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Abstract: An exponential-type function was discovered to transform known difference formulas
by involving a shifted parameter θ to approximate fractional calculus operators. In contrast to the
known θ methods obtained by polynomial-type transformations, our exponential-type θ methods
take the advantage of the fact that they have no restrictions in theory on the range of θ such that the
resultant scheme is asymptotically stable. As an application to investigate the subdiffusion problem,
the second-order fractional backward difference formula is transformed, and correction terms are
designed to maintain the optimal second-order accuracy in time. The obtained exponential-type
scheme is robust in that it is accurate even for very small α and can naturally resolve the initial
singularity provided θ = − 1

2 , both of which are demonstrated rigorously. All theoretical results are
confirmed by extensive numerical tests.

Keywords: theta methods; subdiffusion problem; fractional calculus; backward difference formula;
convolution quadrature

1. Introduction

Diffusion is one of the most common phenomena of the physical world in which a
particle’s motion is Brownian and can be characterized by the classical model ∂tu− ∆u = f .
It is well known that Brownian motions assume that mean-squared particle displacements
grow linearly with respect to time t, whereas an increasing list of experiments in the last
decades indicates that such growths can be sublinear or superlinear; i.e., the diffusion can
be anomalous. From a macro-perspective, the probability density function u in anomalous
diffusion obeys the equation involving a fractional order derivative [1,2]. In this work,
we concern ourselves with the subdiffusion transport mechanism (with the fractional
derivative order α ∈ (0, 1)), which has received much attention in recent years, since the
electron transport, thermal diffusion, and protein transport, among others, reveal that the
underlying stochastic process is the continuous time random walk instead of Brownian
motions [1–4]. Perhaps the simplest subdiffusion model [2,5] takes the following form:

∂α
t u(x, t)− ∆u(x, t) = f (x, t), (1)

with suitable initial boundary conditions. Here, ∂α
t denotes the Caputo fractional operator [6]

of order α ∈ (0, 1):

(∂α
t φ)(t) =

1
Γ(1− α)

∫ t

0

φ′(s)
(t− s)α

ds,

which satisfies ∂α
t φ = Dα

t (φ− φ(0)) where Dα
t is the Riemann–Louisville fractional differ-

ential operator [6].

(Dα
t φ)(t) =

1
Γ(1− α)

d
dt

∫ t

0

φ(s)
(t− s)α

ds.
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Its integral counterpart, the Riemann-Liouville fractional integral operator [6] D−α
t φ is

defined by

(D−α
t φ)(t) =

1
Γ(α)

∫ t

0

φ(s)
(t− s)1−α

ds.

The literature on numerically exploring the fractional calculus operators is vast. The
authors of [7,8] proposed the well-known L1 method for the Caputo fractional derivative,
which is convergent of order 2− α. Lubich [9] systematically developed the convolution
quadrature (CQ) theory for discretizing the operators Dα

t and D−α
t . The well-known

fractional linear multistep methods, which include the Grünwald formula [6] and pth-order
fractional backward difference formulas (BDF-p) as special cases, belong to such framework.
Some other difference formulas that essentially fit the framework of convolution quadrature
can be found in [10–12], to mention just a few. In [13], the authors developed the shifted
Grünwald formula to overcome the instability of the Grünwald formula when applied to
fractional advection–dispersion flow equations. Galeone and Garrappa [14] devised explicit
multistep methods for the fractional derivative and examined the stability properties in
much detail. By weighting and averaging the shifted Grünwald formula, Tian et al. [15]
proposed the weighted and shifted Grünwald difference formulas for space fractional
Riemann–Louisville derivatives. Ding et al. [16] built a second-order midpoint formula
by shifting the fractional BDF-2 and applied it to fractional cable equations. In [17], the
authors investigated shifted convolution quadrature (SCQ) methods in detail aiming to
develop θ-methods systematically, where a polynomial-type transformation strategy was
proposed to convert any known CQ method into a θ method. However, the existence of
zeros of polynomials severely restricts the choice of the parameter θ such that the method
is A-stable. In this work, we propose a novel transformation strategy by resorting to the
exponential-type function, illustrating its superiority in developing A-stable methods and
robust numerical schemes for subdiffusion problems.

Clearly, the fractional operators mentioned above involve a weak singular kernel
s−γ for some γ ∈ (0, 1), which renders numerically solving subdiffusion problems rather
difficult, since most high-order difference formulas, if directly applied to such problem on
uniform meshes, lose their deserved high accuracy [18–20]. To resolve such difficulties,
modified difference formulas by adding correction terms [21–25] or using nonuniform
meshes are developed [26,27], to mention just a few. Specifically, Yan et al. [21] developed
the modified L1 method by adding correction terms to recover the optimal convergence
order 2 − α, while Jin et al. [22] established the corrected fractional BDF-p to restore
the high accuracy. By shifting the approximation point by α

2 with respect to grid points,
Jin et al. [23] designed a two-step correction method for the fractional Crank–Nicolson
scheme and such a correction technique was further optimized by Wang et al. [24] where
only the first-step correction is needed to maintain the optimal accuracy. In particular, we
studied a general second-order difference scheme for (1) in [25], which is generated by
an SCQ difference formula with a free parameter θ ∈ (0, 1

2 ) and can preserve the high
accuracy if correction terms are added. The θ = 1

2 is excluded there for the singularity of
the corresponding transform functions involved in theoretical analysis. Indeed, the case
θ = 1

2 is of special interest since the correction terms vanish, enlightening us that a carefully
designed time-stepping method, even on uniform meshes, should automatically resolve
the singularity. A close examination, as shown in this study, indicates that the singularity
of transform functions stems from the zeros of polynomials, which can be avoided by using
the exponential-type transform functions. To sum up, the contribution of this study comes
from three aspects:

• An exponential-type transformation strategy is proposed to transfer any known pth
order (p ≤ 6) time-stepping methods into θ methods with the same accuracy.

