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1. Introduction

In order to study and investigate the multiple-objective optimization problems, over
time, several concepts of efficient solutions have been considered. In this sense, Geoffrion [1]
defined proper efficiency. Furthermore, Klinger [2] proposed improper solutions associated
with a class of vector optimization problems. By using vector variational-like inequalities,
Kazmi [3] established some existence results of a weak minimum in constrained multiple-
objective optimization problems. In addition, Ghaznavi-ghosoni and Khorram [4] intro-
duced approximate solutions to the state conditions of efficiency in general multiple-objective
optimization problems.

On the other hand, as it is well-known, the concept of convexity plays an important role
in optimization theory. However, since convexity does not cover certain concrete problems,
its generalization became a real necessity. In this direction, Hanson [5] introduced the
notion of invex functions. Of course, over time, a lot of various extensions have been defined
(for example, preinvexity, pseudoinvexity, univexity, quasi-invexity, approximate convexity)
by authors such as Antczak [6], Ahmad et al. [7]) and Mishra et al. [8]. Moreover, some of
these notions have been transposed in a multidimensional framework involving multiple
or curvilinear integral functionals; see, for instance, Treanţă [9], Mititelu and Treanţă [10].

Notable results associated with variational inequalities, having important applications
in engineering or traffic analysis, have been formulated by Giannessi [11]. We all know
that vector variational inequalities provide results for the existence of solutions in multiple-
objective optimization problems. In this regard, the reader is directed to the research work
by Ruiz-Garzón et al. [12]. Treanţă [13] studied a class of variational inequalities involving
curvilinear integrals. Kim [14] established some connections between multiple-objective
continuous-time problems and vector variational-type inequalities. As a natural extension
of continuous-time variational problems, optimal control problems have been used to
study different engineering problems or processes in game theory, operations research
and economics. In this sense, Jha et al. [15] and Treanţă [16,17] studied and established
optimality conditions of efficiency, well-posedness, saddle-point optimality criteria and
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modified the objective function method in multitime variational control problems with
multiple or curvilinear integral-type functionals.

Very recently, Treanţă [18] established relations between the solutions of a class of
vector variational inequalities and (proper) efficient solutions of the associated multiple-
objective control problem. As a natural sequel of the advances mentioned above, in this
paper, we introduce weak vector variational inequalities and the associated multiple-
objective optimization problems generated by curvilinear integral-type functionals, which
are path-independent. By using the concepts of the invex set, Fréchet differentiability,
invexity and pseudoinvexity for the considered curvilinear integral functionals, we state
some relations between the solutions of a class of weak vector variational inequalities and
(weak) efficient solutions of the associated optimization problem.

Further, the paper is structured as follows. In Section 2, we present the preliminar-
ies/auxiliary results and problem description. In Section 3, we formulate and prove some
characterization results associated with the solutions of the considered control problems.
In Section 4, we state the conclusions for this study.

2. Preliminaries and Problem Description

We consider T a compact set included in Rb and T 3 µ = (µζ), ζ = 1, b, is a
multivariable. Let T ⊃ C : µ = µ(ς), ς ∈ [t0, t1] be a piecewise smooth (differentiable)
curve joining the following two fixed points µ1 = (µ1

1, . . . , µb
1), µ2 = (µ1

2, . . . , µb
2) in T .

In addition, we denote by Λ the space consisting in all piecewise smooth state functions
σ : T → Ra, and by Ω the space consisting of all piecewise continuous control functions
η : T → Rk. Moreover, on Λ×Ω, we consider the inner product

〈(σ, η), (ξ, x)〉 =
∫
C
[σ(µ) · ξ(µ) + η(µ) · x(µ)

]
dµζ

=
∫
C

[
a

∑
i=1

σi(µ)ξ i(µ) +
k

∑
j=1

η j(µ)xj(µ)

]
dµ1

+ · · ·+
[ a

∑
i=1

σi(µ)ξ i(µ) +
k

∑
j=1

η j(µ)xj(µ)
]
dµb,

for all (σ, η), (ξ, x) ∈ Λ×Ω, together with the norm induced by it.
In the following, we consider a vector functional given by curvilinear integrals

Ψ : Λ×Ω→ Rν,

Ψ(σ, η) =
∫
C

ψζ(µ, σ(µ), σα(µ), η(µ))dµζ

=

(∫
C

ψ1
ζ(µ, σ(µ), σα(µ), η(µ))dµζ , . . . ,

∫
C

ψν
ζ (µ, σ(µ), σα(µ), η(µ))dµζ

)
,

where ψζ = (ψl
ζ) : T ×Ra ×Rab ×Rk → Rν, ζ = 1, b, l = 1, ν are assumed to be vector-

valued C2-class functions. Furthermore, by Dα, α ∈ {1, . . . , b}, we denote the operator of
total derivative, and assume that the aforementioned 1-forms

