) has
a solution.

Proof. As Q is continuous as well as bounded on ϑ × R, ∃ L > 0, satisfying |Q| < L.
Consider h(t) = L, c0 = 0 in (H1) of Theorem 1, then the model (1) has a solution.

Next we use the Banach-contraction principle to establish uniqueness results for
solutions to (1).

Theorem 2. Consider a function that Q : ϑ × R → R is continuous, and also satisfies the
following conditions.

(H3) Consider a positive function h(t) ∈ L[0, 1] exists, 3

| Q(t, x)−Q(t, y) |≤ h | x− y |, t ∈ [0, 1],

also function Q satisfying Q(t, 0) = 0
(H4) Consider that ξ = maxt∈ϑ | 2(1−δ)

(2−δ)M(δ)
h(t) + (2δ)

(2−δ)M(δ)

∫ t
0 |h(t)|dt |< 1, then model (1)

has one solution.

Proof. Let the operator T can be represented as

TQ(t) = φ +
2(1− δ)

(2− δ)M(δ)
E(t, ω(t)) +

(2δ)

(2− δ)M(δ)

∫ t

0
|E(t, u(t))|dt,

where φ = Q0 − 2(1−δ)
(2−δ)M(δ)

E(0, ω(0)). For Q(t) ∈ B, we obtain

| TQ(t) |=| φ +
2(1− δ)

(2− δ)M(δ)
E(t, ω(t)) +

(2δ)

(2− δ)M(δ)

∫ t

0
| E(t, u(t)) | dt,

≤| φ | + | 2(1− δ)

(2− δ)M(δ)
E(t, ω(t))− E(t, 0) | + | (2δ)

(2− δ)M(δ)

∫ t

0
| E(t, u(t)) | dt

≤| φ | + 2(1− δ)

(2− δ)M(δ)
h(t) | Q(t) | + (2δ)

(2− δ)M(δ)

∫ t

0
h(t) | u(t)dt

≤| φ | +
(

2(1− δ)

(2− δ)M(δ)
h(t) +

(2δ)

(2− δ)M(δ)

∫ t

0
h(t)dt

)
||u||,
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we have

‖ TQ(t) ‖B≤| φ | +
(

2(1− δ)

(2− δ)M(δ)
h(t) +

(2δ)

(2− δ)M(δ)

∫ t

0
h(t)dt

)
||u||

≤| φ | +ξ ‖ u ‖≤‖ u ‖ .

Let Q(t), ν(t) ∈ B we have

| TQ(t)− Tν(t) |=| Φ +
2(1− δ)

(2− δ)M(δ)
E(t, ω(t)) +

(2δ)

(2− δ)M(δ)

∫ t

0
|E(t,Q(t))|dt

−Φ− 2(1− δ)

(2− δ)M(δ)
f (t, v(t))− (2δ)

(2− δ)M(δ)

∫ t

0
|E(t, v(t))dt |

≤ 2(1− δ)

(2− δ)M(δ)
| E(t, ω(t))− f (t, v(t)) | + (2δ)

(2− δ)M(δ)

∫ t

0
| E(t,Q(t))− (t, v(t))dt |

≤ 2(1− δ)

(2− δ)M(δ)
| Q(t)− v(t) | + (2δ)

(2− δ)M(δ)

∫ t

0
| Q(t)− v(t) | dt

≤
(

2(1− δ)

(2− δ)M(δ)
h(t) +

(2δ)

(2− δ)M(δ)

∫ t

0
| h(t)dt

)
| Q(t)− v(t) |

≤ Φ||Q(t)− v(t)|| ≤ ||Q(t)− v(t)||

Finally, in view of ξ < 1, T is contraction. As a result, T has only one fixed point according
to Banach contraction principle.