• The robustness of numerical schemes obtained by the exponential-type transformation
strategy for a trial equation is examined theoretically and verified numerically.

• Rigorous arguments of the optimal error estimates of the transformed fractional BDF-2
are provided for the subdiffusion Problem (1).
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The rest of the article is outlined as follows. In Section 2, we first review some basic
aspects of the SCQ and then determine the stability region of θ methods when applied to a
simple differential equation. In Section 3, we propose the exponential-type transformation
to convert known stepping methods into θ methods and demonstrate its superiority over
traditional polynomial-type transformations. In Section 4, the exponentially transformed
fractional BDF-2 is applied to subdiffusion problems where correction terms are designed
to recover the optimal convergence rate, which are confirmed rigorously by theoretical
analyses. Extensive numerical tests are offered in Section 5 to verify all theoretical results.
Finally, in Section 6, we make some concluding remarks.

2. Preliminaries
2.1. Review of θ-Methods in SCQ

The construction of novel robust θ methods is based on the framework of shifted
convolution quadrature [28] for the fractional calculus, which will be introduced briefly in
this subsection.

Divide the time interval [0, T] by the following grids: 0 = t0 < t1 < · · · < tN = T with
tn = nτ and τ = T/N. Let φn be the value of a function φ(tn) for the sake of simplicity.
Given a sequence {ωj}∞

j=0, the difference formula

Dα,n
τ,θ φ := τ−α

n

∑
j=0

ωjφ
n−j (2)

represents an approximation to the Riemann–Louisville derivative (Dα
t φ)(tn−θ) if the

generating function ω(ζ) defined by ω(ζ) = ∑∞
j=0 ωjζ

j for |ζ| < 1 satisfies

(i) Stability: ωn = O(n−α−1), (ii) Consistency: τ−αeθτω(e−τ)− 1 = o(1), (3)

simultaneously.

Lemma 1 (See [28], Theorem 1). The difference Formula (2) is pth-order convergent if and only
if both the stability in (3) and the following consistent condition

Consistency of order p: τ−αeθτω(e−τ)− 1 = O(τp) (4)

are fulfilled.

It is notable that if the shift parameter θ vanishes in (2) or (4), meaning that a difference
formula Dα,n

τ φ := Dα,n
τ,0 φ is designed for Dα

t φ at the grid point tn; then, one essentially
obtains approximation methods belonging to the convolution quadrature theory, which
was partially founded in [9] for approximating fractional calculus and then extended to
more general convolution-type operators [29,30]. In previous studies, we have extended
several traditional difference formulas such as the fractional BDF-2 [31], the fractional
trapezoidal rule [17], and the fractional Adams–Moulton method [32], among others, to
their generalized versions by involving shifted parameter θ. Moreover, a conversion
strategy was proposed in [28] to transform a difference formula Dα,n

τ φ into Dα,n
τ,θ φ, which,

in the viewpoint of the generating function reconstruction, can be stated as follows:

ω(ζ) = vp(ζ)Θ(ζ; θ), Θ(ζ; θ) = γ0 + γ1(1− ζ) + γ2(1− ζ)2 + · · ·+ γp−1(1− ζ)p−1, (5)

where vp(ζ) = ∑∞
j=0 vjζ

j represents the generating function with vj from the weights of
Dα,n

τ φ, which is convergent of order p. The γjs are obtained from identity ∑∞
i=0 γi(1− ζ)i = ζθ.

Specifically, the second-, third- and fourth-order transformed generating functions take the
following forms:
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ω(ζ) =


v2(ζ)

[
(1− θ) + θζ

]
, for 2nd-order,

v3(ζ)
[ 1

2 (1− θ)(2− θ) + θ(2− θ)ζ + 1
2 θ(θ − 1)ζ2], for 3rd-order,

v4(ζ)
[ 1

6 (1− θ)(2− θ)(3− θ) + 1
2 θ(2− θ)(3− θ)ζ

− 1
2 θ(1− θ)(3− θ)ζ2 + 1

6 θ(1− θ)(2− θ)ζ3], for 4th-order,

(6)

where vp(ζ)(p = 2, 3) stands for any generating functions in CQ that is convergent of
order p.

v2(ζ) =

{( 3
2 − 2ζ + 1

2 ζ2)α, fractional BDF-2,
(1− ζ)α

[
1 + α

2 (1− ζ)
]
, 2nd-order Newton-Gregory formula,

v3(ζ) =


( 11

6 − 3ζ + 3
2 ζ2 − 1

3 ζ3)α, fractional BDF-3,
(1− ζ)α

[
1 + α

2 (1− ζ)

+( 1
8 α2 + 5α

24 )(1− ζ)2], 3rd-order Newton-Gregory formula,

v4(ζ) =



( 25
12 − 4ζ + 3ζ2 − 4

3 ζ3 + 1
4 ζ4)α, fractional BDF-4,

(1− ζ)α
[
1 + α

2 (1− ζ)

+( 1
8 α2 + 5α

24 )(1− ζ)2

+( 1
48 α3 + 5α2

48 + α
8 )(1− ζ)3], 4th-order Newton-Gregory formula.

(7)

We also mention that transformation (5) indicates that the function φ(t) = D0
t φ at time

tn−θ can be approximated, in accordance with (2), by formula ∑n
j=0 θjφ

n−j with the weights
{θj}∞

j=0 generated by Θ(ζ; θ), where identity vp(ζ) ≡ 1 is prescribed.

2.2. Stability Regions

Historically, Lubich [33] has proven that when using a convolution quadrature method
(with a generating function ω̃(ζ) = ∑∞

j=0 ω̃jζ
j) to solve the linear Abel integral equation

u(t) = f (t) +
λ

Γ(α)

∫ t

0
(t− s)α−1u(s)ds, (8)

where f (t) has finite limit as t→ ∞, the stability region S is precisely determined by

C \ {1/ω̃(ζ) : |ζ| ≤ 1}, (9)

if the weights ω̃n fulfill the following condition.