ψζ =
(

ψ1
ζ , . . . , ψν

ζ

)
: T ×Ra ×Rab ×Rk → Rν, ζ = 1, b

are closed (Dαψl
ζ = Dζ ψl

α, ζ, α = 1, b, ζ 6= α, l = 1, ν).
Throughout this paper, the next rules will be considered for equalities and inequalities:

m = n⇔ ml = nl , m ≤ n⇔ ml ≤ nl ,

m < n⇔ ml < nl , m � n⇔ m ≤ n, m 6= n, l = 1, ν

for any ν-tuples m =
(

m1, · · · , mν
)

, n =
(

n1, · · · , nν
)

in Rν.
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Next, we state the following PDE/PDI constrained control problem

(P) min
(σ,η)

{
Ψ(σ, η) =

∫
C

ψζ(µ, σ(µ), σα(µ), η(µ))dµζ

}
subject to (σ, η) ∈ S ,

where

Ψ(σ, η) =
∫
C

ψζ(µ, σ(µ), σα(µ), η(µ))dµζ

=

(∫
C

ψ1
ζ(µ, σ(µ), σα(µ), η(µ))dµζ , . . . ,

∫
C

ψν
ζ (µ, σ(µ), σα(µ), η(µ))dµζ

)
=
(

Ψ1(σ, η), . . . , Ψν(σ, η)
)

and

S =
{
(σ, η) ∈ Λ×Ω | Z(µ, σ(µ), σα(µ), η(µ)) = 0, Y(µ, σ(µ), σα(µ), η(µ)) ≤ 0, σ|µ=µ1,µ2 = given

}
.

In the above mathematical context, we consider Z = (Zι) : T ×Ra ×Rab ×Rk → Rt,
ι = 1, t, Y = (Yr) : T ×Ra ×Rab ×Rk → Rq, r = 1, q, are functions of C2-class.

Definition 1 (Mititelu and Treanţă [10]). A pair (σ0, η0) ∈ S is an efficient solution of (P)
if there exists no other (σ, η) ∈ S such that Ψ(σ, η) � Ψ(σ0, η0), or equivalently, Ψl(σ, η)−
Ψl(σ0, η0) ≤ 0, (∀)l = 1, ν, with strict inequality for at least one l.

Definition 2 (Geoffrion [1]). A pair (σ0, η0) ∈ S is a proper efficient solution of (P) if (σ0, η0) ∈
S is an efficient solution in (P) and there exists a positive real number M such that, for all l = 1, ν,
we have

Ψl(σ0, η0)−Ψl(σ, η) ≤ M
(

Ψs(σ, η)−Ψs(σ0, η0)
)

for some s ∈ {1, . . . , ν} such that

Ψs(σ, η) > Ψs(σ0, η0),

whenever (σ, η) ∈ S and
Ψl(σ, η) < Ψl(σ0, η0).

Definition 3. A pair (σ0, η0) ∈ S is a weak efficient solution of (P) if there exists no other (σ, η) ∈
S such that Ψ(σ, η) < Ψ(σ0, η0), or equivalently, Ψl(σ, η)−Ψl(σ0, η0) < 0, (∀)l = 1, ν.

Taking into account Treanţă’s works [18,19], we consider the next vector functional
defined by the curvilinear integral (independent of the path)

K : Λ×Ω→ Rν, K(σ, η) =
∫
C

κζ(µ, σ(µ), σα(µ), η(µ))dµζ

and formulate the concepts of invexity and pseudoinvexity for K.

Definition 4 (Treanţă [18]). K is said to be invex at
(

σ0, η0
)
∈ Λ×Ω with respect to π and υ if

there exist
π : T ×Ra ×Rk ×Ra ×Rk → Ra,

π = π
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
)
=
(

πi
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
))

, i = 1, a,

of C1-class with π
(

µ, σ0(µ), η0(µ), σ0(µ), η0(µ)
)
= 0, (∀)µ ∈ T , π(µ1) = π(µ2) = 0, and

υ : T ×Ra ×Rk ×Ra ×Rk → Rk,
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υ = υ
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
)
=
(

υj
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
))

, j = 1, k,

of C0-class with υ
(

µ, σ0(µ), η0(µ), σ0(µ), η0(µ)
)

= 0, (∀)µ ∈ T , υ(µ1) = υ(µ2) = 0,
such that

K(σ, η)− K
(

σ0, η0
)
≥
∫
C

[
∂κζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂κζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ

+
∫
C

[
∂κζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ ,

for any (σ, η) ∈ Λ×Ω.