4. Convergence of MDLDM for Considered System

In this part, we consider the convergence of the MDLDM for the given problem
Equation (1). To do this, we use Equation (1) in the operator as

T (u) = Dt(u) = (D2
x + D2

y)u
2 + kua − kru(a+b). (2)

Let H ∈ L2(T ) ∀ u ∈ H, where H = L2
u

[
(m, n)× [0, T]

]
[23], such that

u :=
[
(m, n)× [0, T]

]
→ R3,

with m� 0 and B =
[
(m, n)× [0, T]

]
where ||u||2H =

∫
B u2 dx dy dt, then

L−1
x L−1

t {LxLt{u(x, y, t)}} < ∞.

Now to show T be semi-continuous [23], we take the following assumption as

Assumption 1. H1 For σ > 0, ∃ a constant β > 0, and ∀ u, v ∈ H with k||u + v|| ≤ σ ,
we obtain ‖T (u)− T (v)‖ ≤ β ||u− v||, ∀ u, vs. ∈ H.

Theorem 3 ([24] (Convergence condition)). The considered problem is tested in Equation (1)
without initial and boundary conditions converging to a particular solution.

Using the Assumption 1 for operator T (φ) in Equation (1), 3

T (u)− T (v) = (D2
x + D2

y)u
2 + kua − kru(a+b) − [(D2

x + D2
y)v

2 + kva − krv(a+b)],

= D2
x(u

2 − v2) + D2
y(u

2 − v2) + k(ua − va)− kr(ua+b − va+b)

On taking the norm
‖T (u)− T (v)‖ ≤ ‖D2

x(u + v)(u− v)‖+ ‖D2
y(u + v)(u− v)‖+ k‖ua − va‖ − kr‖ua+b − va+b‖,
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by using the conditions on the operators D2
x and D2

y in H, 3 for η1, η2 > 0, and if a = b = 1
we can define

D2
x(u + v)(u− v) ≤ η1||u− v||, D2

y(u + v)(u− v) ≤ η2||u− v||.

Therefore,

‖T (u)− T (v)‖ ≤ η1||u− v||+ η2||u− v||+ k‖u− v‖ − σr‖u− v‖,

‖T (u)− T (v)‖ ≤ (η1 + η2 + k− σr)‖u− v‖,

taking β = (η1 + η2 + k− σr) > 0, we can write

‖T (u)− T (v)‖ ≤ β‖u− v‖.

Hence assumption 1 is satisfied. Thus, the proposed method is convergent.

5. Applications

Here, we present an algorithm to study the analytical solution of a fractional-order
Biological population model.

Double Laplace Adomian Decomposition Method

Taking double Laplace transform (DLT) on both side of the model (1) as,

LxLt[Dδ
t u(x, y, t)] = LxLt[(D2

x + D2
y)u

2 + kru(a+b) + kua], (3)

applying DLT and using initial value

s
s + δ(1− s)

[LxLtu(x, y, t)−Lxu(x, y, 0)] = LxLt[(D2
x + D2

y)u
2] + krLxLt(u(a+b)) + kLxLt(ua),

LxLt[u(x, y, t)] = u(x, y, 0) +
s + δ(1− s)

s

(
LxLt[(D2

x + D2
y)u

2] + krLxLt(u(a+b)) + kLxLt(ua)
)

= Lx f0 +
s + δ(1− s)

s

(
LxLt[(D2

x + D2
y)u

2] + krLxLt(u(a+b)) + kLxLt(ua)
)

(4)

Since the considered model (1), contain non-linear terms u2, u(a+b), (a + b) 6= 0, ua


u(x, y, t) =

∞

∑
m=0

um(x, y, t), u2(x, y, t) =
∞

∑
m=0

Pm,

u(a+b)(x, y, t) =
∞

∑
m=0

Qm.
(5)

After decomposing the non-linear terms, (4) can be written as

LxLt

[
∞

∑
m=0

um(x, y, t)

]
= f0(x, y) +

s + δ(1− s)
s

(
LxLt[(D2

x + D2
y)

∞

∑
m=0

Pm]

+krLxLt(
∞

∑
m=0

Qm) + kLxLt(
∞

∑
m=0

Tm)

)
,

(6)

comparing terms both side, we obtain
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LxLt(Q0(x, y, 0)) = Lx f0(x, y)

LxLt(u1(x, y, t)) =
s + δ(1− s)

s
LxLt[(D2

x + D2
y)P0] + krLxLt(Q0) + kLxLt(T0),

LxLt(u2(x, y, t)) =
s + δ(1− s)

s
LxLt[(D2

x + D2
y)P1] + krLxLt(Q1) + kLxLt(T1),

LxLt(u3(x, y, t)) =
s + δ(1− s)

s
LxLt[(D2

x + D2
y)P2] + krLxLt(Q2) + kLxLt(T2)

...