ω̃n =
nα−1

Γ(α)
+ πn, n ≥ 1, with

∞

∑
n=1
|πn| < ∞. (10)

Instead of (8), we concern ourselves in this work with the following fractional differ-
ential equation:

∂α
t u = λu + g(t), α ∈ (0, 1) and <(λ) < 0, (11)

where g(t) decays exponentially and partially. Resorting to any vp(ζ) in CQ, the numerical
scheme reads as follows:

n

∑
j=0

vn−j(U j −U0) = τ
(
Un +

1
λ

gn), n ≥ n0, (12)

where τ = λτα. We next identify conditions on vj or its generating function vp(ζ) to
determine the related stability region. It is worth noting that the first few steps (n =
1, 2, · · · , n0 − 1) for (12) may need to be treated separately, e.g., by adding correction
terms [9], to retain the high accuracy in cases where high-order methods are adopted.
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Some assumptions on vp(ζ) are needed.

(A1) τ−αvp(e−τ)− 1 = O(τp),

(A2) vp(ζ) = (1− ζ)α`(ζ), `(ζ) is nonzero and analytic for ζ ∈ {ζ : |ζ| ≤ 1}.
(13)

Note that the most well-known implicit CQ methods meet the assumptions (A1)
and (A2), e.g., the fractional BDF-p and Newton–Gregory formula, among others. The
assumption (A2) actually implies that vn = O(n−α−1).

Given vp(ζ) that fulfills (A1) and (A2), introduce the sequence {v(−1)
j }∞

j=0 generated

by 1
vp(ζ)

. The next lemma shows that τα ∑n
j=0 v

(−1)
j φn−j is an approximation to D−α

t φ at
tn. For a better presentation, the proof of the following lemmas in this section is left in
Appendix A.

Lemma 2. Let vp(ζ) satisfy the assumptions (A1) and (A2). Then, τα ∑n
j=0 v

(−1)
j φn−j approx-

imates (D−α
t φ)(tn) with convergence order p, i.e., v

(−1)
n = O(nα−1) and τα/vp(e−τ)− 1 =

O(τp).

Lemma 3. Let vp(ζ) satisfy the assumptions (A1) and (A2). The stability region S for (12) is
determined by the following.

C \ {vp(ζ) : |ζ| ≤ 1}. (14)

3. Novel Transformation Strategy

Instead of transformation (5) in which a polynomial-type function Θ(ζ; θ) is involved,
we shall, in this section, propose a different strategy by resorting to an exponential-type
transform function and demonstrate that the new strategy is more robust by allowing a
wider range of θ to guarantee the stability of schemes in solving fractional differential
equations.

Let δ(ζ) = ∑
p
j=1

1
j (1 − ζ)j denote the generating function of backward difference

formulas (BDF) of order p ≤ 6.

Theorem 1 (Exponential-type transformation). Let θ ∈ R and assume vp(ζ) fulfills (A1) and
(A2). Define the following:

ω(ζ) = vp(ζ)eθδ(ζ), (15)

then, the difference Formula (2) with weights generated by ω(ζ) is convergent of order p.

Proof. Clearly, the function eθδ(ζ) (with respect to ζ) is analytic within the unit disc |ζ| < 1
and is k-times differentiable on the unit circle for any positive integer k; thus, its Fourier
coefficients, i.e., the en generated from eθδ(ζ) = ∑∞

n=0 enζn, decay faster than, e.g., O(n−k).
Then, the asymptotic property of ωn is fully determined by vn, which, by assumption (A2),
leads to the following.

ωn = O(n−α−1). (16)

Moreover, by the consistency condition of order p for vp(ζ) due to (A1) and that of
δ(ζ), the following holds.

τ−αvp(e−τ) = 1 + O(τp), τ−1δ(e−τ) = 1 + O(τp).

Using the Taylor expansion, one immediately obtains the following:

τ−αeθτω(e−τ) = τ−αvp(e−τ)eθτeθδ(e−τ) = 1 + O(τp), (17)

indicating that ω(ζ), as a generating function in SCQ, is consistent of order p as well. Finally,
by (16) and (17), we complete the proof of the theorem in accordance with Lemma 1.
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Remark 1. In view of the fact that φ(tn−θ) = (D0
t φ)(tn−θ), Theorem 1 actually permits us to

approximate φ(tn−θ) by a discrete convolution.

φn−θ :=
n

∑
j=0

θjφ
n−j, where θj is generated by

∞

∑
j=0

θjζ
j = eθδ(ζ). (18)

As demonstrated in the arguments, θn decays faster than O(n−k) for any integer k > 0.
Indeed, since eθδ(ζ) is analytic for |ζ| < ρ for some ρ > 1, θn decays exponentially.

For the purpose of application, it is of interest to present efficient algorithms to
calculate the coefficients of ω(ζ) in (15). The next lemma offers an algorithm by which ωj
can be obtained in a recursive manner.

Lemma 4. Assume ω(ζ) takes the form
[
P(ζ)

]αeθQ(ζ) where P(ζ) and Q(ζ) are polynomials
such that ω(ζ) is analytic within the unit disc |ζ| < 1; then, we obtain the following:

ω0 =
[
P(0)

]αeθQ(0), ωn =
1

nP(0)

[
ω0Gn−1 +

n−1

∑
k=1

ωn−k
(
Gk−1 − (n− k)Pk

)]
, n ≥ 1, (19)

where Gk includes the coefficients of G(ζ) defined by G(ζ) = αP′(ζ) + θP(ζ)Q′(ζ).

Proof. Take the derivative of ω(ζ) =
[
P(ζ)

]αeθQ(ζ) with respect to ζ and multiply both
sides by P(ζ) to obtain the following.