Definition 5 (Treanţă [18]). In the above definition, we say that K is strictly invex at
(

σ0, η0
)
∈

Λ×Ω with respect to π and υ if we replace ≥ with >, with (σ, η) 6=
(

σ0, η0
)

.

Definition 6. K is said to be pseudoinvex at
(

σ0, η0
)
∈ Λ×Ω with respect to π and υ if there exist

π : T ×Ra ×Rk ×Ra ×Rk → Ra,

π = π
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
)
=
(

πi
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
))

, i = 1, a

of C1-class with π
(

µ, σ0(µ), η0(µ), σ0(µ), η0(µ)
)
= 0, (∀)µ ∈ T , π(µ1) = π(µ2) = 0 and

υ : T ×Ra ×Rk ×Ra ×Rk → Rk,

υ = υ
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
)
=
(

υj
(

µ, σ(µ), η(µ), σ0(µ), η0(µ)
))

, j = 1, k

of C0-class with υ
(

µ, σ0(µ), η0(µ), σ0(µ), η0(µ)
)

= 0, (∀)µ ∈ T , υ(µ1) = υ(µ2) = 0,
such that

K(σ, η)− K
(

σ0, η0
)
< 0

implies ∫
C

[
∂κζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂κζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ

+
∫
C

[
∂κζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ < 0,

or equivalently∫
C

[
∂κζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂κζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ

+
∫
C

[
∂κζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ ≥ 0⇒ K(σ, η)− K

(
σ0, η0

)
≥ 0,

for any (σ, η) ∈ Λ×Ω.

Some examples for invex or pseudoinvex curvilinear-type integral functionals can
be found in Treanţă [19]. For other points of view regarding vector/scalar optimization
problems, the reader can consult Lee et al. [20], Kazmi et al. [21] and Treanţă [22].
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Definition 7 (Treanţă [18]). The subset ∅ 6= X×Q ⊂ Λ×Ω is called invex with respect to π
and υ if

(σ0, η0) + λ
(

π
(

µ, σ, η, σ0, η0
)

, υ
(

µ, σ, η, σ0, η0
))
∈ X×Q,

for all (σ, η), (σ0, η0) ∈ X×Q and λ ∈ [0, 1].

In order to establish some existence results of solutions for a control problem (P), we
consider the following (weak) variational inequalities:

(I) Find (σ0, η0) ∈ S such that there exists no (σ, η) ∈ S fulfilling

(VI)

( ∫
C

[
∂ψ1

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψ1

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψ1

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ , . . . ,

∫
C

[
∂ψν

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψν

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψν

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ

)
≤ 0;

(II) Find (σ0, η0) ∈ S such that there exists no (σ, η) ∈ S fulfilling

(WVI)

( ∫
C

[
∂ψ1

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψ1

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψ1

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ , . . . ,

∫
C

[
∂ψν

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψν

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψν

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ

)
< 0.

Next, we present an illustrative example to verify that the above-mentioned class of
vector-controlled variational inequalities is solvable at a given point.

Example 1. Let us consider T = [0, 1]× [0, 1] and C ⊂ T is a differentiable curve that links
(0, 0) and (1, 1). Furthermore, we assume that σ, η : T → R are piecewise differentiable functions,
π, υ : T ×R4 → R are given by: π = 0, υ = eσ0(µ) − eσ(µ), (∀)µ ∈ T \ {µ1, µ2} and υ = 0
for µ ∈ {µ1, µ2}. Define the following 1-forms of Lagrange type

ψζ =
(

ψ1
ζ , ψ2

ζ

)
: T ×R2 → R2, ζ = 1, 2,

as

ψ1
ζ(µ, σ(µ), η(µ)) =

(
−η(µ)− 1

2
, −σ(µ)

)
,

ψ2
ζ(µ, σ(µ), η(µ)) =

(
eη(µ) +

1
2

, eη(µ)

)
.

Further, we can easily notice that (σ0, η0) = (0, 0) is a solution for the associated vector-
controlled variational inequality (VI). Indeed, we have
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( ∫
C

[
∂ψ1

ζ

∂σ

(
µ, σ0(µ), η0(µ)

)
π +

∂ψ1
ζ

∂η

(
µ, σ0(µ), η0(µ)

)
υ

]
dµζ ,

∫
C

[
∂ψ2

ζ

∂σ

(
µ, σ0(µ), η0(µ)

)
π +

∂ψ2
ζ

∂η

(
µ, σ0(µ), η0(µ)

)
υ

]
dµζ
)

=
( ∫

C

(
eσ(µ) − 1

)
dµ1,

∫
C

eη(µ)
(

1− eσ(µ)
)(

dµ1 + dµ2
))
� (0, 0),

for all piecewise differentiable functions σ, η : T → R.

