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Abstract: The fuzzy differential subordination concept was introduced in 2011, generalizing the
concept of differential subordination following a recent trend of adapting fuzzy sets theory to other
already-established theories. A prolific tool in obtaining new results related to operators is the frac-
tional integral applied to different functions. The fractional integral of the confluent hypergeometric
function was previously investigated using means of the classical theory of subordination. In this
paper, we give new applications of this function using the theory of fuzzy differential subordina-
tion. Fuzzy differential subordinations are established and their best dominants are also provided.
Corollaries are written using particular functions, in which the conditions for the univalence of the
fractional integral of the confluent hypergeometric function are given. An example is constructed as
a specific application of the results obtained in this paper.

Keywords: fuzzy set; univalent function; fuzzy differential subordination; fuzzy best dominant;
confluent hypergeometric function; fractional integral of order α

1. Introduction

Fuzzy sets theory has its origins in the paper published by Lotfi A. Zadeh in 1965 [1].
At that time, the paper raised many discussions and was regarded as controversial, but
it is nowadays considered the foundation of fuzzy logic theory and has reached over
100,000 citations. The concept of fuzzy sets has applications in many domains of the
modern technological world. The importance of the fuzzy set notion and certain steps in
the evolution of the concept are nicely highlighted in certain review papers [2,3], and the
development of different areas of research due to this concept is now obvious.

The basis of fuzzy differential subordination theory was set in 2011 with the use of
fuzzy set notion in introducing a generalization of the classical concept of subordination
familiar to geometric function theory, called fuzzy subordination [4]. Fuzzy subordina-
tion was then extended to fuzzy differential subordination in 2012 [5]. It is seen as a
generalization of the differential subordination concept introduced by S.S. Miller and
P.T. Mocanu [6,7], developed by many researchers in the following years and synthesized
in [8]. The theory of fuzzy differential subordination developed by providing means for
obtaining the dominants and best dominants of the fuzzy differential subordinations [9]
and by adding operators to the research [10–12], continually following the general theory
of differential subordination established in geometric function theory. The dual concept
of fuzzy differential superordination was also introduced in 2017 [13] and investigations
relating the two concepts continued to provide new results [14,15].

The study of fuzzy differential subordinations continues and interesting results were
recently published concerning a Mittag-Leffler-type Borel distribution [16], connecting
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fuzzy differential subordination to different types of operators [17,18] or for obtaining
univalence criteria [19].

Fractional calculus had a powerful impact in recent research, having many applications
in different branches of science and engineering. Its importance has been nicely highlighted
in a recent review paper [20]. A fractional integral is an important tool for obtaining new,
interesting results. Recent papers present new integral inequalities obtained by applying
fractional integrals and considering convexity properties [21,22], new extensions involving
fractional integrals and the Mittag-Leffler Confluent Hypergeometric Function [23] or tying
it to other operators [24,25].

The tremendous development of fractional calculus during the last years also made an
impression on the study regarding fuzzy differential subordination theory. New fuzzy dif-
ferential subordinations were obtained using the Atangana–Baleanu fractional integral [26],
the fractional integral of the confluent hypergeometric function [27] and the fractional
integral of the Gaussian hypergeometric function [28].

The research presented in this paper involves the fractional integral of the conflu-
ent hypergeometric function defined in [29] and is investigated there using the means
of classical theories of differential subordination and superordination. Considering the
previous applications of this function in obtaining fuzzy differential subordinations and
superordinations [30], we continue the study and new fuzzy differential subordinations
are obtained in this paper. The best fuzzy dominant is determined for each of them in the
two theorems proved in the Main Results part of the paper. As a novelty, the conditions
for the univalence of the fractional integral of the confluent hypergeometric function are
stated using fuzzy differential subordinations. The first univalence result designed as the
corollary of the first original theorem of this paper is obtained by using a certain function as
the fuzzy best dominant. Another condition for the univalence of the fractional integral of
the confluent hypergeometric function is provided in the second original theorem proved
in this paper. An example is constructed in order to illustrate some applications of the
newly proved theoretical results.

2. Preliminary Notions and Results

Certain notions specific to geometric function theory are implemented in this study.
Considering U = {z ∈ C : |z| < 1} as the unit disc of the complex plane, the closed

unit disc is denoted by U = {z ∈ C : |z| ≤ 1} and ∂U = {z ∈ C : |z| = 1}.
Let H(U) denote the class of holomorphic functions in the unit disc. An important

subclass of H(U) is defined as An =
{

f ∈ H(U) : f (z) = z + an+1zn+1 + . . . , z ∈ U
}

,
with A1 = A.

For a ∈ C, n ∈ N∗, the subclass of the functions f ∈ H(U) denoted by H[a, n] consists
of functions which can be written as f (z) = a + anzn + an+1zn+1 + . . . , z ∈ U.

Let S =
{

f ∈ A : f (z) = z + a2z2 + . . . , f (0) = 0, f ′(0) = 1, z ∈ U
}

be the class of
the univalent functions in the unit disc and let

K =

{
f ∈ A : Re

(
z f ′′ (z)
f ′(z)

+ 1
)
> 0, z ∈ U

}
,

denote the class of the convex functions in the unit disc.
The following notions give the general context of fuzzy differential subordination

theory established in [4].

