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Abstract: The fractional mobile/immobile solute transport model has applications in a wide range of
phenomena such as ocean acoustic propagation and heat diffusion. The local radial basis functions
(RBFs) method have been applied to many physical and engineering problems because of its simplicity
in implementation and its superiority in solving different real-world problems easily. In this article,
we propose an efficient local RBFs method coupled with Laplace transform (LT) for approximating
the solution of fractional mobile/immobile solute transport model in the sense of Caputo derivative.
In our method, first, we employ the LT which reduces the problem to an equivalent time-independent
problem. The solution of the transformed problem is then approximated via the local RBF method
based on multiquadric kernels. Afterward, the desired solution is represented as a contour integral
in the left half complex along a smooth curve. The contour integral is then approximated via the
midpoint rule. The main advantage of the LT-RBFs method is the avoiding of time discretization
technique due which overcomes the time instability issues, second is its local nature which overcomes
the ill-conditioning of the differentiation matrices and the sensitivity of the shape parameter, since
the local RBFs method only considers the discretization points in each local domain around the
collocation point. Due to this, sparse and well-conditioned differentiation matrices are produced,
and third is the low computational cost. The convergence and stability of the numerical scheme are
discussed. Some test problems are performed in one and two dimensions to validate our numerical
scheme. To check the efficiency, accuracy, and efficacy of the scheme the 2D problems are solved in
complex domains. The numerical results confirm the stability and efficiency of the method.

Keywords: solute transport model; local RBFs method; Laplace transform; contour integration
method; Talbot’s contour; mid point rule

1. Introduction

In groundwater, streams, and rivers, the transportation of solutes is affected by physi-
cal characteristics or the heterogeneity of different regions. For a long time, solute trans-
portation has been a hot topic in theory and experimental study. In the recent past, the mo-
bile/immobile (MI) model has been successfully used. It should be emphasized that the
transportation model can describe the connectivity and heterogeneity of spatial charac-
teristics in a better way to transport solutes in the general network. MI method has been
widely praised by hydrologists who study water transport in unsaturated and saturated
regions [1].
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The advection-dispersion equation (ADE) characterizes the transport of solutes in
porous media. However, according to reports, the ADE model faces problems in inter-
preting the transport process in fractured, homogeneous, and even heterogeneous media.
In [2], research shows that the MI model is better than ADE in both fractured and porous
media. More details can be found in [1,3–6]. Fractional differential equations have become
very useful to model numerous phenomena in different areas such as economics, chemistry,
physics, acoustics, biology, viscoelasticity, engineering, and electromagnetics [6–13]. It is
worth to mention that the main aspect of arbitrary order derivative is the the memory effect,
i.e., the future state of a physical system depends on the present as well as past states. It
is natural to use fractional derivatives while modeling physical or dynamical systems in
various applications such as viscoelastic materials, frequency-dependent damping behavior
of materials, and motion of a large thin plate in a Newtonian fluid, etc.

The fractional mobile-immobile advection-dispersion equation is achieved by re-
placement of first order derivative with fractional derivative in classical mobile-immobile
advection-dispersion equation [13]. Here we consider a fractional MI model of the form

β1Dtu(ξ̄, t) + β2Dα
t u(ξ̄, t)−Lu(ξ̄, t) = S(ξ̄, t), ξ̄ ∈ Ω, 0 ≤ t ≤ T. (1)

subject to the initial-boundary conditions

u(ξ̄, 0) = u0, ξ̄ ∈ Ω, (2)

and
LBu(ξ̄, t) = Q(ξ̄, t), ξ̄ ∈ tialΩ, (3)

where u(ξ̄, t) represents the solute concentration, S(ξ̄, t) is the source term, β1, β2 are
constants, t and ξ̄ = (ξ, ζ) are the time and space variables respectively. u0, Q(ξ̄, t) are
given functions of t and ξ̄. Ω is the domain and tialΩ is its boundary. L is the linear
differential operator and LB is the boundary differential operator and c

0Dα
t u(ξ̄, t) is the

Caputo derivative of u(ξ̄, t) of fractional order α ∈ (0, 1) which is defined as

c
0Dα

t u(ξ̄, t) =
1

Γ(1− α)

∫ t

0

Dsu(ξ̄, s)
(t− s)α

ds.

If u(ξ̄, t) is a piecewise continues function defined on (0, ∞), and is of exponential
order, then its Laplace transform (LT) is

û(ξ̄, z) = L {u(ξ̄, t)} =
∫ ∞

0
e−ztu(ξ̄, t)dt, t > 0.

The LT of c
0Dα

t u(ξ̄, t) is given as

L {c
0Dα

t u(ξ̄, t)} = zαû(ξ̄, z)−
m−1

∑
i=0

zα−i−1u(i)(ξ̄, 0).