LxLt(um+1(x, y, t)) =
s + δ(1− s)

s
LxLt[(D2

x + D2
y)Pm] + krLxLt(Qm) + kLxLt(Tm).

(7)

Taking inverse DLT of (7), both side we obtain

Q0(x, y, t) = f0(x, y),

u1(x, y, t) =
(
(D2

x + D2
y)P0 + krQ0 + T0

)
(1 + ξ(t− 1))

u2(x, y, t) =
(
(D2

x + D2
y)P1 + krQ1 + T1

)(
1 + ξ2(t− 1)

)
u3(x, y, t) =

(
(D2

x + D2
y)P2 + krQ2 + T2

)(
1 + ξ3(t− 1)

)
...

um+1(x, y, t) =
(
(D2

x + D2
y)Pm + krQm + Tm

)(
1 + ξm+1(t− 1)

)
.

(8)

After simplification we obtain the values of Q0, u1, u2, u3. Similarly in (8), we can obtain

u(x, y, t) = u0 + u1 + u2 + u3 + . . . ,

6. Iterative Examples

In this section, we use some examples for the validation of the proposed method.

Example 1 ([15]). Our first example is

Dδ
t u(x, y, t) =

(
D2

x + D2
y

)
u(x, y, t) + ku(x, y, t) (9)

with initial condition u(x, y, 0) =
√

xy

Applying DLT on both side, we obtain

LxLt[Dδ
t u(x, y, t)] = LxLt[

(
D2

x + D2
y

)
u(x, y, t) + ku(x, y, t)]

after calculation we obtain

LxLt(δ(x, y, t)) = Lx f0(x, y) +
s + δ(1− s)

s
LxLt[(D2

x + D2
y)u + ku],

Comparing both sides

LxLt(Q0(x, y, 0)) = Lx f0(x, y)LxLt(u1) =
s + δ(1− s)

s
LxLt[(D2

x + D2
y)Q0 + kQ0],

LxLt(u2) =
s + δ(1− s)

s
LxLt[(D2

x + D2
y)u1 + ku1],

LxLt(u3) =
s + δ(1− s)

s
LxLt[(D2

x + D2
y)u2 + ku2]
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After applying inverse DLT, we obtain

u(x, y, 0) =
√

xy,

u1 = k
√

xy(1 + ξ(t− 1))

u2 = k2√xy(1 + ξ2(t− 1))

u3 = k3√xy(1 + ξ3(t− 1))

Thus, the series solution of (9),

u(x, y, t) = Q0 + u1 + u2 + u3 + . . .+

u(x, y, t) =
√

xy + k
√

xy(1 + ξ(t− 1)) + k2√xy(1 + ξ2(t− 1)) + . . .
(10)

Example 2. Let us suppose the following fractional order biological model

Dδ
t (x, y, t) =

(
D2

x + D2
y

)
u(x, y, t)− ru2 + u. (11)

with given subsidiary condition [15] u(x, y, 0) = exp
(

1
2
√
( r

2 )(x + y)
)

. Using DLT

LxLt(Dδ
t u(x, y, t)) = LxLt[

(
D2

x + D2
y

)
u− ru2 + u],

u(x, y, t) =
s + δ(1− s)

s
LxLt[

(
D2

x + D2
y

)
u− ru2 + u],

Q0 = exp
(

1
2
√
(

r
2
)(x + y)

)
,

u1 = exp
(

1
2
√
(

r
2
)(x + y)

)
(1 + ξ(t− 1)),

u2 = exp
(

1
2
√
(

r
2
)(x + y)

)
(1 + ξ2(t− 1)),

u3 = exp
(

1
2
√
(

r
2
)(x + y)

)
(1 + ξ3(t− 1)).