Definition 1 ([4]). A pair (A, FA), where FA : X → [0, 1] and A = {x ∈ X : 0 < FA(x) ≤ 1},
is called the fuzzy subset of X. The set A is called the support of the fuzzy set (A, FA) and FA is
called the membership function of the fuzzy set (A, FA). One can also denote A = supp(A, FA).

Let

Ω = supp(Ω, FΩ) = {z ∈ C : 0 < FΩ(z) ≤ 1}, ∆ = supp(∆, F∆)
= {z ∈ C : 0 < F∆(z) ≤ 1}.
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Additionally, let

p(U) = supp
(

p(U), Fp(U)(U)
)
=
{

p(z) : 0 < Fp(U)( f (z)) ≤ 1, z ∈ U
}

.

Definition 2 ([4,5]). Let D ⊂ C and let z0 ∈ D be a fixed point and let the functions f , g be
holomorphic in U. The function f is said to be a fuzzy subordinate to function g and write f ≺F g
or f (z) ≺F g(z) if there exists a function F : C→ [0, 1] such that:

(i) f (z0) = g(z0);
(ii) Ff (D)( f (z)) ≤ Ff (D)(g(z)), z ∈ D.

Remark 1.

(a)

f (D) = supp
(

f (D), Ff (D)(D)
)
=
{

f (z) : 0 < Ff (D)( f (z)) ≤ 1, z ∈ D
}

,

g(D) = supp
(

g(D), Fg(D)(D)
)
=
{

g(z) : 0 < Fg(D)(g(z)) ≤ 1, z ∈ D
}

,

and

∂g(D) = supp
(

∂g(D), F∂g(D)(D)
)
=
{

g(z) : 0 < Fg(D)(g(z)) = 1, z ∈ D
}

.

(b) Relation (ii) is equivalent to f (D) ⊂ g(D) and ∂g(D)
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holomorphic in 𝑈. The function 𝑓 is said to be a fuzzy subordinate to function 𝑔 and write 𝑓 ≺ி 𝑔 
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(ii) 𝐹௙(஽)൫𝑓(𝑧)൯ ≤ 𝐹௙(஽)൫𝑔(𝑧)൯, 𝑧 ∈ 𝐷. 
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and 𝜕𝑔(𝐷) = 𝑠𝑢𝑝𝑝 ቀ𝜕𝑔(𝐷), 𝐹డ௚(஽)(𝐷)ቁ = ൛𝑔(𝑧): 0 < 𝐹௚(஽)൫𝑔(𝑧)൯ = 1, 𝑧 ∈ 𝐷ൟ. 
(b) Relation (𝑖𝑖) is equivalent to 𝑓(𝐷) ⊂ 𝑔(𝐷) and 𝜕𝑔(𝐷) ⊄ 𝑓(𝐷). 
(c) If 𝐷 = 𝑈, then relations (𝑖) and (𝑖𝑖) are equivalent to 𝑓(0) = 𝑔(0), 𝑓(𝑈) ⊂ 𝑔(𝑈), 𝜕𝑔(𝑈) ⊄ 𝑓(𝑈). 
(d) Such functions 𝐹: ℂ → [0,1] can be considered: 𝐹ଵ(𝑧) = |𝑧|1 + |𝑧| , 𝐹ଶ(𝑧) = 11 + |𝑧| , 𝐹ଷ(𝑧) = |sin 𝑧|, 𝐹ସ(𝑧) = |cos 𝑧|, 𝑧 ∈ ℂ. 
Definition 3 ([5]). Let 𝜓: ℂଷ × 𝑈 → ℂ, 𝑎 ∈ ℂ  and let ℎ  be univalent in 𝑈,  with  𝑎 ∈ ℂ  and 𝜓(𝑎, 0,0; 0) = ℎ(0) = 𝑎. Let 𝑞 be univalent in 𝑈 with 𝑞(0) = 𝑎 and let 𝑝 be analytic in 𝑈 with 𝑝(0) = 𝑎. Function 𝜓(𝑝(𝑧), 𝑧𝑝ᇱ(𝑧), 𝑧ଶ𝑝ᇱᇱ(𝑧); 𝑧) is also analytic in 𝑈  and let 𝐹: ℂ → [0,1]. If 𝑝 
satisfies the (second-order) fuzzy differential subordination 𝐹ట(ℂయ×௎)൫𝜓(𝑝(𝑧), 𝑧𝑝ᇱ(𝑧), 𝑧ଶ𝑝ᇱᇱ(𝑧); 𝑧)൯ ≤ 𝐹௛(௎)൫ℎ(𝑧)൯, i. e., 𝜓(𝑝(𝑧), 𝑧𝑝ᇱ(𝑧), 𝑧ଶ𝑝ᇱᇱ(𝑧); 𝑧) ≺ி ℎ(𝑧), 𝑧 ∈ 𝐷 

(1)

then 𝑝 is called the fuzzy solution of the fuzzy differential subordination. The univalent function 𝑞 is called the fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or more 
simply a fuzzy dominant, if 𝑝(𝑧) ≺ி 𝑞(𝑧) 𝑜𝑟 𝐹௣(௎)൫𝑝(𝑧)൯ ≤ 𝐹௤(௎)൫𝑞(𝑧)൯, 𝑧 ∈ 𝑈, for all 𝑝 satisfying (1). A fuzzy dominant 𝑞෤  that satisfies 𝑞෤(𝑧) ≺ி 𝑞(𝑧) 𝑜𝑟 𝐹௣(௎)൫𝑞෤(𝑧)൯ ≤𝐹௤(௎)൫𝑞(𝑧)൯, 𝑧 ∈ 𝑈 for all fuzzy dominants 𝑞 of (1) is said to be fuzzy best dominant of (1). 

