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Abstract: The high-order finite difference method for option pricing is one of the most popular
numerical algorithms. Therefore, it is of great significance to study its convergence rate. Based on
the relationship between this algorithm and the trinomial tree method, as well as the definition of
local remainder estimation, a strict mathematical proof is derived for the convergence rate of the
high-order finite difference method for option pricing in a Markov regime-switching jump-diffusion
model. The theoretical result shows that the convergence rate of this algorithm is O(∆τ) . Moreover,
the results also hold in the case of Brownian motion and jump-diffusion models that are specialized
forms of the given model.

Keywords: convergence rate; high-order finite difference method; Markov regime-switching
jump-diffusion model; partial integro-differential equations

1. Introduction
1.1. Background

Partial integro-differential equations (PIDEs) in a Markov regime-switching jump-
diffusion model are popular in financial engineering ([1–14]). The advantages of this
model lie in two aspects: on the one hand, the Markov chain reflects the information
of market environments; on the other hand, it accurately describes the behavior of the
underlying asset. However, it is difficult to solve the PIDEs due to the close relation to the
Markov chain.

Some numerical methods, such as the high-order finite difference scheme, have been
widely used to solve the PIDEs. The principle of the high-order difference method is
to obtain finite difference approximations for high-order derivatives in the truncation
error by operating on the differential equations as an auxiliary relation. The high-order
schemes in a central difference approximation increase the order of accuracy. During and
Fournie ([15–17]) derived a high-order difference scheme under the Heston model in 2012
and extended this method to non-uniform grids in 2014 and to multiple space dimensions
in 2015. In 2019, During and Pitkin [18] applied this approach to stochastic volatility jump
models. Additionally, some other scholars have put forward an improved algorithm based
on higher-order finite difference in their papers ([19–25]). Rambeerich and Pantelous [4]
developed a high-order finite element scheme to approximate the spatial terms of PIDE
using linear and quadratic basis polynomial approximations and solved the resulting
initial value problem using exponential time integration. Patel [6] proposed a fourth-
order compact finite difference scheme for the solution of PIDE under regime-switching
jump-diffusion models. Tour et al. [7] developed a high-order radial basis function finite
difference (RBF-FD) approximation on a five-point stencil under the regime-switching
stochastic volatility models with log-normal and contemporaneous jumps. Ma et al. [26]
presented the high-order equivalence between the finite difference method and trinomial
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trees method for regime-switching models and proved the convergence rates of trinomial
trees for pricing options with state-dependent switching rates using the theory of the FDMs.

It is of great importance to investigate the convergence rate of algorithms based on the
Markov chain with finite difference schemes. In 2010, Alfonsi [27] presented weak second
and third-order schemes for the CIR process and gave a general recursive construction
method for obtaining weak second-order schemes. In 2017, Altmayer and Neuenkirch [28]
established a weak convergence rate of order one under mild assumptions regarding the
smoothness of the payoff. Zheng [29] derived that the weak convergence rate of a time-
discrete scheme for the Heston stochastic volatility model was 2 for all parameter regimes.
In 2018, Bossy and Olivero [30] studied the rate of convergence of a symmetrized version of
the Milstein scheme applied to the solution of the one-dimensional SDE. Briani et al. stud-
ied the rate of weak convergence of Markov chains to diffusion processes under suitable,
but quite general, assumptions in [31] and developed stability properties of a hybrid approx-
imation of the functional of the Bates jump model with the stochastic interest rate in [32].
Lesmana and Wang [33] presented the consistency, stability, convergence, and numerical
simulations of American options with transaction cost under a jump-diffusion process.

However, these papers all show the efficiency of this algorithm via numerical examples.
It is important to give strict mathematical proof to guarantee the correctness of the high-
order difference method. The objective of this article is to investigate the convergence
rate of the high-order difference scheme (5)–(15) for option pricing assuming a Markov
regime-switching jump-diffusion model (1) followed by the underlying asset.