For the stability and convergence of the fraction MI model defined in Equations (1)
and (3) the readers are referred to [14]. For existence of the fractional MI model the readers
are referred to [13]. The solution of such type of problem has been considered by many
researchers for example in [15] the authors proposed an implicit finite difference method
for the numerical approximation of the MI model of fractional order. The authors in [16]
have proposed an implicit numerical method for a class of MI advection-dispersion models
of space-time fractional orders. In [17] the Jacobi spectral collocation method is developed
for the time variable order MI model. Similarly the authors in [18] developed a numerical
method based on second-kind shifted Chebyshev polynomials and finite difference method
for the numerical treatment of MI models. In [19], the authors have studied the numerical
solution of the time-fractional MI transport equation using the finite element method.
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The authors in [20] have used the physical nonequilibrium model to describe the transport
of solutes in porous media. They have used the finite volume method for investigating
the numerical solution of the physical nonequilibrium model. Sharma et al. [21] studied
the behavior of solute transport through MI soil column based on the laboratory study.
Gao et al. [22], in their study, have analyzed the behavior of solute transport in convection-
dispersion transport model as compared to homogeneous and heterogeneous porous
media. Other robust methods for solving the MI model can be found in [6,23,24] and there
references. The finite volume method, finite element method, and finite difference method
are all mesh-based methods and have powerful features, but in these methods the need to
create a polygonization, either in the domain or on its boundary is a common drawback.
Mesh generation is the most time-consuming part of the solution process and for complex
geometries, problems can occur with implementation.

However, in recent years great attention was given to the meshless methods which
operate with nodes rather than meshes. The attractive features of meshless methods are
(i) they do not require grid generation which can be a difficult task in three-dimensional
cases; (ii) they are more appropriate than mesh-based methods in the cases of large de-
formation or moving discontinuities. One of the common characteristics of all meshless
methods is their ability to construct functional interpolation or approximation entirely from
information at a set of scattered nodes, among which there is no pre-specified connectiv-
ity or relationships. A large number of meshless methods have been proposed to date.
The element-free Galerkin method [25], the boundary particle method [26], the partition of
unity method [27] are among popular meshless methods.

Another group of meshless methods, which are based on radial basis functions (RBFs),
are one of the best tools for approximating the solution of different real-world problems [12,28].
The main features of RBFs are their smoothness, spectral convergence, and ease of im-
plementation. Meshless methods based RBFs are global radial basis functions methods
(GRBFM) [29], and local radial basis functions methods (LRBFM) [30]. The main draw-
back of GRBFM is that it involves full system matrices that result from the discretization
of the PDEs. These system matrices are often ill-conditioned and extremely sensitive
to the selection of the shape parameters in RBFs. The accuracy of the approximation
and the conditioning of the system matrix depends on the value of the shape parameter.
In general, for a fixed number of centers N, more accurate approximations are produced
for small value of shape parameters, but also produce an ill-conditioned system matrix.
The condition number of the system matrix varies with N for the fixed shape parameter.
In practice, the value of the shape parameter must be adjusted with N in order to produce
a well-conditioned system matrix. For selecting good values of the shape parameter many
attempts have been made [31–33]. For GRBFM, selecting a good value of shape parameter
is still an open question. The main idea of LRBFM is that it uses a small subset of available
centers instead of the whole domain which reduces the size of the system matrix at the
expense of solving many small-size matrices. The size of each small matrix is the same as
the number of nodes in the subdomain of influence of each center. LRBFM was first time
introduced in [34] for diffusion problems. One of the important benefits of the LRBFM
is that the multiquadrics (MQ) or inverse multiquadrics (IMQ) shape parameter affects
the results slightly [35]. Due to handiness LRBFM has been applied to many complex
phenomena [11,36–38] and their references. The main drawback of the LRBFM is that this
method does not work for elliptic problems in a straight forward way. Also since all these
methods are based on finite difference time stepping techniques. The drawback of time
stepping technique is that it does not always lead to a stable solution. A finite difference
scheme is stable if the errors made at one timestep do not cause the errors to be enlarged
as the calculations are continued. A finite difference time stepping scheme is stable if the
errors remain constant or decay during computations. Also, in time-stepping techniques,
the accuracy is achieved at a very small step size, and hence this method encounter an
exponential increase of computing costs with advancing time and thus have low efficiency
in the simulation of long time history fractional problems [39–41]. In order to circumvent
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the drawback of the finite difference time stepping method an alternative way is to use
LT in time. In literature the LT in conjunction with other methods has been used by many
authors. In [40] the authors coupled LT with the boundary element method. The authors
in [41] used LT in conjunction with the boundary particle method for the numerical approx-
imation of time-fractional diffusion equations. In [42] the authors for the first time used
LT combined with the boundary integral equation method. In [43] the author coupled LT
with finite element method for parabolic type differential equations. The coupling of LT
with other methods can be found in the references [44–46]. In this article we propose a local
RBF-based method coupled with LT for the numerical solution of solute transport models.