The next notions are tools of the classical theory of differential subordination. 

Definition 4 ([3]). We denote by 𝑄  the set of functions 𝑞  that are analytic and injective on 𝑈ഥ\𝐸(𝑞), where 𝐸(𝑞) = ൜𝜁 ∈ 𝜕𝑈: 𝑙𝑖𝑚௭→఍ 𝑞(𝑧) = ∞ൠ, 
and are such that 𝑞ᇱ(𝜁) ≠ 0 for 𝜁 ∈ 𝜕𝑈\𝐸(𝑞). 

f (D).
(c) If D = U, then relations (i) and (ii) are equivalent to

f (0) = g(0), f (U) ⊂ g(U), ∂g(U)
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f (U).

(d) Such functions F : C→ [0, 1] can be considered:

F1(z) =
|z|

1 + |z| , F2(z) =
1

1 + |z| , F3(z) = |sin z|, F4(z) = |cos z|, z ∈ C.

Definition 3 ([5]). Let ψ : C3 ×U → C, a ∈ C and let h be univalent in U, with a ∈ C and
ψ(a, 0, 0; 0) = h(0) = a. Let q be univalent in U with q(0) = a and let p be analytic in U with
p(0) = a. Function ψ

(
p(z), zp′(z), z2 p′′ (z); z

)
is also analytic in U and let F : C→ [0, 1] . If p

satisfies the (second-order) fuzzy differential subordination

Fψ(C3×U)

(
ψ
(

p(z), zp′(z), z2 p′′ (z); z
))
≤ Fh(U)(h(z)), i.e.,

ψ
(

p(z), zp′(z), z2 p′′ (z); z
)
≺F h(z), z ∈ D

(1)

then p is called the fuzzy solution of the fuzzy differential subordination. The univalent function q is
called the fuzzy dominant of the fuzzy solutions of the fuzzy differential subordination, or more simply
a fuzzy dominant, if p(z) ≺F q(z) or Fp(U)(p(z)) ≤ Fq(U)(q(z)), z ∈ U, for all p satisfying
(1). A fuzzy dominant q̃ that satisfies q̃(z) ≺F q(z) or Fp(U)(q̃(z)) ≤ Fq(U)(q(z)), z ∈ U for all
fuzzy dominants q of (1) is said to be fuzzy best dominant of (1).

The next notions are tools of the classical theory of differential subordination.

Definition 4 ([3]). We denote by Q the set of functions q that are analytic and injective on
U\E(q), where

E(q) =
{

ζ ∈ ∂U : lim
z→ζ

q(z) = ∞
}

,

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q).
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Definition 5 ([3]). Let Ω be a set inC, q ∈ Q, and let n be a positive integer. The class of admissible
functions Ψn[Ω, q] consists of functions ψ : C3 ×U → C that satisfy the admissibility condition

ψ(r, s, t; z) = 0, (2)

whenever

r = q(ζ), s = mζq′(ζ), Re
(

t
s
+ 1
)
≥ Re

(
ζq′′ (ζ)
q′(ζ)

+ 1
)

, z ∈ U, ζ ∈ ∂U\E(q), m ≥ n.

The set Ψn[Ω, q] is called the class of admissible functions and condition (2) is called the
admissibility condition.

If : C2 ×U → C , then the admissibility condition (2) reduces to

ψ(r, s; z) = 0, (3)

whenever
r = q(ζ), s = mζq′(ζ), z ∈ U, ζ ∈ ∂U\E(q), m ≥ n.

Remark 2.

(a) In the special case when Ω is a simply connected domain, Ω 6= C, and h is a conformal
mapping of U into Ω, the class of admissible functions is denoted by Ψn[h(U), q] or Ψn[h, q].

(b) In the particular case when Ω = ∆ = {w ∈ C : Re w > 0} and Re a > 0, the class
of admissible functions is denoted by Ψn{a}. Since Re q(ζ) = 0, when ζ ∈ ∂U\{1},
q(z) = a+az

1−z , the admissibility condition (2) becomes:

ψ(ρi, σ, µ + iv; z) = 0 (4)

whenever

ρ, σ, µ, v ∈ R, σ ≤ −n
2
· |a− iρ|2

Re a
, σ + µ ≤ 0, z ∈ U, n ≥ 1.

In the particular case when a = 1, the admissibility condition (4) becomes:

ψ(ρi, σ, µ + iv; z) = 0 (5)

whenever

ρ, σ, µ, v ∈ R, σ ≤ −n
2
·
(

1 + ρ2
)

, σ + µ ≤ 0, z ∈ U, n ≥ 1.