Very recently, Treanţă [18] established the following two results:

Theorem 1 (Treanţă [18]). Consider S ⊂ Λ×Ω is an invex set with respect to π and υ and let
(σ0, η0) ∈ S be a proper efficient solution of (P). If each curvilinear integral

Ψl(σ, η), l = 1, ν

is Fréchet differentiable at (σ0, η0) ∈ S , then the pair (σ0, η0) solves (VI).

By considering the vector variational inequality (VI), the next theorem provides a
characterization of efficient solutions in (P).

Theorem 2 (Treanţă [18]). Consider (σ0, η0) ∈ S is a solution of (VI) and each curvilinear
integral Ψl(σ, η), l = 1, ν is Fréchet differentiable and invex at (σ0, η0) ∈ S with respect to π and
υ. Then, the pair (σ0, η0) is an efficient solution for (P).

3. Main Results

In this section, we formulate some connections between the solutions of the considered
weak vector variational inequalities and (weak, proper) efficient solutions of the associated
control problem (P).

The next result formulates a sufficient condition for a pair (σ0, η0) ∈ S to be a solution
of (WVI).

Theorem 3. Let S ⊂ Λ× Ω be an invex set with respect to π and υ and let (σ0, η0) ∈ S be a
weak efficient solution of (P). If each curvilinear integral Ψl(σ, η), l = 1, ν is Fréchet differentiable
at (σ0, η0) ∈ S , then the pair (σ0, η0) solves (WVI).

Proof. Since (σ0, η0) ∈ S is a weak efficient solution of (P), the results show that there
exists no other feasible solution (σ, η) ∈ S such that Ψ(σ, η) < Ψ(σ0, η0), or equivalently

Ψl(σ, η)−Ψl(σ0, η0) < 0, (∀)l = 1, ν. (1)

By hypothesis, we have that S ⊂ Λ × Ω is an invex set with respect to π and υ.
Thus, for λ ∈ [0, 1], we have (z, w) = (σ0, η0) + λ

(
π
(
µ, σ, η, σ0, η0), υ

(
µ, σ, η, σ0, η0)) ∈ S .

Thus, by using (1), we get that there exists no other feasible solution (σ, η) ∈ S such that
Ψ(z, w) < Ψ(σ0, η0), or equivalently

Ψl(z, w)−Ψl(σ0, η0) < 0, (∀)l = 1, ν. (2)

Further, we apply that each curvilinear integral Ψl(σ, η), l = 1, ν, is Fréchet differen-
tiable at (σ0, η0) ∈ S and proceeding as in the proof of Theorem 1, by (2), we obtain that
there exists no other feasible solution (σ, η) ∈ S such that
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∫
C

[
∂ψl

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψl

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψl

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ < 0

for all l = 1, ν, and this ends the proof.

The next theorem provides a characterization of weak efficient solutions for (P) by
using the weak-vector-controlled variational inequality (WVI).

Theorem 4. Let (σ0, η0) ∈ S be a solution of (WVI). If each curvilinear integral Ψl(σ, η), l = 1, ν
is Fréchet differentiable and pseudoinvex at (σ0, η0) ∈ S with respect to π and υ, then the pair (σ0, η0)
is a weak efficient solution of (P).

Proof. By reductio ad absurdum, consider that (σ0, η0) ∈ S is a solution of (WVI) but it is
not a weak efficient solution of (P). In consequence, there exists (σ, η) ∈ S such that, for
all l = 1, ν,

Ψl(σ, η)−Ψl(σ0, η0) < 0.

By hypothesis, each curvilinear integral Ψl(σ, η), l = 1, ν, is Fréchet differentiable and
pseudoinvex at (σ0, η0) ∈ S with respect to π and υ. In consequence, we have

∫
C

[
∂ψl

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψl

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψl

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ < 0

for any (σ, η) ∈ S and l = 1, ν. This contradicts that (σ0, η0) ∈ S is a solution of (WVI)
and the proof is complete.

The next result formulates a sufficient condition for a weak efficient solution (σ0, η0) ∈ S
of (P) to be an efficient solution (σ0, η0) ∈ S of (P).