1.2. The PIDEs in a Markov Regime-Switching Jump-Diffusion Model

Under the risk-neutral measure, the underlying xt = log St will be modelled by a
Markov regime-switching jump-diffusion model.

dxt = [r(αt)− β(αt)λ(αt)]dt + σ(αt)dWt + [η(αt)− 1]dQt (1)

where {Wt}t≥0 is a standard Brownian motion, {αt} is a continuous-time Markov chain
with finite states {1, 2, · · · , n}, r(αt) = ri is the risk-free rate, σ(αt) = σi denotes the
constant volatility, {Qt} represents the compound Poisson process with intensity λ(αt) = λi
at state i, [η(αt)− 1] = ηi − 1 denotes the function which jump from St to Stηi. The
expectation of this function is then given by β(αt) = βi where βi = E(ηi − 1). We assume
that the stochastic processes {Wt}t≥0 and {Qt}t≥0 in (1) are mutually independent in
this paper.

Let A = (ρil), i, l = 1, 2, · · · , n, be the generator matrix of the Markov chain process
whose elements are constants satisfying ρil ≥ 0 for i 6= l and ∑n

l=1 ρil = 0 for i = 1, 2, · · · , n.
Let the underlying xt satisfy (1). Then, the value of a European option Vi(x, τ) satisfies

the following PIDE:
∂Vi(x,τ)

∂τ = LVi(x, τ) + IVi(x, τ) +
n

∑
l=1

ρilV l(x, τ), i = 1, 2, · · · , n, (x, τ) ∈ R× [0, T],

Vi(x, τ) =

{
0, x → −∞,
Kex − Ke−riτ , x → + ∞.

(2)

where

LVi(x, τ) =

(
ri − λiβi −

1
2

σ2
i

)
∂Vi(x, τ)

∂x
+

1
2

σ2
i

∂2Vi(x, τ)

∂x2 − (ri + λi) Vi(x, τ) (3)

IVi(x, τ) = λi

∫ +∞

−∞
Vi(x, τ) f i(z− x)dz (4)
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and the density function f i(z− x) is given by [34]

f i(z− x) =
1√

2πγi
exp

[
− (z− x− αi)

2

2γ2
i

]
.

1.3. High-Order Finite Difference Method

The high-order finite difference method has been developed for option pricing [15–24].
The idea of this method is to obtain finite difference approximations for high-order deriva-
tives in the truncation error. The high-order schemes in a central difference approximation
increase the order of accuracy.

We divide the domain (−∞, + ∞) into three parts: (−∞, xmin), [xmin, xmax), and
[xmax, + ∞) and introduce uniform grids with ∆x = (xmax − xmin)/M and ∆τ = (T − t)/N
where M and N denote the number of space and time intervals, respectively. T is the ma-
turity date of the option. Furthermore, let the mesh points be xm = xmin + m∆x for
m = 0, 1, · · · , M and τj = j ∆τ for j = 0, 1, 2, ··· , N .

For the integral term in Equation (2), by choosing the appropriate interval[xmin, xmax],
we can assure that the integral value beyond this range can be ignored, that is,

λi

∫ xmin

−∞
Vi(x, τ) f i(z− x)dz ≈ λi

∫ xmin

−∞
max(1− exp(ξ), 0) f i(ξ)dξ = 0 (5)

λi

∫ +∞

xmax
Vi(x, τ) f i(z− x)dz ≈ λi

∫ +∞

xmax
max(1− exp(ξ), 0) f i(ξ)dξ = 0. (6)

By using the composite Simpson’s rule and Equations (5) and (6), we obtain

IVi(x, τ) = λi
∫ +∞
−∞ Vi(x, τ) f i(z− x)dz ≈ λi

∫ xmax
xmin

Vi(x, τ) f i(z− x)dz

≈ λi∆x
3

mx/2

∑
m=1

[Vi(x2m−2, τ) f i(x2m−2 − x) + 4Vi(x2m−1, τ) f i(x2m−1 − x)

+Vi(x2m, τ) f i(x2m − x)]

(7)

For the differential term in Equation (2), we define Vi
m,j ≡ Vi(xm, τj

)
, j = 1, 2, · · · , N.