One of the first papers where the confluent hypergeometric function was used for
research in geometric function theory appeared in 1990 [31] and involved univalence
conditions for this function. The confluent hypergeometric function is defined as:

Definition 6 ([31]). Let a and c be complex numbers with c 6= 0,−1,−2, . . . and consider

φ(a, c; z) = 1 +
a
c
· z
1!

+
a(a + 1)
c(c + 1)

·z
2

2!
+ . . . , z∈U, (6)

This function is called the confluent (Kummer) hypergeometric function, is analytic in C and
satisfies Kummer’s differential equation:

z·w′′ (z) + [c− z]·w′(z)− a·w(z) = 0.
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If we let

(d)k =
Γ(d + k)

Γ(d)
= d(d + 1)(d + 2) . . . (d + k− 1) and (d)0 = 1

then (6) can be written in the form

φ(a, c; z) =
∞

∑
k=0

(a)k
(c)k
·z

k

k!
=

Γ(c)
Γ(a)

·
∞

∑
k=0

Γ(a + k)
Γ(c + k)

·z
k

k!
. (7)

Euler’s Gamma function is defined for Re z > 0 as:

Γ(z) =
∞∫

0

e−t·tz−1dt.

The gamma function satisfies: Γ(z + 1) = z·Γ(z), Γ(1) = 1, Γ(n + 1) = n!·Γ(1) = n!.
The fractional integral of the confluent hypergeometric function is defined in [29]

as follows:

Definition 7 ([29]). Let a and c be complex numbers with c 6= 0,−1,−2, . . . and let µ > 1. We
define the fractional integral of the confluent hypergeometric function

A−µ
z φ(a, c; z) =

1
Γ(µ)

z∫
0

φ(a, c; t)

(z− t)1−µ
dt =

Γ(c)
Γ(a)

·
∞

∑
k=0

Γ(a + k)
Γ(c + k)Γ(µ + k + 1)

·zk+µ. (8)

We note that A−µ
z φ(a, c; z) ∈ H[0, µ]. For µ = 1 we can write:

A−1
z φ(a, c; z) = z +

a
c
· 1
2!
·z2 +

a(a + 1)
c(c + 1)

·z
3

3!
+

a(a + 1)(a + 2)
c(c + 1)(c + 2)

·z
4

4!
+ . . . , (9)

A−1
z φ(a, c; z) ∈ H[0, 1].

We obtain,[
A−1

z φ(a, c; z)
]′

= 1 +
a
c
·z + a(a + 1)

c(c + 1)
· z

2

2!
+

a(a + 1)(a + 2)
c(c + 1)(c + 2)

· z
3

8!
+ . . . ,

[
A−1

z φ(a, c; z)
]′ ∈ H[1, 1].

In order to prove the original results contained in the next section, we need the
following already-established results.

Lemma 1 ([8]). Let q ∈ Q with q(0) = a and let p(z) = a + anzn + . . . be analytic in U with
p(z) 6= a and n ≥ 1. If p is not subordinate to q, then there exists points z0 = r0eiθ0 ∈ U and
ζ0 ∈ ∂U\E(q) and an m ≥ n ≥ 1 for which p(Ur0) ⊂ q(U) and:

(i) p(z0) = q(ζ0),
(ii) z0 p′(z0) = mζ0q(ζ0)

(iii) Re
(

z0 p′′ (z0)
p′(z0)

+ 1
)
≥ mRe

(
ζ0q′′ (ζ0)

q′(ζ0)
+ 1
)

.

Lemma 2 ([8]). Let p ∈ H[1, n]. If ψ ∈ Ψn{1}, then

Re
[
ψ
(

p(z), zp′(z), z2 p′′ (z); z
)]

> 0 implies Re p(z) > 0.
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3. Main Results

The first theorem investigates a new fuzzy differential subordination involving the
fractional integral of the confluent hypergeometric function. The best dominant of the
subordiantion is found and this result will be used for stating a condition for the univalence
of the fractional integral of the confluent hypergeometric function in the corollary which
follows the theorem.

Theorem 1. Let q be a univalent solution of the equation

h(z) = q(z) +
zq′(z)
q(z)

, z ∈ U. (10)

Function h is convex in U. Let G : C→ [0, 1] be given by:

G(z) =
1

1 + |z| . (11)

Let the confluent hypergeometric function φ(a, c; z) be given by (6) and the fractional integral
of the confluent hypergeometric function A−µ

z φ(a, c; z) be given by (8).
If the following fuzzy differential subordination is satisfied

A−µ
z φ(a, c; z)

zµ +
z·
[

A−µ
z φ(a, c; z)

]′
− µ·A−µ

z φ(a, c; z)

A−µ
z φ(a, c; z)

≺F h(z) = q(z) +
zq′(z)
q(z)

, (12)

written equivalently as

G

A−µ
z φ(a, c; z)

zµ +
z·
[

A−µ
z φ(a, c; z)

]′
− µ·A−µ

z φ(a, c; z)

A−µ
z φ(a, c; z)

 ≤ G(h(z)),

or
1

1 +

∣∣∣∣∣ A−µ
z φ(a,c;z)

zµ +
z·
[

A−µ
z φ(a,c;z)

]′
−µ·A−µ

z φ(a,c;z)

A−µ
z φ(a,c;z)

∣∣∣∣∣
≤ 1

1 + |h(z)| ,

then the fuzzy differential subordination implies

A−µ
z φ(a, c; z)

zµ ≺F q(z),

written equivalently as

G

(
A−µ

z φ(a, c; z)
zµ

)
≤ G(q(z)),

or
1

1 +
∣∣∣∣ A−µ

z φ(a,c;z)
zµ

∣∣∣∣ ≤
1

1 + |q(z)| , z ∈ U.