2. Proposed Method

In our numerical scheme for approximating the solution of the problem defined (1)
and (3), first we employ the Laplace transform to reduce the given problem to an equivalent
elliptic problem as follows

β1[zû(ξ̄, z)− u0] + β2[zαû(ξ̄, z)− zα−1u0]−Lû(ξ̄, z) = Ŝ(ξ̄, z), (4)

LB û(ξ̄, z) = Q̂(ξ̄, z), (5)

which is simplified as

[(β1z + β2zα)I −L]û(ξ̄, z) = ĥ1(ξ̄, z), (6)

LB û(ξ̄, z) = Q̂(ξ̄, z), (7)

where
ĥ1(ξ̄, z) = β1u0 + β2zα−1u0 + Ŝ(ξ̄, z).

Now we need to solve the system of equations defined (6) and (7) in parallel for each
quadrature node z in the LT space. For this we discretize the linear differential operator
L and boundary operator LB using the local RBF method. In the final step we obtain the
solution of our problem (1) and (2) as a Bromwich integral. In the next section we describe
the local RBF method.

2.1. Local RBF Method

In this section, we propose a local RBF method for approximating the solution of
the elliptic problem defined in (6) and (7) in LT space. For a given set of nodal points
{ξ̄ i}N

i=1 ∈ Ω, where Ω ⊂ Rm, m ≥ 1. The approximation of û(ξ̄) via local RBF method can
be obtained as

û(ξ̄ i) = ∑
ξ̄h∈Ωi

λi
hφ(‖ξ̄ i − ξ̄h‖), (8)

where the function φ(r) is a radial kernel, and r is the distance from the node ξ̄ i to the
node ξ̄h, λi = {λi

h}
n
h=1 is the vector of unknown coefficients which can be obtained using

interpolation conditions. The set Ωi is the subdomain containing the node ξ̄ i, and its n
neighboring nodes around it. Thus we obtain N small size n× n linear systems as follows

ûi = Φiλi, i = 1, 2, . . . , N, (9)

where Φi is the interpolation matrix with entries bi
l j = φ(‖ξ̄ l − ξ̄h‖), where ξ̄ l , ξ̄h ∈ Ωi, the

unknowns λi = {λi
h}

n
h=1 are obtained by solving each small size n× n system. Similarly

the operator L, can be approximated as

Lû(ξ̄ i) = ∑
ξ̄h∈Ωi

λi
hLφ(‖ξ̄ i − ξ̄h‖), (10)
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the above Equation (10) can be expressed as

Lû(ξ̄ i) = λi · νi, (11)

where νi is a n-row vector and λi is a n-column vector with entries shown below

νi = Lφ(‖ξ̄ i − ξ̄h‖), ξ̄h ∈ Ωi, (12)

solving Equation (9) for λi we have,

λi = (Φi)−1ûi, (13)

From Equation (13) we use λi in Equation (11),

Lû(ξ̄ i) = νi(Φi)−1ûi = wiûi (14)

where,
wi = νi(Φi)−1, (15)

thus we have
Lû ≡ Dû, (16)

The matrix DN×N is the local meshless approximate for L at each node ξ̄ i. The same
procedure can be adapted for the boundary operator LB .

2.2. Selecting Optimal Shape Parameter

In literature a large number of radial kernels are available. In this paper we have
selected the multiquadrics (MQ) radial kernel defined by φ(r, ε) =

√
1 + r2ε2. The MQ

kernel contains the shape parameter ε. Accurate results can be achieved by varying
the value of ε. To quantify the sensitivity to perturbation of the linear system and to
estimate the accuracy of approximate solution the condition number κ of the system
matrix Φi is used. In this work we have used utilized the uncertainty principle [47] for
obtaining the optimal value of ε. In RBFs methods, better accuracy is achieved for ill-
conditioned system matrices. Using this technique smallest error occurs when κ satisfies
1012 < κ < 1016. We express the system matrix Φi as E, D, S = svd(Φi). Where En×n,
Vn×n are n × n orthogonal matrices, and Sn×n is the n × n diagonal matrix containing
singular values of the system matric Φi. Hence the matrix condition number is calculated
as κ = ‖Φi‖‖(Φi)−1‖ = max(D)/min(D).

The following algorithm in MATLAB can be used to for optimizing the shape parame-
ter [30].