Thus, the series solution of (11),

u(x, y, t) = u0 + u1 + u2 + u3 + . . . (12)

6.1. Numerical Plots and Comparison Tables

In this section, we present the numerical illustrations of the approximate solutions
Equations (10) and (12) of the iterative examples considered on proposed model. For the
graphical representations we consider the parameters as k = 3, r = 50 and the fractional
orders are considered to be ξ = 1, 0.9, 0.8 and 0.7. In each of the following figures the
fractional orders are considered as Figure 1a–d. Figures 1 and 2 shows the dynamics of the
analytical approximate solution Equation (10). Similarly, Figure 3 depicts the dynamics in
the behaviors of the solutions Equations (10) and (12) with x = 3 and x = 4 respectively
and varying y, t. Furthermore, Figure 4 represents the changes that occur in the behaviors
of the solutions Equation (12) respectively with t = 10 and varying the variables x, y. Here
we see that when fractional order is large then the population density is also large, on the
other hand population density decreases with the decrease in the fractional order.

Figure 5 shows the dynamical behavior of the solution Equation (12) with fixed y = 4
and y = 2, respectively, and varying the other variables x, t. Furthermore, Figures 3 and 6
depicts the dynamics in the behaviors of the solutions Equations (10) and (12) with x = 3
and x = 4, respectively, and varying y, t. We observed that the considered scheme is
rapidly convergent and is highly accurate.
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It is observed that at lower fractional orders, the population density decreases, as
can be seen in the figure. The considered operator shows an astonishing impact on the
dynamics of the considered population model. The simulations show that the double
Laplace transform is a powerful method that can be used to study such complexities with
ease, without perturbing or dealing with the long-lasting polynomials.
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Figure 1. The numerical simulations of Equation (10) with (a) δ = 1 , k = 3 (b) δ = 0.9, k = 3
(c) δ = 0.8, k = 3 (d) δ = 0.7, k = 3 and t = 10.
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Figure 2. The numerical simulations of Equation (10) with (a) δ = 1, k = 3 (b) δ = 0.9, k = 3 (c) δ =

0.8, k = 3 (d) δ = 0.7, k = 3 and y = 4.
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Figure 3. The numerical simulations of Equation (10) with (a) δ = 1, k = 3 (b) δ = 0.9, k = 3 (c) δ =

0.8, k = 3 (d) δ = 0.7, k = 3 and x = 3.
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Figure 4. The numerical simulations of Equation (12) with (a) δ = 1, r = 50 (b) δ = 0.9, r =

50 (c) δ = 0.8, r = 50 (d) δ = 0.7, r = 50 and t = 10.
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Figure 5. The numerical simulations of Equation (12) with (a) δ = 1, r = 50 (b) δ = 0.9, r =

50 (c) δ = 0.8, r = 50 (d) δ = 0.7, r = 50 and y = 2.
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Figure 6. The numerical simulations of Equation (12) with (a) δ = 1, r = 50 (b) δ = 0.9, r =

50 (c) δ = 0.8, r = 50 (d) δ = 0.7, r = 50 and x = 4.

Next, we present the comparison table between the exact and the approximate series
solutions of the considered iterative examples in the sense of the CF operator. We considered
k = 2 for Table 1, fractional-order as 1 and different values of variables x, y, t. Similarly, we
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supposed r = 50 for Table 2, fractional-order as 1 and various values of variables x, y, t.
A good agreement is observed between the exact and approximate solutions which can be
seen in the table.

Table 1. Comparison table between the exact [15] and the approximate series solution Equation (10).