P(ζ)ω′(ζ) = ω(ζ)G(ζ).

The Formula (19) then follows by taking the nth coefficient of both sides of the above
equality.

Remark 2. It is notable that Algorithm (19) is efficient since G(ζ) and P(ζ) have finitely many
nonzero coefficients; thus, the computing complexity to obtain {ωj}N

j=0 is of O(N).

In contrast to the polynomial-type transform function Θ(ζ; θ) in (5), the exponential
function eθδ(ζ) takes the advantage that it has no zero for any θ ∈ R, whence e−θδ(ζ)

can always be expanded into a series without limiting the range of θ. The immediate
consequence is that in designing A(ϑ)-stable schemes, the exponential-type transform
places no constraint on θ while the polynomial-type transform may limit the choice of θ
severely, particularly for high-order methods.

To be more specific, consider the following simple trial equation:

∂α
t u = λu, α ∈ (0, 1) and <(λ) < 0, (20)

with initial condition u(0) = u0. For a given generating function vp(ζ) that satisfies
the Assumptions (A1) and (A2), by adopting the polynomial-type transform (5) or the
exponential transform as in Theorem 1, one obtain the following discrete scheme:

n

∑
j=0

ωn−j(U j −U0) = τUn−θ , n ≥ n0, (21)

where τ = λτα and Un−θ = ∑n
j=0 θn−jU j. The weights θj, depending on the choice of

transform strategies, are coefficients of Θ(ζ; θ) or eθδ(ζ), respectively.

Theorem 2. Assume that vp(ζ) satisfies (A1) and (A2). For ω(ζ) = vp(ζ)Θ(ζ; θ), the stability
region S for (21) is determined by the following:

C \ {vp(ζ) : |ζ| ≤ 1}, (22)
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provided that θ ∈ Λθ := {θ : Θ(ζ; θ) 6= 0 for all |ζ| ≤ 1}. In contrast, for ω(ζ) = vp(ζ)eθδ(ζ),
stability region S is determined by (22) for any θ ∈ R.

Proof. Since Θ(ζ) or eθδ(ζ) is analytic and nonzero for |ζ| ≤ 1, 1/Θ(ζ) or e−θδ(ζ) can be
expanded at ζ = 0 with coefficients θ

(−1)
n decay exponentially. By replacing n with k in the

Equation (21) and multiplying both sides by θ
(−1)
n−k and summing k from n0 to n, we obtain

the following.
n

∑
k=n0

θ
(−1)
n−k

k

∑
j=0

ωk−j(U j −U0) = τ
n

∑
k=n0

θ
(−1)
n−k Uk−θ . (23)

By resorting to the fact that vp(ζ) = ω(ζ) 1
Θ(ζ)

or vp(ζ) = ω(ζ)e−θδ(ζ) and Cauchy
product of series, one can obtain the following:

n

∑
k=0

vn−k(Uk −U0) = τ
(
Un +

1
λ

gn), (24)

where gn takes the following form

gn = τ−α
n0−1

∑
j=0

[ n0−1−j

∑
k=0

(
ωk − λταθk

)
θ
(−1)
n−k−j

]
U j − τ−αU0

n0−1

∑
j=0

n0−1−j

∑
k=0

θ
(−1)
n−k−jωk,

indicating that gn decays exponentially. By comparing (24) with (12), one readily obtains
result (22) from Lemma 3.

Remark 3. Several methods can be found in the literature [34] for determining Λθ explicitly. For
example, resorting to the Schur criterion (see Schur polynomial in Appendix A, one can readily
obtain the explicit form of Λθ , as shown in Table 1. The sharpness of the constraints on θ are verified
in Example 1 of Section 5.

Table 1. Explicit form of Λθ .

Order p 2 3 4

Λθ (−∞, 1
2 ) (−∞, 1−

√
2

2 ) (−∞, 3
2 −

√
7

2 )

4. Applications

In this section, we apply the exponential-type transformation strategy to the following
subdiffusion problem and demonstrate its advantages in developing robust numerical
schemes: 

∂α
t u(x, t)− ∆u(x, t) = f (x, t), (x, t) ∈ Ω× (0, T],

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T],
u(x, 0) = v(x), x ∈ Ω,

(25)

where the space Ω ⊂ Rd (d = 1, 2, 3) is a bounded convex polygonal domain with the
boundary denoted by ∂Ω. The operator ∆ : D(∆)→ L2(Ω) stands for the Laplacian with
D(∆) = H1

0(Ω) ∩ H2(Ω) and f : (0, T]→ L2(Ω) is a given function. The initial function v,
depending on its smoothness, belongs to D(∆) or L2(Ω).

4.1. Formulation of Fully Discrete Scheme

In this section, we take δ(ζ) = 3
2 − 2ζ + 1

2 ζ2 and let ωj be generated by ω(ζ) =[
δ(ζ)

]αeθδ(ζ). In accordance with Theorem 1 (see also Remark 1), φn−θ and Dα,n
τ,θ φ both are

of second-order accuracy relative to their continuous counterparts. To formulate the fully
discrete scheme of the model, define the finite element space as follows:
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Vh = {χh ∈ H1
0(Ω) : χh|e is a linear polynomial function, e ∈ Th}

where Th is a shape regular and a quasi-uniform triangulation of Ω.
Let Ph : L2(Ω) → Vh and Rh : H1

0(Ω) → Vh stand for the L2(Ω) and Ritz projection,
respectively, and define ∆h : Vh → Vh as the discrete Laplacian. By replacing u(t) with
w(t) + v and f (t) with g(t) + f (0) in (25), the space semi-discrete scheme then reads
as follows:

Dα
t wh(t)− ∆hw(t) = gh(t) + f 0

h + ∆hvh, (26)

where gh := Phg, f 0
h = Ph f (0) and vh = Rhv if v ∈ D(∆) or vh = Phv if v ∈ L2(Ω). The

fully discrete scheme can, thus, be stated as finding Wn
h ∈ Vh such that the following is

the case.
Dα,n

τ,θ Wh − ∆hWn−θ
h = gn−θ

h + f 0
h + ∆hvh, n ≥ 1, θ ∈ (−1, 1). (27)

In general cases, scheme (27) can only result in first-order convergence rates at positive
times due to the initial singularity of the solution. We propose a modified scheme, with the
motivation explained in the next section, by resorting to a single-step correction.