This function q is the best fuzzy dominant.

Proof. Let

p(z) =
A−µ

z φ(a, c; z)
zµ , z∈U. (13)
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Using the expression of the fractional integral of the confluent hypergeometric function
given by (8), we can write:

p(z) =
1

Γ(µ+1) ·z
µ + a

c ·
1

Γ(µ+2) ·z
µ+1 + . . .

zµ =
1

Γ(µ + 1)
+

a
c
· 1
Γ(µ + 2)

·z + . . . ,

hence,

p(0) =
1

Γ(µ + 1)
6= 0.

By differentiating relation (13), after some simple calculations, we obtain:

p(z) +
zp′(z)
p(z)

=
A−µ

z φ(a, c; z)
zµ +

z·
[
A−µ

z φ(a, c; z)
]′
− µ·A−µ

z φ(a, c;z)

A−µ
z φ(a, c; z)

, z ∈ U. (14)

We let the function ψ : C2 ×U → C, ψ ∈ Ψn[h(U), q] be given by:

ψ(r, s; z) = r +
s
r

, r 6=0. (15)

For r = p(z), s = zp′(z), relation (15) becomes:

ψ
(
p(z), zp′(z); z

)
= p(z) +

zp′(z)
p(z)

, p(z) 6=0, z∈U. (16)

Using relation (16) in (14), we obtain:

ψ
(
p(z), zp′(z); z

)
=

A−µ
z φ(a, c; z)

zµ +
z·
[
A−µ

z φ(a, c; z)
]′
− µ·A−µ

z φ(a, c; z)

A−µ
z φ(a, c; z)

, z∈U. (17)

Using (17), fuzzy differential subordination (12) becomes:

ψ
(

p(z), zp′(z); z
)
≺F h(z) = q(z) +

zq′(z)
q(z)

, z ∈ U. (18)

Using Definition 2 and Remark 1, we write:{
z∈U : ψ

(
p(z), zp′(z); z

)}
⊂h(U). (19)

For z = z0, relation (19) is written as:

ψ
(
p(z0), z0p′(z0); z0

)
∈h(U). (20)

It is now time to use Lemma 1 and the admissibility condition (3).
Assume that the functions p, q, h satisfy the conditions required by Lemma 1 in the

closed unit disc U. If this is not true, the functions q and h can be replaced by qρ(z) = q(ρz)
and hρ(z) = h(ρz), respectively, which are functions that have the desired properties.

Additionally, assume that p(z) ⊀F q(z). Then, by applying Lemma 1, we get that there
exist points z0 = r0eiθ0 ∈ U and ζ0 ∈ ∂U\E(q) and an m ≥ 1 such that

p(z0) =
A−µ

z φ(a, c; z0)

z0
µ = q(ζ0), z0 p′(z0) =

z0·
[

A−µ
z φ(a, c; z0)

]′
− µ·A−µ

z φ(a, c; z0)

z0
µ = mζ0q′(ζ0).

Using these conditions with r = q(ζ0), s = mζ0q′(ζ0) in Definition 5 and considering
the admissibility condition (3), we write:

ψ
(
q(ζ0), mζ0q′(ζ0); ζ0

)
= 0. (21)
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On the other hand, p(z0) = q(ζ0), z0 p′(z0) = mζ0q′(ζ0), and we can write

ψ
(
p(z0), z0p′(z0); z0

)
= ψ

(
q(ζ0), mζ0q′(ζ0); ζ0

)
. (22)

Using (22) in (21), we obtain:

ψ
(
p(z0), z0p′(z0); z

)
= 0. (23)

Relation (23) contradicts the assumption made when writing relation (20) and we
conclude that the assumption is false, hence

p(z)≺Fq(z). (24)

Using relation (8) in (24), we have:

A−µ
z φ(a, c; z)

zµ ≺Fq(z), z∈U. (25)

Since function q is a univalent solution of Equation (10), we get that function q is the
best fuzzy dominant. �

The following corollary can be obtained by using the convex function q(z) = z
1+z as

the best fuzzy dominant in Theorem 1. As a result, a condition for the univalence of the
fractional integral of the confluent hypergeometric function is stated.