Step i: set κ = 1
Step ii: select 1012 < κ < 1016

Step iii: while κ > κmaximum and κ < κminimum

Step iv: E, D, S = svd(Φi)

Step v: κ = max(D)

min(D)

Step vi: if κ < κminimum, ε = ε− εIncreament
Step vii: else κ > κmaximum, ε = ε + εIncreament

return ε.
When we get the optimal value of shape parameter ε, we use svd to compute (Φi)−1 =

(EDST)
−1

= SD−1ET (see [48]). Hence the weights wi in (15) can be computed.

2.3. Numerical Inverse Laplace Transform

After the approximation of the spatial operators L and LB using the local RBF method
the system (6) and (7) is solved in parallel for each point z. Afterwards we implement the
inverse Laplace transform to convert the local RBF solutions from Laplace space to the time
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domain. Here we employ the contour integration method. We obtain the solution as a
Bromwich integral defined below [49]

u(ξ̄, t) =
1

2πi

∫ ρ+i∞

ρ−i∞
exp(zt)û(ξ̄, z)dz =

1
2πi

∫
Γ

exp(zt)û(ξ̄, z)dz, ρ > ρ0, (17)

where Γ is a suitable chosen path joining ρ− i∞ to ρ + i∞. In order to obtain the solution of
the problem defined in (1) and (3), we need to solve the integral defined in Equation (17).
In many situations, solving Equation (17) may be difficult analytically, so the best way is to
use numerical methods. Numerical approximation of the integral defined in Equation (17)
is hard to obtain because of the slowly decaying transform û(ξ̄, z), z = ρ + y, |y| → ∞
and highly oscillatory exponential factor on the contour of integration Γ. To handle the
slow decay of the transformed function û(ξ̄, z). In [50] Talbot suggested that the Bromwich
line z = ρ + y, −∞ < y < ∞ be transformed to a contour whose real part begins at
negative infinity in the third quadrant, and terminates with the real part again going to
negative infinity in the second quadrant. In such a case the integrand in Equation (17) will
decay rapidly because of the exponential factor, and this makes the integral defined by
Equation (17) suitable for approximation by trapezoidal or midpoint rule [51]. By Cauchy’s
theorem such a deformation is allowed if û(ξ̄, z) has no singularities, and û(ξ̄, z) → 0 if
Re(z) ≤ ρ0 as |z| → ∞. (If û(ξ̄, z) have singularities with unbounded imaginary part, then
Talbot method may not work). In this work, we utilized Talbot’s contour defined as [52]

Γ : z = z(υ) =
M
t
{−σ + µυ cot(γυ) + νιυ}, − π ≤ υ ≤ π, (18)

where Rez(±π) = −∞, and the values of the parameters ν, σ, γ, µ, be specified by the
user. From Equations (17) and (18), we get

u(ξ̄, t) =
1

2πi

∫ π

−π
exp(z(υ)t)û(ξ̄, z(υ))z′(υ)dυ. (19)

In order to approximate Equation (19), we use the mid-point rule with step k = 2π
M , as

uk(ξ̄, t) =
1

Mi

M

∑
j=1

ezjtû(ξ̄, zj)źj,

for υj = −π + (j− 1
2
)k, zj = z(υj), z′j = z′(υj). (20)

2.4. Accuracy and Convergence of the Method

In our approximation process via our proposed method. First, we utilized the Laplace
transform to remove the time variable. The transformation of the time-dependent problem
to an equivalent elliptic problem via Laplace transform incurs no errors. Next, we use
the RBF method in local form for approximating the elliptic PDE. The localized meshless
has error estimate of order O(ζ

1
εh ), 0 < ζ < 1, where h is the fill distance and ε is the

shape parameter [28]. Finally, we obtain our solution as an integral in Equation (19),
while approximating this integral using some suitable quadrature rule, the convergence
is achieved at different rates depending on Γ. The convergence order of quadrature rule
relays on the temporal domain [t0, T] and the step k. For best accuracy one needs the best
contour of integration. For this purpose a large number of contours have been proposed in
the literature. In our work we utilize the recently proposed contour known as improved
Talbot contour [52] with best values of the parameters as given below

µ = 0.50170, σ = 0.61220, γ = 0.64070, and ν = 0.26450,
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with error estimate as

E = |u(ξ̄, t)− uk(ξ̄, t)| = O(e−1.358M).