(x, y, t) Exact Approximate Error

(1, 1, 0) 1 1.0001 9.8000× 10−5

(1, 1, 1) 31 31 0
(2, 1, 2) 86.2670 86.2670 1.3859× 10−4

(2, 2, 2) 122 121.9998 1.9600× 10−4

(3, 2, 1) 75.9342 75.9342 0
(5, 2, 0) 3.1623 3.1626 3.0990× 10−4

(3, 5, 1) 120.0625 120.0625 0
(7, 5, 3) 538.3633 538.3621 0.0012
(1, 3, 0) 1.7321 1.7322 1.6974× 10−4

(10, 10, 1) 310 310 0
(10, 10, 0) 10 10.0010 9.8000× 10−4

(9, 2, 3) 386.0803 386.0795 8.3156× 10−4

(4, 4, 1) 124 124 0
(4, 8, 4) 684.4794 684.4777 0.0017
(8, 9, 5) 1.2813× 103 1.2813× 103 0.0033
(9, 8, 1) 263.0437 263.0437 0

(0.5, 1, 1) 21.9203 21.9203 0
(0.2, 1, 0) 0.4472 0.4473 4.3827× 10−5

(0.1, 0.1, 0) 0.1000 0.1000 9.8000× 10−6

Table 2. Comparison table between the exact [15] and the approximate series solution Equation (12).

(x, y, t) Exact Approximate Error

(−10,−10, 0) 3.7201× 10−44 3.7201× 10−44 3.7201× 10−52

(−10, −10, 1) 1.8600× 10−43 1.8600× 10−43 0
(−6, −6, 0) 8.7565× 10−27 8.7565× 10−27 8.7565× 10−35

(−6, −6, 1) 4.3783× 10−26 4.3783× 10−26 0
(0, −2, 2) 3.1780× 10−4 3.1780× 10−4 1.3620× 10−12

(0, 2, 2) 1.9824× 105 1.9824× 105 2.2026× 10−4

(−10, 0, 10) 7.9079× 10−21 7.9079× 10−21 1.7359× 10−29

(−10, 1, 10) 1.1736× 10−18 1.1736× 10−18 2.5763× 10−27

(−8, 0, 8) 1.4020× 10−16 1.4020× 10−16 2.9738× 10−25

(8, 1, 8) 2.0807× 10−14 2.0807× 10−14 4.4136× 10−23

(−2, 0, 2) 4.0860× 10−4 4.0860× 10−4 4.4948× 10−6

(2, 0, 2) 0.0606 0.0600 6.6709× 10−4

(−1, −1, 0) 4.5400× 10−5 4.5400× 10−5 4.4948× 10−6

(1, 1, 1) 1.1013× 105 1.1013× 105 0
(2, −2, 0) 1 1.0990 0.0990

(−3, −1, 2) 1.8550× 10−8 1.8550× 10−8 2.0406× 10−10

(0, −2, 1) 2.2700× 10−4 2.2700× 10−4 0
(2, 0, 0) 4.5400× 10−5 4.5400× 10−5 4.4948× 10−6

7. Conclusions

In this manuscript, we proposed a fractional-order biological population system. Us-
ing fixed point theorems, we effectively developed proofs for the existence uniqueness of
the considered model results. We obtained the numerical solutions of the fractional-order
model (1) using DLADM. Furthermore, the convergence analysis of the proposed model
with the considered method has been presented. From the numerical simulations, it is
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observed that when the fractional order is large then the population density is also large;
on the other hand, population density decreases with the decrease in the fractional order.
The error analysis shows that the technique approximate solution converges to the exact
solution very quickly. As a result, we observed that the discussed methodology has signifi-
cant advantages for obtaining analytical solutions for the FNDEs when compared to other
methods. From the obtained results, we concluded that the DLADM is capable of reducing
the volume of computational work as compared to other methods. The considered scheme
does not need much analytical study and converges easily to the exact solution. In the
future, we will suggest modifying the considered scheme of DLADM for the investigation
of nonlinear partial differential equations and some advanced problems in fluid dynamics
and elasticity dealing with integrals will be investigated in subsequent papers. Finally,
we state that the considered method is indeed trustworthy and applicable to all nonlinear
PDEs subject to initial condition.
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