Corollary 1. Let function
q(z) =

z
1− z

,

be a univalent solution of the equation

h(z) = q(z) +
zq′(z)
q(z)

=
1 + z
1− z

, z ∈ U. (26)

Function h is convex in U. Let G : C→ [0, 1] be given by:

G(z) =
1

1 + |z| . (27)

Let the confluent hypergeometric function φ(a, c; z) be given by (6) and the fractional integral
of the confluent hypergeometric function A−µ

z φ(a, c; z) be given by (8).
If the following fuzzy differential subordination is satisfied

A−µ
z φ(a, c; z)

zµ +
z·
[

A−µ
z φ(a, c; z)

]′
− µ·A−µ

z φ(a, c; z)

A−µ
z φ(a, c; z)

≺F h(z) =
1 + z
1− z

, (28)

written equivalently as

G

A−µ
z φ(a, c; z)

zµ +
z·
[

A−µ
z φ(a, c; z)

]′
− µ·A−µ

z φ(a, c; z)

A−µ
z φ(a, c; z)

 ≤ G
(

1 + z
1− z

)
,

or
1

1 +

∣∣∣∣∣ A−µ
z φ(a,c;z)

zµ +
z·
[

A−µ
z φ(a,c;z)

]′
−µ·A−µ

z φ(a,c;z)

A−µ
z φ(a,c;z)

∣∣∣∣∣
≤ 1

1 +
∣∣∣ 1+z

1−z

∣∣∣ ,
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then the fuzzy differential subordination implies:

(a)
A−µ

z φ(a, c; z)
zµ ≺F q(z) =

z
1− z

,

written equivalently as

G

(
A−µ

z φ(a, c; z)
zµ

)
≤ G

(
z

1− z

)
,

or
1

1 +
∣∣∣∣ A−µ

z φ(a,c;z)
zµ

∣∣∣∣ ≤
1

1 +
∣∣ z

1−z

∣∣ , z ∈ U,

with function q being the best fuzzy dominant, and also,

(b) Re
A−µ

z φ(a, c; z)
zµ > −1

2
,

written equivalently,{
z ∈ U :

A−µ
z φ(a, c; z)

zµ

}
⊂
{

w ∈ C : Re w > −1
2

}
.

Proof. First, we prove that function h(z) = 1+z
1−z is convex in U. In order to achieve that

conclusion, we calculate:

h′(z) =
2

(1− z)2 , h′′ (z) =
4

(1− z)3 ,
zh′′ (z)
h′(z)

+ 1 =
1 + z
1− z

.

We now prove that function q(z) = z
1−z is a solution of Equation (26).

z
1− z

+

z
(1−z)2

z
1−z

=
z

1− z
+

1
1− z

=
1 + z
1− z

.

We now prove that function q is univalent in U. For that we calculate:

Re
(

zh′′ (z)
h′(z) + 1

)
= Re

(
1+z
1−z

)
= Re 1+ρcosα+iρsinα

1−ρcosα−iρsinα

= Re (1+ρcosα+iρsinα)(1−ρcosα−iρsinα)

(1−ρcosα)2+ρ2sin 2α
= 1−ρ2

(1−ρcosα)2+ρ2sin 2α

> 0,

(29)

since 0 < ρ < 1.
Relation (29) states that function h is a convex function in U.
We also prove that function q(z) = z

1−z is convex in U.
We calculate:

q′(z) =
1

(1− z)2 , q′′ (z) =
2

(1− z)3 ,
zq′′ (z)
q′(z)

+ 1 =
1 + z
1− z

.

Using relation (29), we get that

Re
(

zq′′ (z)
q′(z)

+ 1
)
= Re

(
1 + z
1− z

)
=

1− ρ2

(1− ρ cos α)2 + ρ2sin 2α
> 0,

Hence, function q is a convex function in U.
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Using relation (24) from the proof of Theorem 1, for

p(z) =
A−µ

z φ(a, c; z)
zµ , q(z) =

z
1− z

,

we obtain:
A−µ

z φ(a, c; z)
zµ ≺F

z
1− z

, z ∈ U. (30)

Since function q(z) = z
1−z a univalent solution of Equation (26), we conclude that q is

the best fuzzy dominant.
Considering the fact that function q(z) = z

1−z is a convex function, fuzzy differential
subordination (30) is equivalent to

Re
A−µ

z φ(a, c; z)
zµ > Re

z
1− z

, z ∈ U. (31)

Because function q(z) = z
1−z is univalent in U, it is a conformal mapping of the unit disc

into the half-plane S =
{

w ∈ C : Re w > − 1
2

}
and we conclude that Re z

1−z > − 1
2 , z ∈ U.

We can now state that

Re
A−µ

z φ(a, c; z)
zµ > −1

2
, z ∈ U,

which is equivalent to{
z ∈ U :

A−µ
z φ(a, c; z)

zµ

}
⊂
{

w ∈ C : Re w > −1
2

}
, z ∈ U.

�
The next theorem gives a sufficient condition for the univalence of the fractional

integral of the confluent hypergeometric function A−1
z φ(a, c; z) given by (9).

Theorem 2. Let q be a univalent solution of the equation

h(z) = q(z) + zq′(z), z∈U. (32)

Let h be a convex function in U with Re h(z) > 1. Let G : C→ [0, 1] be given by:

G(z) =
1

1 + |z| . (33)

Let the confluent hypergeometric function φ(a, c; z) be given by (6) and the fractional integral
of the confluent hypergeometric function A−1

z φ(a, c; z) be given by (9).
The fuzzy differential subordination[

A−1
z φ(a, c; z)

]′
+ z
[

A−1
z φ(a, c; z)

]′′
+ z2

[
A−1

z φ(a, c; z)
]′′′
≺F h(z), z ∈ U, (34)

implies:

(a)
[
A−1

z φ(a, c; z)
]′ ≺F q(z), where q is the best fuzzy dominant.