3. Stability

To discuss the stability of our numerical scheme, we write the systems defined in (6)
and (7) in discrete form as given below

Tû = b, (21)

here the matrix T is a sparse differentiation matrix. The stability constant for the system
in (21) is defined as

Q = sup
û 6=0

‖û‖
‖Tû‖ , (22)

the constant Q is finite for any norm ‖.‖ on RN . From (22), we have

‖T‖−1 ≤ ‖û‖‖Tû‖ ≤ Q, (23)

Also for the pseudoinverse T† of T, we can write

‖T†‖ = sup
µ 6=0

‖T†µ‖
‖µ‖ . (24)

Hence

‖T†‖ ≥ sup
µ=Tû 6=0

‖T†Tû‖
‖Tû‖ = sup

û 6=0

‖û‖
‖Tû‖ = Q. (25)

Equations (23) and (25) confirms the bounds for the constant Q. Calculation of the
pseudoinverse for (21) may be hard numerically, but it guarantees stability. The MATLAB’s
function condest can be used to estimate ‖T−1‖∞ for square matrices, thus we have

Q =
condest(T′)
‖T‖∞

(26)

4. Numerical Experiments

To verify the efficiency of our proposed numerical method we have considered differ-
ent models. We performed our experiments in MATLAB R2019a on a Windows 10 (64 bit)
PC equipped with an Intel(R) Core(TM) i5-3317U CPU @ 1.70 GHz and with 4 GB of RAM.
To validate the theoretical results we use the absolute error Labs, and the maximum absolute
error L∞ defined as

Labs = |u(ξ̄ i, t)− uk(ξ̄ i, t)|

L∞ = ‖u(ξ̄ i, t)− uk(ξ̄ i, t)‖∞ = max
1≤i≤N

(|u(ξ̄ i, t)− uk(ξ̄ i, t)|).

4.1. Problem 1

In the first test, we consider a mobile-immobile advection-dispersion equation of
fractional order as [6]

Dtu(ξ, t) + Dα
t u(ξ, t) = Dξξu(ξ, t)− Dξ u(ξ, t) + f (ξ, t), ξ ∈ [0, 1], t > 0,

where

f (ξ, t) = exp
(
−(ξ − 0.5)2

γ

)[
1

Γ(2− α)
t1−α + 1 +

2t
γ

(
1− (ξ − 0.5)− 2

γ
(ξ − 0.5)

)]
,
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the analytic solution is

u(ξ, t) = t exp
(
−(ξ − 0.50)2

γ

)
.

u(ξ, t) is a Gaussian distribution centered at ξ = 0.5 with height t and γ is the standard
deviation. The problem is solved using the proposed method the boundary and initial
data are extracted from the analytic solution. Table 1 shows the results for fractional
orders α = 0.4, 0.9 and various spatial nodes N in the global, and n local domains and
quadrature nodes M. The CPU time, the condition number (κ) of the differentiation matrix,
the shape parameter (ε) are also shown in Table 1. From Table 1, we observe that the
proposed numerical scheme produced results with good accuracy. We have compared our
results with another RBF method, it can be seen that our results are better. The profiles of
approximate and analytic solution with γ = 0.1, α = 0.8, N = 95, M = 24, and n = 10, at
t = 1 are depicted in Figure 1a, and the plot of absolute error in Figure 1b. In Figure 2a
the profiles of exact and analytic solutions with γ = 0.001, α = 0.8, N = 95, M = 24, and
n = 10, at t = 1 are shown, and the plot of absolute error in Figure 2b. We see that the
method has produced good results for γ = 0.001. The problem has a sharp Gaussian pulse
when γ = 0.001. The contour plot of absolute error with N = 60, n = 10, α = 0.5, M = 26,
and γ = 0.01 is depicted in Figure 3. The surface plots of the approximate and analytic
solutions of problem 1 are presented in Figure 4a,b respectively. All the results depicted in
the figures and Table 1 demonstrate that the numerical results agree well with the exact
solution. From the results, we conclude that the proposed method is stable and accurate.

Table 1. The approximate solutions with γ = 0.1, ξ ∈ [0, 1], and t = 1, corresponding to Problem 1.

N n M ε κ
α = 0.4 α = 0.9

L∞ CPU(s) L∞ CPU(s)

20 5 24 0.5 1.53 × 1012 5.46 × 10−4 0.089142 5.55 × 10−4 0.089602
30 0.8 1.05 × 1012 5.98 × 10−5 0.194214 5.93 × 10−5 0.110046
50 1.3 1.43 × 1012 1.41 × 10−5 0.133385 1.40 × 10−5 0.141561
60 1.6 1.20 × 1012 2.84 × 10−5 0.118387 5.13 × 10−5 0.105559
70 1.9 1.06 × 1012 1.66 × 10−5 0.122090 1.46 × 10−5 0.109360
80 2.1 1.41 × 1012 6.72 × 10−6 0.110556 9.10 × 10−6 0.108059

100 2.7 1.15 × 1012 9.11 × 10−6 0.132338 9.11 × 10−6 0.131337

75 5 26 2.0 1.23 × 1012 2.94 × 10−5 0.108321 2.92 × 10−5 0.108939
7 4.5 1.08 × 1012 2.99 × 10−5 0.111992 2.96 × 10−5 0.108220
8 5.5 1.05 × 1012 5.11 × 10−5 0.112198 5.05 × 10−5 0.107458
9 6.2 1.21 × 1012 7.79 × 10−5 0.117348 7.70 × 10−5 0.123790
10 6.9 1.06 × 1012 8.26 × 10−5 0.113088 8.16 × 10−5 0.120238
12 7.8 1.09 × 1012 7.12 × 10−5 0.141167 7.06 × 10−5 0.386028