Then, the standard central difference approximation to Equation (3) at point
(

xm, τj
)

for
regime i is

LVi
m,j = (ri − λiβi −

1
2

σ2
i )δxVi

m,j +
1
2

σ2
i δ2

xVi
m,j − (ri + λi)Vi

m,j + ε
(i)
m (8)

where δx and δ2
x are the first- and second-order central difference approximations with

respect to x, respectively. The truncation error is given by

ε
(i)
m =

(∆x)2

12

(
2ri − 2λiβi − σ2

i

)∂3Vi
m,j

∂x3 +
1

24
(∆x)2σ2

i

∂4Vi
m,j

∂x4 +O
(
(∆x)4

)
(9)

Differentiating Equation (3) with respect to x, we have

∂3Vi
m,j

∂x3 =
2
σ2

i

∂LVi
m,j

∂x
−

2ri − 2λiβi − σ2
i

σ2
i

∂2Vi
m,j

∂x2 +
2(ri + λi)

σ2
i

∂Vi
m,j

∂x
(10)

∂4Vi
m,j

∂x4 =
2
σ2

i

∂2LVi
m,j

∂x2 −
2
(
2ri − 2λiβi − σ2

i
)

σ4
i

∂LVi
m,j

∂x
+

(
2ri − 2λiβi − σ2

i
)2

σ4
i

∂2Vi
m,j

∂x2 −
4(ri + λi)

(
ri − λiβi − σ2

i
)

σ4
i

∂Vi
m,j

∂x
(11)

We substitute Equations (10) and (11) into (9) to obtain a new expression of the error
term ε

(i)
l that only includes terms which are either O

(
(∆x)4

)
or O

(
(∆x)2

)
multiplied
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by derivatives of V, which can be approximated to O
(
(∆x)2

)
within the compact stencil.

Inserting this new expression for the error term in (8), we obtain[
ri − λiβi −

σ2
i
2 + (ri+λi)(ri−λi βi)(∆x)2

6σ2
i

]
δxVi

m,j +

[
σ2

i
2 −

(2ri−2λi βi−σ2
i )

2
(∆x)2

24σ2
i

]
δ2

xVi
m,j − (ri + λi)Vi

m,j

= LVi
m,j −

(2ri−2λi βi−σ2
i )(∆x)2

12σ2
i

δxLVi
m,j −

(∆x)2

12 δ2
xLVi

m,j

(12)

According to Equations (7) and (12), we obtain the discretization of PIDE (2) at point(
xm, τj

)
for regime i

Vi
m,j = aiVi

m+1,j+1 + biVi
m,j+1 + ciVi

m−1,j+1

where

ai =
1

1 + (ri + λi)∆τ

(∆x)2[(ri + λi − ρii)∆τ − 1]− (∆τ − 1)
[

σ2
i −

(2ri−2λi βi−σ2
i )

2
(∆x)2

12σ2
i

]
(ri + λi − ρii)∆τ(∆x)2 − (∆x)2 +

[
σ2

i −
(2ri−2λi βi−σ2

i )
2
(∆x)2

12σ2
i

] (13)

bi =
1

1 + (ri + λi)∆τ

[
σ2

i
2 −

(2ri−2λi βi−σ2
i )

2
(∆x)2

24σ2
i

]
∆τ + 1

2

[
ri − λiβi −

σ2
i
2 + (ri+λi)(ri−λi βi)(∆x)2

6σ2
i

]
∆τ∆x

(ri + λi − ρii)∆τ(∆x)2 − (∆x)2 +

[
σ2

i −
(2ri−2λi βi−σ2

i )
2
(∆x)2

12σ2
i

] (14)

ci =
1

1 + (ri + λi)∆τ

[
σ2

i
2 −

(2ni−2λi βi−σ2
i )

2
(∆x)2

24σ2
i

]
∆τ − 1

2

[
ni − λiβi −

σ2
i
2 + (ri+λi)(ri−λi βi)(∆x)2

6σ2
i

]
∆τ∆x

(ri + λi − ρii)∆τ(∆x)2 − (∆x)2 +

[
σ2

i −
(2ri−2λi βi−σ2

i )
2
(∆x)2

12σ2
i

] (15)

1.4. Outline of This Paper

The rest of this paper is organized as follows. In Section 2, the relationship between
the high-order difference scheme and the trinomial tree algorithm is investigated, and then
the convergence rate of the high-order difference algorithm for option pricing in a Markov
regime-switching model is obtained. Section 3 summarizes the main conclusions.