(b) A−1
z φ(a, c; z)∈S.

Proof. We first prove part (a) of the theorem.
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Let
p(z) =

[
A−1

z φ(a, c; z)
]′

= 1 + a
c ·z +

a(a+1)
c(c+1) ·

z2

2! +
a(a+1)(a+2)
c(c+1)(c+2) ·

z3

8!

+ a(a+1)(a+2)(a+3)
c(c+1)(c+2)(c+3) ·

z4

24 + . . .

(35)

We have that p(0) =
[
A−1

z φ(a, c; 0)
]′
= 1 6= 0.

For finalizing the proof, Lemma 1 and Definition 5 will be applied.
Let ψ : C3 ×U → C be given by

ψ(r, s, t; z) = r + s + t. (36)

For r = p(z) =
[
A−1

z φ(a, c; z)
]′ , s = zp′(z) = z

[
A−1

z φ(a, c; z)
]′′ ,

t = z2 p′′ (z) = z2[A−1
z φ(a, c; z)

]′′′ , relation (32) becomes:

ψ
(
p(z), zp′(z), z2p′′ (z); z

)
=
[
A−1

z φ(a, c; z)
]′
+ z
[
A−1

z φ(a, c; z)
]′′ + z2[A−1

z φ(a, c; z)
]′′′ . (37)

Using (37), the fuzzy differential subordination (34) becomes:

ψ
(

p(z), zp′(z), z2 p′′ (z); z
)
≺F h(z), z ∈ U, (38)

Since h is a convex function, h(U) is a convex domain and fuzzy differential subordi-
nation (38) can be written equivalently as:

Re ψ
(

p(z), zp′(z), z2 p′′ (z); z
)
> Re h(z) > 0, z ∈ U. (39)

For z = z0, relation (39) becomes:

Re ψ
(

p(z0), z0 p′(z0), z2 p′′ (z0); z0

)
> Re h(z0) > 0. (40)

We shall assume that p(z) ⊀F q(z). Then, by applying Lemma 1, we get that there
exists points z0 = r0eiθ0 ∈ U and ζ0 ∈ ∂U\E(q) and an m ≥ 1 such that

p(z0) =
[
A−1

z φ(a, c; z0)
]′
= q(ζ0), z0p′(z0) = z0·

[
A−1

z φ(a, c; z0)
]′′ = mζ0q′(ζ0),

z0
2p′′ (z0) = z0

2[A−1
z φ(a, c; z0)

]′′′ = ζ0
2q′′ (ζ0).

By replacing r = q(ζ0), s = mζ0q′(ζ0), t = ζ0
2q′′ (ζ0), in admissibility condition (2),

we have:

ψ
(

p(z0), z0 p′(z0), z2 p′′ (z0); z0

)
= ψ

(
q(ζ0), mζ0q′(ζ0), ζ0

2q′′ (ζ0); ζ0

)
= 0 (41)

from where we deduce

ψ
(

p(z0), z0 p′(z0), z0
2 p′′ (z0); z0

)
= 0. (42)

Since relation (42) contradicts relation (40), we conclude that the assumption we have
made is false, hence

p(z)≺Fq(z). (43)

Using relation (35) in (43), we write:[
A−1

z φ(a, c; z)
]′
≺Fq(z). (44)

Since q is the univalent solution of Equation (32), we have that function q is the best
fuzzy dominant.
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Since Ω = ∆ = {w ∈ C : Re w > 0} and p(0) =
[
A−1

z φ(a, c; 0)
]′
= 1 6= 0, in order to

prove part b), it suffices to prove that function ψ given by (36) satisfies ψ ∈ Ψn{1}. For that,
we check the admissibility condition (5).

For r = p(z0) =
[
A−1

z φ(a, c; z0)
]′

= ρi, s = z0 p′(z0) = z0
[
A−1

z φ(a, c; z0)
]′′ = σ,

t = z0
2[A−1

z φ(a, c; z0)
]′′′ = µ + iv, the admissibility condition (5) becomes:

ψ

([
A−1

z φ(a, c; z0)
]′

, z0

[
A−1

z φ(a, c; z0)
]′′

, z0
2
[

A−1
z φ(a, c; z0)

]′′′
; z0

)
= 0, (45)

which is equivalent to ψ ∈ Ψn{1}.
Using the conditions ψ ∈ Ψn{1} and p(0) =

[
A−1

z φ(a, c; 0)
]′
= 1 by applying Lemma

2, we get that
Re p(z) > 0, z ∈ U. (46)

By replacing, in (46), the expression of the function p given by (35), we obtain:

Re
[

A−1
z φ(a, c; z)

]′
> 0, z ∈ U. (47)

Since p(0) =
[
A−1

z φ(a, c; 0)
]′
= 1 and using (47), we conclude that function A−1

z φ(a, c; z)
is univalent in U. �

Example 1. Let

q(z) =
1

1 + z
, q′(z) =

−1

(1 + z)2 , q′′ (z) =
2

(1 + z)3

We have
Re
(

zq′′ (z)
q′(z) + 1

)
= Re 1−z

1+z = Re 1−ρcosα−iρsinα
1+ρcosα+iρsinα

= 1−ρ2

(1+ρcosα)2+ρ2sin 2α
> 0,

hence, q is a convex function in U.
Let

h(z) = q(z) +
zq′(z)
q(z)

=
1

1 + z
− z

1 + z
=

1− z
1 + z

.