Theorem 5. Let (σ0, η0) ∈ S be a weak efficient solution of (P). If each curvilinear integral
Ψl(σ, η), l = 1, ν is Fréchet differentiable and strictly invex at (σ0, η0) ∈ S with respect to π and υ
and S is an invex set with respect to π and υ, then the pair (σ0, η0) is an efficient solution for (P).

Proof. By contradiction, assume that (σ0, η0) ∈ S is a weak efficient solution of (P) but not
an efficient solution of (P). It results there exists a feasible solution (σ, η) ∈ S satisfying
Ψ(σ, η) � Ψ(σ0, η0), or equivalently

Ψl(σ, η)−Ψl(σ0, η0) ≤ 0, (∀)l = 1, ν (3)

with strict inequality for at least one l.
By hypothesis, each curvilinear integral Ψl(σ, η), l = 1, ν is Fréchet differentiable and

strictly invex at (σ0, η0) ∈ S with respect to π and υ. In consequence, we have

Ψl(σ, η)−Ψl(σ0, η0) >
∫
C

[
∂ψl

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψl

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψl

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ (4)

for any (σ, η) 6= (σ0, η0) ∈ S and l = 1, ν.
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By using (3) and (4), we obtain that there exists (σ, η) ∈ S such that

∫
C

[
∂ψl

ζ

∂σ

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

π +
∂ψl

ζ

∂η

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

υ

]
dµζ

+
∫
C

[
∂ψl

ζ

∂σα

(
µ, σ0(µ), σ0

α(µ), η0(µ)
)

Dαπ

]
dµζ < 0

for all l = 1, ν. In consequence, (σ0, η0) ∈ S is not a solution for (WVI) and, in accordance
with Theorem 3, it follows that (σ0, η0) ∈ S is not a weak efficient solution of (P). Therefore,
we obtain a contradiction, and the proof is complete.

Example 2. Let us extremize the mechanical work accomplished by the variable forces V̄1

(
e−η(µ) +

1
2

,

e−η(µ)
)

and V̄2

(
eσ(µ) +

1
2

, eσ(µ)

)
to move the application point along the piecewise differentiable

curve C, contained in T = [0, 1]2 = [0, 1]× [0, 1] and linking µ1 = (0, 0) and µ2 = (1, 1), such
that the following controlled dynamic system

∂σ

∂µ1 (µ) =
∂σ

∂µ2 (µ) = η(µ),

1− eσ(µ)+σ2(µ) ≤ 0, eη(µ) − 2 + eη2(µ) ≤ 0, σ|µ=(0,0),(1,1) = 0

is satisfied with respect to π = e(σ
0)2(µ) − eσ2(µ), (∀)µ ∈ T \ {µ1, µ2} and π = 0 for

µ ∈ {µ1, µ2}, and υ = e(η
0)2(µ) − eη2(µ), (∀)µ ∈ T \ {µ1, µ2} and υ = 0 for µ ∈ {µ1, µ2}.

Define the following closed 1-forms of Lagrange type

ψζ =
(

ψ1
ζ , ψ2

ζ

)
: T ×R2 → R2, ζ = 1, 2,

as below

ψ1
ζ(µ, σ(µ), η(µ)) =

(
e−η(µ) +

1
2

, e−η(µ)

)
,

ψ2
ζ(µ, σ(µ), η(µ)) =

(
eσ(µ) +

1
2

, eσ(µ)

)
.

Obviously, the vector functional

Ψ(σ, η) =
∫
C

ψζ(µ, σ(µ), η(µ))dµζ =
∫
C

ψ1(µ, σ(µ), η(µ))dµ1 +
∫
C

ψ2(µ, σ(µ), η(µ))dµ2

is Fréchet differentiable at (σ0, η0) = (0, 0). Moreover, it can be easily verified that each curvilinear

integral
∫
C

ψl
ζ(µ, σ(µ), η(µ))dµζ , l = 1, 2, is invex/pseudoinvex at (σ0, η0) = (0, 0) with respect

to π and υ. Further, we can easily see that (σ0, η0) = (0, 0) is a solution for (WVI). Therefore, by
Theorem 4, we get that (σ0, η0) is a weak efficient solution of the associated optimization problem.

4. Conclusions

In this paper, by using the notions of the invex set, Fréchet differentiability, invexity
and pseudoinvexity for the involved curvilinear integral functionals, we established some
relations between the solutions of a class of weak vector variational inequalities and (weak)
efficient solutions of the associated control problem. The results derived in this paper, taking
into account the notion of variational derivative for curvilinear-type integral functionals
(see Treanţă [13]), can be rediscovered in a new form.
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