Dα,1
τ,θWh − ∆hW1−θ

h = (θ + 3/2)(∆hvh + f 0
h ) + g1−θ

h , n = 1,

Dα,n
τ,θ Wh − ∆hWn−θ

h = gn−θ
h + f 0

h + ∆hvh, n ≥ 2.
(28)

Note that for θ = − 1
2 , the scheme (28) recovers exactly (27), indicating that (27) can

resolve the initial singularity automatically if the problem is discretized at point tn+ 1
2
.

4.2. Optimal Error Estimates

The error estimate is based on solution representation and estimates of some kernels.
Denote by φ̂ the Laplace transform of φ. Then, using the Laplace transform and its inverse
transform, we obtain the following:

wh(t) = −
1

2πi

∫
Γσ,ε

ezt[K(z)(∆hvh + fh(0)) + zK(z)ĝh(z)
]
dz, (29)

where K(z) = −z−1(zα − ∆h)
−1 stands for the kernel function, and the contour (with the

direction of an increasing imaginary part) Γσ,ε is defined by the following.

Γσ,ε := {z ∈ C : |z| = ε, | arg z| ≤ σ} ∪ {z ∈ C : z = re±iσ, r ≥ ε}.

Theorem 3. For α ∈ (0, 1) and θ ∈ (−1, 1), there exist σ0 ∈ (π/2, π) and ε0 > 0, both of which
are free of α and τ such that for any σ ∈ (π/2, σ0) and any ε < ε0, the solution of (28) takes the
following form:

Wn
h = − 1

2πi

∫
Γτ

σ,ε

eztn
[
`(e−zτ)K(δτ(e−zτ))(∆hvh + f 0

h ) + τδτ(e−zτ)K(δτ(e−zτ))gh(e−zτ)
]
dz, (30)

where Γτ
σ,ε = {z ∈ Γσ,ε : |=(z)| ≤ π/τ}, δτ(ζ) = δ(ζ)/τ and `(ζ) = δ(ζ)ζ

( 1
1−ζ + θ +

1
2
)
e−θδ(ζ).

Proof. Multiply both sides of (28) by ζn and sum the index n from 1 to ∞ to yield the
following:

∞

∑
n=1

ζnDα,n
τ,θ Wh −

∞

∑
n=1

ζn∆hWn−θ
h =

∞

∑
n=1

ζngn−θ
h + ( f 0

h + ∆hvh)

( ∞

∑
n=1

ζn + (θ + 1/2)ζ
)

,

which leads to the following:([
δτ(ζ)

]α − ∆h
)
Wh(ζ) = gh(ζ) + ( f 0

h + ∆hvh)κ(ζ),
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where κ(ζ) = ζ
( 1

1−ζ + θ + 1
2
)
e−θδ(ζ). By Lemma B.1 in [22], for fixed constant φ0 ∈ (π/2, π),

there exists σ0 ∈ (π/2, π), which depends only on φ0 for any σ ∈ (π/2, σ0) and any ε < ε0
where ε0 is small enough, δτ(e−zτ)|z∈Γτ

σ,ε
∈ Σφ0 := {z ∈ C : | arg z| < φ0, z 6= 0}. By the

Cauchy integral formula, we have the expression for Wn
h by the following:

Wn
h =

1
2πi

∫
|ζ|=ε

Wh(ζ)

ζn+1 dζ
ζ=e−zτ

=====
τ

2πi

∫
Γτ

ε

eztnWh(e−zτ)dz

where Γτ
ε :=

{
z = − 1

τ ln ε + iy : y ∈ R, |y| ≤ π/τ
}

. Let L be the region enclosed by
contours Γτ

σ,ε, Γτ
ε , Γτ

± := R± iπ/τ (oriented from left to right); one can check whether
Wh(e−zτ) is analytic for z ∈ L. By using the Cauchy integral formula again and noting
that the integral values along Γτ

− and Γτ
+ are opposite, result (30) follows readily by taking

`(ζ) = τδτ(ζ)κ(ζ). The proof is completed.

Remark 4. The arguments for Theorem 3 reveal the superiority of the exponential-type transforma-
tion strategy that, for any arbitrary θ, the transform function e−θδ(ζ)|ζ=e−zτ appearing in κ(ζ) is
analytic for z ∈ L, in contrast to the polynomial-type transform function 1

1−θ+θζ |ζ=e−zτ adopted in
[25], which is singular at points z = ±π

τ ∈ L when θ = 1
2 (in which case, the Crank–Nicolson

scheme is excluded). See also [23,24] for similar situations. Therefore, the numerical scheme or
numerical analysis is robust against shifted parameter θ when the exponential-type transformation
strategy is considered. On the other hand, thanks to Theorem 1, function δτ(ζ) appearing in (30) is
independent of α, allowing us to develop robust analyses even for small α. We argue that such types
of robustness are not available for the schemes in [23–25] as δτ(ζ) in those schemes are singular at
α = 0, leading to the blow-up of constants C in their estimates. See Example 3 in Section 5.

Lemma 5. Let Γτ
σ,ε be the contour defined in Theorem 3. For given θ ∈ (−1, 1) and any z ∈ Γτ

σ,ε,
the following holds:

|`(e−zτ)− 1| ≤ Cτ2|z|2, (31)

where C is independent of τ, z, but may be dependent on θ.