2. Main Results

In this section, we investigate the relationship between the high-order difference
method and the trinomial tree approach and propose the estimation of the local remainder
of this algorithm. After this, we can obtain the convergence rate.

2.1. The Two Lemmas

Lemma 1. If ∆τ ≤ 1+(2ri−2λi βi−σ2
i )

2

ri+λi−ρii
and ∆x ≤ σ

√
∆τ

1−(ri+λi−ρii)∆τ+(2ri−2λi βi−σ2
i )

2 , the high-

order finite difference method is equivalent to a trinomial tree approach, that is, for the defined
high-order finite difference (13)–(15), the following result holds for regime i = 1, 2, · · · , n.

ai + bi + ci =
1

1 + (ri + λi)∆τ
and ai ≥ 0, bi ≥ 0, ci ≥ 0
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Proof. Equations (13)–(15) imply that

ai + bi + ci =
1

1+(ri+λi)∆τ

(∆x)2[(ri+λi−ρii)∆τ−1]−(∆τ−1)

σ2
i −

(2ri−2λi βi−σ2
i )

2
(∆x)2

12σ2
i


(ri+λi−ρii)∆τ(∆x)2−(∆x)2+

σ2
i −

(2ri−2λi βi−σ2
i )

2
(∆x)2 ]

12σ2
i



+ 1
1+(ri+λi)∆τ

 σ2
i
2 −

(2ri−2λi βi−σ2
i )

2
(∆x)2

24σ2
i

∆τ+ 1
2

[
ri−λi βi−

σ2
i
2 +

(ri+λi) (ri−λi βi) (∆x)2

6σ2
i

]
∆τ∆x

(ri+λi−ρii)∆τ(∆x)2−(∆x)2+

σ2
i −

(2ri−2λi βi−σ2
i )

2
(∆x)2

12σ2
i



+ 1
1+(ri+λi)∆τ

 σ2
i
2 −

(2ri−2λi βi−σ2
i )

2
(∆x)2

24σ2
i

∆τ− 1
2

[
ri−λi βi−

σ2
i
2 +

(ri+λi) (ri−λi βi) (∆x)2

6σ2
i

]
∆τ∆x

(ri+λi−ρii)∆τ(∆x)2−(∆x)2+

σ2
i −

(2ri−2λi βi−σ2
i )

2
(∆x)2

12σ2
i


= 1

1+(ri+λi)∆τ

Under the condition in Lemma 1, it is easy to show ai ≥ 0, bi ≥ 0, ci ≥ 0. Therefore,
the expressions ai[1 + (ri + λi)∆τ], bi[1 + (ri + λi)∆τ], and ci[1 + (ri + λi)∆τ] can be
interpreted as the probabilities of moving from xm to xm, xm+1 and xm−1, respectively. �

Let V
(

xm, τj, i
)

denote a high-order finite difference approximation value at the
node

(
xm, τj

)
for regime i. Then, from Lemma 1, V

(
xm, τj, i

)
can be calculated by

V
(

xm, τj, i
)
= e−ri∆τ

n

∑
l=1

[
Pil(aiV

(
xm+1, τj+1, l

)
+ biV

(
xm, τj+1, l

)
+ ciV

(
xm−1, τj+1, l

)
)
]

(16)

where Pil is the transition probability from regime i to l, satisfying the following equation

(Pil)n×n = I +
∞

∑
l=1

(∆τ)l Al

l!
(17)

in which I denotes the unit matrix and A is the generation matrix of the Markov chain.
Define the local remainder of Vi(x, τ) for regime i at

(
xm, τj

)
by

Ri
j = Vi(xm, τj

)
− e−ri∆τ

n

∑
l=1

[Pil(aiV
(
xm+1, τj+1, l

)
+ biV

(
xm, τj+1, l

)
+ciV(xm−1, τj+1, l))]

(18)

where Vi(xm, τj
)

denotes the exact European option value for regime i at
(
xm, τj

)
.