Then, we get:

h′(z) = −2
(1+z)2 , h′′ (z) = 4

(1+z)3 , Re
(

zh′′ (z)
h′(z)

+ 1
)
= Re 1−z

1+z

= 1−ρ2

(1+ρcosα)2+ρ2sin 2α
> 0,

hence, h is a convex function in U.
Let µ > 0, a = −2, c = 1 + i; then, we have the fractional integral of the confluent

hypergeometric function:

A−µ
z (−2, 1 + i; z) = zµ − 1− i

2
zµ+1 +

1− 3i
30

zµ+2.

Using Theorem 1, we write:
Let q(z) = 1

1+z be the univalent solution of the equation

h(z) = q(z) +
zq′(z)
q(z)

=
1− z
1 + z

.

Function h is convex in U. Let G : C→ [0, 1] be given by:

G(z) =
1

1 + |z| .
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If the following fuzzy differential subordination is satisfied

A−µ
z (−2, 1 + i; z)

zµ +
z·
[

A−µ
z (−2, 1 + i; z)

]′
− µ·A−µ

z (−2, 1 + i; z)

A−µ
z (−2, 1 + i; z)

≺F h(z) =
1− z
1 + z

,

where
A−µ

z (−2, 1 + i; z) = zµ − 1−i
2 zµ+1 + 1−3i

30 zµ+2,
A−µ

z (−2, 1+i;z)
zµ = 1− 1−i

2 z + 1−3i
30 z2[

A−µ
z (−2, 1 + i; z)

]′
= µzµ−1 − 1−i

2 (µ + 1)zµ − 1−3i
30 (µ + 2)zµ+1,

written equivalently as

G

A−µ
z (−2, 1 + i; z)

zµ +
z·
[

A−µ
z (−2, 1 + i; z)

]′
− µ·A−µ

z (−2, 1 + i; z)

A−µ
z (−2, 1 + i; z)

 ≤ G
(

1− z
1 + z

)
,

or
1

1 +

∣∣∣∣∣ A−µ
z (−2, 1+i;z)

zµ +
z·
[

A−µ
z (−2, 1+i;z)

]′
−µ·A−µ

z (−2, 1+i;z)

A−µ
z (−2, 1+i;z)

∣∣∣∣∣
≤ 1

1 +
∣∣∣ 1−z

1+z

∣∣∣ ,

then it implies:

A−µ
z (−2, 1 + i; z)

zµ = 1− 1− i
2

z +
1− 3i

30
z2 ≺F q(z) =

1
1 + z

,

written equivalently as

G
(

1− 1− i
2

z +
1− 3i

30
z2
)
≤ G

(
1

1 + z

)
,

or
1

1 +
∣∣∣1− 1−i

2 z + 1−3i
30 z2

∣∣∣ ≤ 1

1 +
∣∣∣ 1

1+z

∣∣∣ , z ∈ U.

Indeed, since q(z) = 1
1+z is a convex function, the fuzzy differential subordination is equiva-

lent to writing:

Re
(

1− 1− i
2

z +
1− 3i

30
z2
)
> Re

1
1 + z

.

Function q being univalent, we know that it represents a conformal transform of the unit disc
U into the half-plane

{
w ∈ C : Re w > 1

2

}
; hence, we have:

Re
(

1− 1− i
2

z2 +
1− 3i

30
z3
)
>

1
2

,

equivalently written as the inclusion of sets:{
z ∈ U : 1− 1− i

2
z +

1− 3i
30

z2
}
⊂
{

w ∈ C : Re w >
1
2

}
.

If we let

f (z) = 1− 1− i
2

z +
1− 3i

30
z2,

then we have f (0) = q(0) = 1 and f (U) ⊂ q(U), which, according to Definition 2 means that:

f (z) ≺F q(z), z ∈ U.
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4. Conclusions

The investigation presented in this paper continues the line of research which has, as its
focus, the fractional integral of the confluent hypergeometric function defined in [29]. The
studies connecting this function to fuzzy differential subordination and superordination
theories [27,30] are enriched in this paper by providing means to obtain the conditions for
the univalence of this function. After providing the best fuzzy dominant for a certain fuzzy
differential subordination in Theorem 1, in Corollary 1 this theoretical result is applied
by using a particular function as the best fuzzy dominant for finding a condition for the
univalence of the fractional integral of the confluent hypergeometric function. In Theorem
2, another condition for the univalence of this function is deduced. The example presented
at the end of the study shows how fuzzy differential subordinations are obtained using the
fractional integral of the confluent hypergeometric function.

In future studies involving the results presented in this paper, researchers could use the
properties of the univalence of this function in order to define new subclasses of univalent
functions. Other conditions for the univalence of this function, maybe even convexity prop-
erties which have many applications, could be investigated following the ideas presented
here using the theory of fuzzy differential superordination and the fractional integral of the
confluent hypergeometric function.
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