Proof. Since |z|τ ≤ π/ sin σ < +∞, we only need to prove (31) for sufficiently small |z|τ.
By the expansion of `(ζ) at the point ζ = 1, we have the following: `(ζ) = 1+ c(θ)(1− ζ)2 +
(1− ζ)3r(ζ), where r(ζ) is analytic at ζ = 1. One then immediately obtains the following:
`(e−zτ) = 1 + c(θ)τ2|z|2 + o(τ2|z|2), which completes the proof of the lemma.

Theorem 4. Suppose that uh(t) := wh(t) + vh is the solution of the space semi-discrete scheme
of (25), and Un

h := Wn
h + vh is the solution of the fully discrete scheme of (25). If f ∈W1,∞(0, T; L2(Ω))

and
∫ t

0 (t− s)α−1‖ f ′′(x)‖ds ∈ L∞(0, T) where ‖ · ‖ denotes the L2 norm, then the following is
the case:

‖Un
h − uh(tn)‖ ≤ Cτ2

(
R(tn, v) + tα−2

n ‖ f (0)‖+ tα−1
n ‖ f ′(0)‖+

∫ tn

0
(tn − s)α−1‖ f

′′
(s)‖ds

)
, (32)

whereR(tn, v) = tα−2
n ‖∆v‖ if v ∈ D(∆) andR(tn, v) = t−2

n ‖v‖ if v ∈ L2(Ω). The constant C
is independent of τ, α, n, N and f but may depend on θ.

Proof. The technique for this theorem is quite standard and is essentially and partially
based on Lemma 5 and the following estimates on δτ(ζ), which can be found in [22].

|δτ(e−zτ)− z| ≤ Cτ2|z|3, |δα
τ(e
−zτ)− zα| ≤ Cτ2|z|2+α, C1|z| ≤ |δτ(e−zτ)| ≤ C2|z|.

We omitted the details here for reasons of space.

Remark 5. The error u − uh of the space semi-discrete scheme (26) has been well studied by
researchers and is not our main concern in this article. Interested readers can refer to [35] for more
information.
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5. Numerical Tests

Example 1. In this example, we explore the stability of the numerical scheme (21):

n

∑
j=0

ωn−j(U j −U0) = τUn−θ , n ≥ n0,

for trial Equation (20) in which n0 = 1 and the polynomial-type transformation is adopted and
verify the sharpness of Λθ in Theorem 2. Let λ = −1, α = 0.5 and fix τ = 0.1. The exact
solution of (20) can be expressed by the Mittag–Leffler function [6] Eα(x) := ∑∞

j=0
xj

Γ(jα+1) , as
u(t) = u0Eα(λtα).

In Figure 1, we illustrate the asymptotic properties of numerical solutions obtained under
different θ for different numerical methods. The solutions in the first column are obtained under
the threshold values θ = 1

2 , 2−
√

2
2 , 3−

√
7

2 (see Table 1) where one can observe, for each case, that the
amplitude is invariant as time passes. By taking a smaller value of θ than its threshold, as shown
in the middle column of Figure 1, we obtain numerical solutions that are asymptotically stable in
contrast to the unbounded ones demonstrated in the last column in which θ exceeds the threshold
a bit.
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Fractal Fract. 2022, 6, 417 11 of 16

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

U
n

u(t)

(g)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

U
n

u(t)

(h)

0 5 10 15 20
-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

U
n

u(t)

(i)

Figure 1. Justification of the sharpness of Theorem 2 when using the polynomial-type transform
function Θ(ζ; θ) for Example 1. (a–c): exact solution u(t) vs. numerical solution Un obtained by the
transformed 2nd-order Newton–Gregory formula. (d–f): exact solution u(t) vs. numerical solution
Un obtained by the transformed 3rd-order Newton–Gregory formula. (g–i): exact solution u(t) vs.
numerical solution Un obtained by the transformed fractional BDF-4.

Example 2. For the subdiffusion Problem (25), let T = 1. Depending on the smoothness of v, we
consider two cases:

(i) f = 0, v = sin x ∈ D(∆), Ω = (0, π), with the exact solution u(x, t) = Eα(−tα) sin x;
(ii) f = 0, v = χ(0,1/2), Ω = (0, 1).
In Tables 2 and 3, we present the L2 error and convergence rates for different α and θ for

schemes (27) and (28), respectively. One observes that scheme (28) with correction terms results in
optimal convergence rates while scheme (27) is of first-order accuracy except for θ = −0.5, both of
which are in line with our theoretical results.

Table 2. L2 error and convergence rates at time t = 0.5 of Example 2 (i).

α θ
Corrected Scheme (28) Standard Scheme (27)

τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates

0.1

−0.9 4.33 × 10−6 3.10 × 10−6 6.92 × 10−7 1.62 × 10−7 2.09 7.50 × 10−4 3.91 × 10−4 1.96 × 10−4 9.82 × 10−5 1.00
−0.5 1.86 × 10−6 8.76 × 10−7 2.65 × 10−7 7.13 × 10−8 1.89 1.86 × 10−6 8.76 × 10−7 2.65 × 10−7 7.13 × 10−8 1.89
0.5 1.47 × 10−4 3.43 × 10−5 8.27 × 10−6 2.02 × 10−6 2.03 2.02 × 10−3 9.97 × 10−4 4.95 × 10−4 2.47 × 10−4 1.01
0.9 2.53 × 10−4 5.78 × 10−5 1.38 × 10−5 3.37 × 10−6 2.03 2.87 × 10−3 1.41 × 10−3 6.95 × 10−4 3.46 × 10−4 1.01