Lemma 2. Let V(x, τ) be a function for which the partial derivatives ∂V
∂x , ∂2V

∂x2 and ∂3V
∂x3 are defined

and continuous. The estimation of the local remainder Ri
j in (18) is given by Ri

j = O
(
(∆τ)2

)
for

regime i = 1, 2, · · · , n.

Proof. By applying Taylor expansion to Vi(xm, τj
)
, Vi(xm+1, τj+1

)
and Vi(xm−1, τj+1

)
,

i = 1, 2, · · · , n at τj+1, we have

Vi(xm, τj
)
= Vi(xm, τj+1

)
−

∂Vi(xm, τj+1
)

∂τ
∆τ +O

(
(∆τ)2

)
(19)

Vi(xm+1, τj+1
)
= Vi(xm, τj+1

)
+

∂Vi(xm ,τj+1)
∂x ∆xm

+ 1
2

∂2Vi(xm ,τj+1)
∂x2 (∆xm)

2 + 1
6

∂3Vi(xm ,τj+1)
∂x3 (∆xm)

3 +O((∆xm)
4)

(20)
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and

Vi(xm−1, τj+1
)
= Vi(xm, τj+1

)
+

∂Vi(xm ,τj+1)
∂x (−∆xm)

+ 1
2

∂2Vi(xm ,τj+1)
∂x2 (−∆xm)

2 + 1
6

∂3Vi(xm ,τj+1)
∂x3 (−∆xm)

3 +O((−∆xm)
4)

(21)

Substituting (19)–(21) into (18), we have

Ri
j = Vi(xm, τj

)
− e−ri∆τ

n

∑
l=1

Pil(aiV l(xm+1, τj+1
)
+ biV l(xm, τj+1

)
+ ciV l(xm−1, τj+1

)
)

= Vi(xm, τj+1
)
− ∂Vi(xm ,τj+1)

∂τ ∆τ +O((∆τ)2)

−e−ri∆τ
n

∑
l=1

Pil


ai

 V l(xm, τj+1) +
∂Vl(xm ,τj+1)

∂x ∆xm + 1
2

∂2Vl(xm ,τj+1)

∂x2 (∆xm)2

+ 1
6

∂3Vl(xm ,τj+1)

∂x3 (∆xm)
3 +O(

(
∆xm)4)

+ biV l(xm, τj+1)

+ci

 V l(xm, τj+1) +
∂Vl(xm ,τj+1)

∂x (−∆xm) +
1
2

∂2Vl(xm ,τj+1)

∂x2 (−∆xm)
2

+ 1
6

∂3Vl(xm ,τj+1)

∂x3 (−∆xm)
3 +O(

(
−∆xm)4)




= Vi(xm, τj+1

)
− ∂Vi(xm ,τj+1)

∂τ ∆τ +O((∆τ)2)

−e−ri∆τ
n

∑
l=1

Pil

 (ai + bi + ci)V l(xm, τj+1) + (ai − ci)
∂Vl(xm ,τj+1)

∂x ∆xm

+ 1
2 (ai + ci)

∂2Vl(xm ,τj+1)

∂x2 (∆xm)
2 + 1

6 (ai − ci)
∂3Vl(xm ,τj+1)

∂x3 (∆xm)
3 + (ai + ci)O(

(
∆xm)4) )



(22)

Using Lemma 1 and Equation (17), we obtain

Ri
j = O

(
(∆τ)2)


∂Vi(xm ,τj+1)

∂τ −
(

ri − βi − 1
2 σ2

i )
∂Vi(xm ,τj+1)

∂x − 1
2 σ2

i
∂2Vi(xm ,τj+1)

∂x2

−(ri + λi)Vi(xm, τj+1) −
n
∑

j=1
ρijVi(xm, τj+1) − λi

∫ +∞
−∞ V(z, τ, i) f (z− x, i)dz

∆τ

= O
(
(∆τ)2)

�

Based on Lemmas 1 and 2, the convergence rate of the high-order finite difference
algorithm is investigated as follows.