[6] 4.07 × 10−4 4.56 × 10−4
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Figure 1. (a) The approximate and analytic solutions of Problem 1 with γ = 0.1, α = 0.8, N = 95, M = 24,
and n = 10, at t = 1. (b) Plot of absolute error of Problem 1 with γ = 0.1, α = 0.8, N = 95, M = 24, and
n = 10, at t = 1.
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Figure 2. (a) The approximate and analytic solutions of Problem 1 with γ = 0.001, α = 0.8, N = 95,
M = 24, and n = 10, at t = 1. We see that the problem has sharp Gaussian pulse when γ = 0.001.
(b) Plot of absolute error of Problem 1 with γ = 0.001, α = 0.6, N = 150, M = 28, and n = 7, at t = 1.
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Figure 4. (a) Approximate solution of Problem 1 using α = 0.7, γ = 0.01. (b) Analytic solution of
Problem 1 with γ = 0.01, α = 0.7. It is observed that the numerical solution and exact solutions are in
good agreement.

4.2. Problem 2

Here we consider a mobile-immobile advection-dispersion equation of fractional order
as [6]

Dtu(ξ, t) + Dα
t u(ξ, t) = Dξξu(ξ, t)− Dξ u(ξ, t) + f (ξ, t), ξ ∈ [0, 1], t > 0,

where

f (ξ, t) = 10ξ2(1− ξ)2
(

1 +
t1−α

Γ(2− α)

)
+ 10(t + 1)(−2 + 14ξ − 18ξ2 + 4ξ3).

the analytic solution is given as

u(ξ, t) = 10(t + 1)ξ2(1− ξ)2.

This problem is solved using the proposed method with boundary and initial data ex-
tracted from the analytic solution. Table 2 shows the results for fractional orders α = 0.1, 0.8
and various spatial nodes N in the global, and n local domains and quadrature nodes M.
From Table 2 we observe that the proposed numerical scheme results with good accuracy.
We have compared our results with another RBF method, it can be seen that our results are
better. Also, in Table 3 the approximate solution and L∞ errors obtained via the proposed
method are compared with the method in [15], and we see that the results produced by the
proposed method are better. The contour plot of absolute error with N = 75, n = 15, α = 0.8,
and M = 26. is shown in Figure 5a. The solution behavior for t = 0.2, 0.4, 0.6, 0.8, 1 with
N = 60, α = 0.7, n = 12, M = 28 is shown in Figure 5b. Figure 6a depict the profiles of
approximate and analytic solution with N = 95, n = 20, α = 0.8, at t = 1, and absolute
error is shown in Figure 6b. The surface plots of the approximate and analytic solutions
corresponding to problem 2 with α = 0.5 are presented in Figure 7a,b respectively. All the
figures and tables demonstrate that the numerical results agree well with the exact solution.
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Table 2. The approximate solutions for 1012 < κ < 1016, and ξ ∈ [0, 1], and t = 1, corresponding to
Problem 2.

N n M
α = 0.1 α = 0.8

L∞ CPU(s) L∞ CPU(s)

20 5 26 1.26 × 10−4 0.179173 1.26 × 10−4 0.104272
40 4.37 × 10−5 0.125094 4.44 × 10−5 0.133066
60 1.34 × 10−5 0.150076 1.34 × 10−5 0.132823
70 1.28 × 10−5 0.210703 1.31 × 10−5 0.121223
80 1.48 × 10−5 0.126827 1.51 × 10−5 0.158628
100 3.28 × 10−6 0.171984 3.29 × 10−6 0.141549

75 5 28 1.18 × 10−5 0.252266 1.20 × 10−5 0.130174
7 6.86 × 10−5 0.191000 6.99 × 10−5 0.129424
8 6.31 × 10−5 0.116571 6.42 × 10−5 0.142768

12 3.35 × 10−5 0.132618 3.37 × 10−5 0.148221
16 4.03 × 10−5 0.146538 4.04 × 10−5 0.147644

[6] 3.36 × 10−4 2.96 × 10−4

Table 3. The comparison of approximate solutions and L∞ errors of our method with n = 5,
M = 28, 10+12 < κ < 10+16 at t = 1, and the method in [15] corresponding to Problem 2.