0.5

−0.8 1.15 × 10−4 2.49 × 10−5 5.78 × 10−6 1.39 × 10−6 2.05 3.15 × 10−3 1.60 × 10−3 8.04 × 10−4 4.03 × 10−4 1.00
−0.5 3.86 × 10−5 6.97 × 10−6 1.44 × 10−6 3.24 × 10−7 2.15 3.86 × 10−5 6.97 × 10−6 1.44 × 10−6 3.24 × 10−7 2.15

0 2.35 × 10−4 5.70 × 10−5 1.40 × 10−5 3.49 × 10−6 2.01 5.49 × 10−3 2.72 × 10−3 1.35 × 10−3 6.74 × 10−4 1.00
0.6 2.35 × 10−4 5.70 × 10−5 1.40 × 10−5 3.49 × 10−6 2.01 1.23 × 10−2 6.02 × 10−3 2.98 × 10−3 1.49 × 10−3 1.01

0.9

−0.5 2.35 × 10−4 5.70 × 10−5 1.40 × 10−5 3.49 × 10−6 2.01 3.05 × 10−4 7.23 × 10−5 1.76 × 10−5 4.35 × 10−6 2.02
−0.2 1.28 × 10−4 2.95 × 10−5 7.10 × 10−6 1.74 × 10−6 2.03 6.78 × 10−3 3.30 × 10−3 1.63 × 10−3 8.10 × 10−4 1.01
0.3 3.56 × 10−4 8.65 × 10−5 2.14 × 10−5 5.31 × 10−6 2.01 1.78 × 10−2 8.72 × 10−3 4.33 × 10−3 2.15 × 10−3 1.01
0.6 7.64 × 10−4 1.84 × 10−4 4.51 × 10−5 1.12 × 10−5 2.01 2.44 × 10−2 1.20 × 10−2 5.95 × 10−3 2.96 × 10−3 1.01
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Table 3. L2 error and convergence rates at time t = 0.5 of Example 2 (ii).

α θ
Corrected Scheme Standard Scheme

τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates τ = 2−5 τ = 2−6 τ = 2−7 τ = 2−8 Rates

0.2

−0.5 2.68 × 10−6 7.74 × 10−7 2.03 × 10−7 5.14 × 10−8 1.98 2.68 × 10−6 7.74 × 10−7 2.03 × 10−7 5.14 × 10−8 1.98
−0.3 7.66 × 10−6 1.92 × 10−6 4.80 × 10−7 1.18 × 10−7 2.02 9.41 × 10−5 4.69 × 10−5 2.28 × 10−5 1.07 × 10−5 1.09

0 1.83 × 10−5 4.39 × 10−6 1.07 × 10−6 2.62 × 10−7 2.03 2.42 × 10−4 1.19 × 10−4 5.75 × 10−5 2.68 × 10−5 1.10
0.9 7.69 × 10−5 1.75 × 10−5 4.14 × 10−6 9.97 × 10−7 2.06 7.07 × 10−4 3.40 × 10−4 1.63 × 10−4 7.56 × 10−5 1.11

0.8

−0.5 8.79 × 10−5 2.12 × 10−5 5.20 × 10−6 1.28 × 10−6 2.03 8.79 × 10−5 2.12 × 10−5 5.20 × 10−6 1.28 × 10−6 2.03
0.1 1.99 × 10−4 4.64 × 10−5 1.12 × 10−5 2.71 × 10−6 2.04 7.59 × 10−4 3.95 × 10−4 1.95 × 10−4 9.18 × 10−5 1.09
0.5 3.28 × 10−4 7.47 × 10−5 1.77 × 10−5 4.27 × 10−6 2.05 1.36 × 10−3 6.82 × 10−4 3.31 × 10−4 1.54 × 10−4 1.10
0.7 4.11 × 10−4 9.26 × 10−5 2.18 × 10−5 5.25 × 10−6 2.06 1.68 × 10−3 8.29 × 10−4 3.99 × 10−4 1.86 × 10−4 1.10

Example 3. We illustrate the robustness of (28) when α→ 0 for subdiffusion Problem (25). Let
Ω = (0, π), T = 1 and u(x, t) = (Eα(−tα) + t3) sin x such that v = sin x ∈ D(∆). The
source term is f (x, t) =

(
6t3−α/Γ(4− α) + t3) sin x. In Figure 2a, we illustrate the L2 error of

scheme (28) for varying α under different θ = −0.5, 0.1, 0.4, 0.8. In particular, the cases θ = 0.1
and 0.4 of the scheme in [25] are also presented. Obviously, the scheme (28) is much more robust
when α→ 0 than the scheme in [25].

It may seem weird that, in (18), the term φ(tn−θ) is approximated by a nonlocal formula with
coefficients θj with j = 0, 1, · · · , n. We note that θj decays exponentially as plotted in Figure 2b,
and in application, one can adopt only the first few values; e.g., the first 50 values will be sufficient
to guarantee the accuracy.
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Figure 2. For Example 3. (a) Comparison of L2 error between our scheme and that in [25] for different
α. (b) Exponential decay of the weights |θn| defined in (18).

6. Conclusions

A novel exponential-type transformation strategy is proposed to develop robust and
accurate difference formulas for fractional derivatives by involving shifted parameter θ.
The advantages of this novel strategy over the polynomial type transform methods are
explored in detail. As an application, the well-known fractional BDF-2 is transformed
under the novel strategy and is adopted in the subdiffusion problem. Rigorous arguments
are carried out, showing that the resultant scheme can resolve the solution initial singularity
quite naturally at the special point tn+ 1

2
. The robustness for small α is also verified both

theoretically and numerically.
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Appendix A

Appendix A.1

Proof of Lemma 2. Assumption (A2) indicates that 1
vp(ζ)

= (1− ζ)−α 1
`(ζ)

where 1
`(ζ)

is

analytic on the closed unit disc; then, clearly v
(−1)
n = O(nα−1) by the expansion of (1− ζ)−α.