2.2. The Main Theorem

Theorem 1. (Convergence rate of the high-order finite difference method). We define the error of
high-order finite difference at the node

(
xm, τj

)
by

ε
j
i(xm) = Vi(xm, τj

)
−V

(
xm, τj, i

)
, i = 1, 2, · · · , n (23)

and the infinity norm by

‖εj
i‖∞ = max

∣∣∣εj
i(xm)

∣∣∣, i = 1, 2, · · · , n (24)

Then, the convergence rate of the high-order finite difference is estimated by

‖εj
i‖∞ = |O(∆τ)|, i = 1, 2, · · · , n (25)

Proof. According to Equation (18),

Vi(xm, τj
)
= Ri

j + e−ri∆τ
n

∑
l=1

Pil(aiV l(xm+1, τj+1
)
+ biV l(xm, τj+1

)
+ ciV l(xm−1, τj+1

)
) (26)
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Then, we note from Equations (16) and (26) that

ε
j
i(xm) = e−ri∆τ

n

∑
l=1

Pil

(
aiε

j+1
l (xm+1) + biε

j+1
l (xm) + ciε

j+1
l (xm−1)

)
+ Ri

j

Therefore, the following inequality holds:∣∣∣εj
i(xm)

∣∣∣ ≤ ∣∣∣Ri
j

∣∣∣+ e−ri∆τ
n

∑
l=1

Pil(ai|ε
j+1
i (xm+1)|+ bi|ε

j+1
i (xm)|+ ci|ε

j+1
i (xm−1)|)

≤
∣∣∣Ri

j

∣∣∣+ e−ri∆τ
n

∑
l=1

Pil‖ε
j+1
l ‖∞

= e−ri∆τ
n

∑
l=1

Pil‖εk+1
l ‖∞ + |O((∆τ)2)|

(27)

The last line of (27) is obtained from Lemma 2. Therefore, by using Equation (17),
we have

n

∑
i=1
‖εj

i‖∞≤
n

∑
i=1

e−ri∆τ
2

∑
l=1

Pil‖ε
j+1
l ‖∞ + |O((∆τ)2)|

≤
n

∑
i=1

[
1 +

n

∑
i=1

ail∆τ + |O
(
(∆τ)2

)
|
]
‖εj+1

i ‖∞ + |O((∆τ)2)|
(28)

The term ∑n
i=1 ail∆τ + |O((∆τ)2)| ≥ 0 in Equation (28) implies

n

∑
i=1
‖εj

i‖∞ ≤
n

∑
i=1
‖εj+1

i ‖∞ +


n

∑
j=1

 n

∑
i=1

aij∆τ + |O((∆τ)2)|


n

∑
i=1
‖εj+1

i ‖∞ + |O((∆τ)2)|

Since ∑n
j=1 aij = 0, i = 1, 2, · · · , n, the following inequality can be obtained:

n

∑
i=1
‖εj

i‖∞ ≤ [1 + |O((∆τ)2)|]
n

∑
i=1
‖εj+1

i ‖∞ + |O((∆τ)2)| (29)

By iterating (29), we have

n

∑
i=1
‖εj

i‖∞ ≤ [1 + |O((∆τ)2|]n−j

(
n

∑
i=1
‖εn

i ‖∞

)
− 1 + [1 + |O((∆τ)2)|]n−j (30)

At the final step τn = 0, the following expression holds:

εn
i = Vi(xm, τn)−V(xm, τn, i) = 0, i = 1, 2, · · · , n

According to (30), we have

n
∑

i=1
‖εj

i‖∞ ≤ −1 + [1 + |O((∆τ)2)|]n−j

= −1 +
n−j

∑
l=0

Cl
n−j|O((∆τ)2)|l

= C1
n−jO((∆τ)2) +

n−j

∑
l=2

Cl
n−j|O((∆τ)2)|l

≤ nO((∆τ)2) = T
∆τO(

(
∆τ)2) = O(∆τ)

�
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3. Conclusions

In this paper, we have investigated the convergence rate of the high-order finite
difference method for option pricing in a Markov regime-switching jump-diffusion model
by employing the relationship between this algorithm and the trinomial tree approach. The
result shows that the convergence rate of this algorithm is O(∆τ). This theoretical proof
ensures the validation of the high-order finite difference method for option pricing.

For future research, it is worth investigating the convergence rate of the high-order
finite difference method for options with stochastic volatility jump models in the case of
infinite states for the Markov chain.
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