ξ Exact Solution
Method of [15] Our Method

Approximate
Solution L∞

Approximate
Solution L∞

0.10 0.1620 0.1618 1.56 × 10−4 0.1620 4.35 × 10−5

0.20 0.5120 0.5105 1.40 × 10−3 0.5119 1.33 × 10−4

0.30 0.8820 0.8790 2.97 × 10−3 0.8818 1.14 × 10−4

0.40 1.1520 1.1477 4.29 × 10−3 1.1517 2.66 × 10−4

0.50 1.2500 1.2450 4.97 × 10−3 1.2497 2.89 × 10−4

0.60 1.1520 1.1471 4.80 × 10−3 1.1517 2.97 × 10−4

0.70 0.8820 0.8781 3.81 × 10−3 0.8818 2.39 × 10−4

0.80 0.5120 0.5097 2.27 × 10−3 0.5118 1.67 × 10−4

0.90 0.1620 0.1612 7.20 × 10−4 0.1619 8.13 × 10−5
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Figure 5. (a) Contour plot of the absolute error of Problem 2 with α = 0.8, N = 75, n = 15, and M = 26.
(b) Solution behavior of Problem 2 at different values of t with N = 60, α = 0.7, n = 12, M = 28. It
is observed that the solute concentration increases with time.
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Figure 6. (a) Plot of approximate solution and exact solutions of Problem 2 with α = 0.8. It is seen
that the numerical solution agrees well with the exact solution. (b) Plot of absolute error of Problem 2
with α = 0.8, N = 295, n = 5, M = 28 at t = 1.
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Figure 7. (a) Approximate solution of Problem 2 with α = 0.5. (b) Analytic solution of Problem 2
with α = 0.5. It is observed that the numerical solution agrees well with the exact solution.

4.3. Problem 3

Here we consider a two-dimensional MI solute transport model

Dtu(ξ, ζ, t) + Dα
t u(ξ, ζ, t) = ∆u(ξ, ζ, t) + f (ξ, ζ, t), ξ, ζ ∈ [0, 1]2, t > 0, (27)

where

f (ξ, ζ, t) =
(

2t + 8π2t2 +
2t2−α

Γ(3− α)

)
cos(2πξ) cos(2πζ),

and the exact solution is

u(ξ, ζ, t) = t2 cos(2πξ) cos(2πζ).

Here we consider a two-dimensional fractional order solute transport model. The prob-
lem is solved for ξ, ζ ∈ [0, 1]2 in regular and regular domains. The boundary and initial
conditions are extracted from the analytic solution. The the L∞ errors obtained for dif-
ferent fractional orders α are depicted in Table 4. In Figure 8a, the regular nodes in the
square domain are shown and in Figure 8b the plot of absolute are shown respectively.
In Figure 9a,b the analytic and approximate solutions for t = 0.2 : 0.2 : 1 are shown.
The regular nodes distribution in circular domain and absolute errors are presented in
Figure 10a,b respectively. Similarly the regular nodes in nut-shape domain and absolute
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error are shown in Figure 11a,b. The obtained results led us to the conclusion that the
proposed method performed efficiently in both regular and irregular domains.

Table 4. The L∞ error for different fractional orders α of problem 3.

M n N α = 0.25 α = 0.5 α = 0.75 α = 0.85

26 30 20 1.99 × 10−3 1.97 × 10−3 1.96 × 10−3 1.95 × 10−3

22 1.30 × 10−3 1.29 × 10−3 1.29 × 10−3 1.28 × 10−3

24 9.67 × 10−4 9.65 × 10−4 9.63 × 10−4 9.63 × 10−3

26 7.97 × 10−4 7.96 × 10−4 7.95 × 10−4 7.95 × 10−4

28 6.81 × 10−4 6.79 × 10−4 6.77 × 10−4 6.76 × 10−4

28 26 25 4.61 × 10−3 4.56 × 10−3 4.50 × 10−3 4.48 × 10−3

27 4.48 × 10−3 4.42 × 10−3 4.37 × 10−3 4.35 × 10−3

28 2.87 × 10−3 2.83 × 10−3 2.80 × 10−3 2.78 × 10−3

29 8.38 × 10−4 8.37 × 10−4 8.35 × 10−4 8.35 × 10−4

30 8.32 × 10−4 8.31 × 10−4 8.30 × 10−4 8.30 × 10−4
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Figure 8. (a) Square domain with N = 900 in the global domain and n = 20 in the local domain,
magenta corresponds to boundary and yellow corresponds to interior nodes. (b) Absolute error of
Problem 3 with α = 0.85, N = 900, n = 30, and M = 28.
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Figure 9. (a) Analytic solution of Problem 3 with α = 0.75, N = 625, n = 30, and M = 26. (b) Approx-
imate solution of Problem 3 with α = 0.75, N = 625, n = 30, and M = 26. The profiles are plotted for
t = 0.2 : 0.2 : 1, we see that with an increase in t, the solute concentration increases, and peaks in the
profiles have been observed at the center and end points. Similarly, nodes in the profiles have been
seen, which show the standing wave behavior of the solution.
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Figure 10. (a) Circular domain N = 718. (b) Absolute error corresponding to Problem 3 with α =

0.25, N = 718, n = 25, and M = 26. It is observed that the proposed scheme has acceptable accuracy.
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Figure 11. (a) Nut Shape domain N = 716. (b) absolute error of Problem 3 with N = 716, n = 35,
α = 0.65, and M = 26. It can be seen that the proposed numerical scheme has performed well in the
nut shape domain.