On the other hand, assumption (A1) implies the following:

τα

vp(e−τ)
=

1
τ−αvp(e−τ)

= 1 + O(τp),

which concludes the proof of the lemma.

Appendix A.2

Proof of Lemma 3. (Step 1.) Since |τ−αvp(e−τ)− 1| → 0 as τ → 0, then the following is
the case: (

1− e−τ

τ

)α[
`(e−τ)− 1

]
+

(
1− e−τ

τ

)α

− 1→ 0,

indicating that `(1) = 1. By expanding 1
`(ζ)

at ζ = 1, one obtains the following:

1
`(ζ)

= 1 + (1− ζ)[c1 + c2(1− ζ) + · · · ] =: 1 + (1− ζ)ψ(ζ), (A1)

where ψ(ζ) is analytic at 1. Hence, we have the following:

1
vp(ζ)

= (1− ζ)−α + (1− ζ)1−αψ(ζ),
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requiring the following:

v
(−1)
n = an +

n

∑
j=0

bn−jψj, (A2)

where ψn are the coefficients of ψ(ζ), and the following is the case.

an : = (−1)n
(
−α
n

)
=

nα−1

Γ(α)
[1 + O(n−1)],

bn : = (−1)n
(

1− α
n

)
=

nα−2

Γ(α− 1)
[1 + O(n−1)].

(A3)

Note that (A1) implies the following:

ψ(ζ) =

1
`(ζ)
− 1

1− ζ
,

which combined with the fact that 1
`(ζ)
− 1 is analytic for |ζ| ≤ 1 leads to the analyticity

of ψ(ζ) for |ζ| ≤ 1. Hence, ψn decays exponentially, meaning that ∑∞
n=0 |ψn| < ∞. On the

other hand, using the following inequality:

∞

∑
n=0

∣∣∣∣ n

∑
j=0

bn−jψj

∣∣∣∣ ≤ ∞

∑
n=0
|bn|

∞

∑
n=0
|ψn| < ∞,

and combining (A2) and (A3), one immediately obtains the following.

∞

∑
n=0

∣∣∣∣v(−1)
n − nα−1

Γ(α)

∣∣∣∣ ≤ ∞

∑
n=0

∣∣∣∣an −
nα−1

Γ(α)

∣∣∣∣+ ∞

∑
n=0

∣∣∣∣ n

∑
j=0

bn−jψj

∣∣∣∣ < ∞. (A4)

(Step 2.) Replace n in (12) with k, multiply both sides by v
(−1)
n−k and then sum k from n0

to n to obtain the following.

n

∑
k=n0

v
(−1)
n−k

k

∑
j=0

vk−j(U j −U0) = τ
n

∑
k=n0

v
(−1)
n−k

(
Uk +

1
λ

gk). (A5)

For the left-hand side of (A5), the following holds.

n

∑
k=n0

v
(−1)
n−k

k

∑
j=0

vk−j(U j −U0)

=
n

∑
k=0

v
(−1)
n−k

k

∑
j=0

vk−j(U j −U0)−
n0−1

∑
k=0

v
(−1)
n−k

k

∑
j=0

vk−j(U j −U0)

= Un −U0 −
n0−1

∑
j=0

( n0−1−j

∑
k=0

v
(−1)
n−k−jvk

)
(U j −U0).

(A6)

For the right-hand side of (A5), we have the following.

τ
n

∑
k=n0

v
(−1)
n−k

(
Uk +

1
λ

gk) = τ
n

∑
k=0

v
(−1)
n−k Uk − τ

n0−1

∑
k=0

v
(−1)
n−k Uk + τα

n

∑
k=n0

v
(−1)
n−k gk. (A7)

Combining (A5)–(A7), one obtains the following:

Un = f n + τ
n

∑
k=0

v
(−1)
n−k Uk, (A8)
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where

f n = U0
(

1− τv
(−1)
n −

n0−1

∑
j=1

n0−1−j

∑
k=0

v
(−1)
n−k−jvk

)

+
n0−1

∑
j=1

U j
( n0−1−j

∑
k=0

v
(−1)
n−k−jvk − τv

(−1)
n−j

)
+ τα

n

∑
k=n0

v
(−1)
n−k gk.

For fixed τ > 0, since vn = O(n−α−1), v
(−1)
n = O(nα−1) and gn decays exponentially,

it holds that f n has finite limit as n → ∞. Meanwhile, by Lemma 2, (A8) actually is an
approximation to (8) with convergence order p. In accordance with (10), the estimate (A4)
indicates that stability region S is the following:

C \ {1/v
(−1)
p (ζ) : |ζ| ≤ 1} = C \ {vp(ζ) : |ζ| ≤ 1}, (A9)

which completes the proof of the lemma.

Appendix A.3. Schur Polynomial

The polynomial Φ(ζ) of order k

Φ(ζ) = ckζk + ck−1ζk−1 + · · ·+ c1ζ + c0, ck 6= 0, c0 6= 0,

is said to be a Schur polynomial if its roots ζ j satisfy |ζ j| < 1, j = 1, 2, · · · , k. Given Φ(ζ),
introduce the following polynomials:

Φ0(ζ) = c∗0ζk + c∗1ζk−1 + · · ·+ c∗k−1ζ + c∗k ,

Φ1(ζ) =
1
ζ

[
Φ0(0)Φ(ζ)−Φ(0)Φ0(ζ)

]
,

where c∗j denotes the complex conjugate of cj.

Lemma A1. Φ(ζ) is a Schur polynomial if and only if |Φ0(0)| > |Φ(0)| and Φ1(ζ) is a
Schur polynomial.

To identify Λθ in Theorem 2, one merely needs to require the polynomial ζ p−1Θ(1/ζ; θ)
be a Schur polynomial, which by Lemma A1, a sequence of Schur polynomials with
decreasing degrees are obtained, leading to Λθ listed in Table 1.
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