4.4. Problem 4

Here we consider a two-dimensional MI solute transport model

Dtu(ξ, ζ, t) + Dα
t u(ξ, ζ, t) = ∆u(ξ, ζ, t) + f (ξ, ζ, t), ξ, ζ ∈ [0, 1]2, t > 0, (28)

where

f (ξ, ζ, t) =
(

2t− 2t2 +
2t2−α

Γ(3− α)

)
exp(ξ + ζ),

and the analytic solution is
u(ξ, ζ, t) = t2e(ξ+ζ).

Here we consider another two-dimensional fractional order solute transport model.
The problem is solved for ξ, ζ ∈ [0, 1]2 in regular and regular domains. The boundary and
initial conditions are extracted from the analytic solution. The Table 5 shows the L∞ errors
obtained for different fractional orders α in the square domain. In Figure 12a the square
domain and in Figure 12b the plot of absolute are shown respectively. In Figure 13a,b the
analytic and approximate solutions for t = 0.2 : 0.2 : 1 are shown. The L-shape domain and
absolute errors are presented in Figure 14a,b respectively. Similarly, the star-shape domain
and absolute error are shown in Figure 15a,b. The obtained results led us to the conclusion
that the proposed method performed efficiently in both regular and irregular domains.
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Table 5. The L∞ error for different fractional orders α of problem 4.

M n N α = 0.25 α = 0.5 α = 0.75 α = 0.85

24 30 16 6.83 × 10−4 6.80 × 10−4 6.78 × 10−4 6.77 × 10−4

18 7.84 × 10−4 7.82 × 10−4 7.79 × 10−4 7.78 × 10−4

20 8.30 × 10−4 8.28 × 10−4 8.27 × 10−4 8.26 × 10−4

22 7.82 × 10−4 7.80 × 10−4 7.78 × 10−4 7.77 × 10−4

24 7.88 × 10−4 7.85 × 10−4 7.81 × 10−4 7.79 × 10−4

26 9.95 × 10−4 9.87 × 10−4 9.79 × 10−4 9.76 × 10−4

26 25 26 2.86 × 10−3 2.82 × 10−3 2.79 × 10−3 2.77 × 10−3

26 2.63 × 10−3 2.61 × 10−3 2.58 × 10−3 2.57 × 10−3

27 1.51 × 10−3 1.50 × 10−3 1.49 × 10−3 1.49 × 10−3

28 1.03 × 10−3 1.02 × 10−3 1.02 × 10−3 1.01 × 10−3

29 9.04 × 10−4 8.99 × 10−4 8.93 × 10−4 8.90 × 10−4
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Figure 12. (a) Square domain with N = 900 in global domain and n = 20 in local domain, magenta
corresponds to boundary and yellow corresponds to interior nodes. (b) Absolute error of Problem 4
with α = 0.85, N = 900, n = 30, and M = 28.
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Figure 13. (a) Analytic solution of Problem 4 with α = 0.85, N = 625, n = 25, and M = 26.
(b) Approximate solution of Problem 4 with α = 0.85, N = 625, n = 25, and M = 26. The numerical
solution is in good agreement with the exact solution.
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Figure 14. (a) L Shape domain n = 20, N = 736. (b) Absolute error of Problem 4 with α = 0.50,
N = 736, n = 20, and M = 26. In L Shape domain also the method has acceptable accuracy.
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Figure 15. (a) Star Shape domain N = 305. (b) absolute error of Problem 4 with α = 0.75, N = 305,
n = 30, and M = 26. It can be seen that the method has produced accurate results for a relatively small
number of nodes N in the Star shape domain.

5. Conclusions

In this work, we proposed a numerical method for the fractional order MI advection-
dispersion models. We transformed the time-fractional derivative via Laplace transform to
avoid the classical time stepping method. The local RBF method based on the multiquadric
kernels was utilized for the approximation of spatial operators. We discussed the stability
and convergence of the proposed numerical scheme. Numerical experiments were per-
formed in one and two dimensions. The local method performed efficiently in irregular
domains with acceptable accuracy. The obtained results were compared with other avail-
able methods which clearly showed the superiority of the proposed method. Hence we
conclude that the present method can solve such problems accurately and efficiently.
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