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Abstract: In this paper, the coupled local fractional sine-Gordon equations are studied in the range
of local fractional derivative theory. The study of exact solutions of nonlinear coupled systems is of
great significance for understanding complex physical phenomena in reality. The main method used
in this paper is the local fractional homotopy perturbation method, which is used to analyze the exact
traveling wave solutions of generalized nonlinear systems defined on the Cantor set in the fractal
domain. The fractal wave with fractal dimension € = In2/In3 is numerically simulated. Through
numerical simulation, we find that the obtained solutions are of great significance to explain some
practical physical problems.

Keywords: coupled Sine-Gordon equations; local fractional homotopy perturbation method;
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1. Introduction

In the field of science, most problems and phenomena are nonlinear, especially in
mechanics [1], plasma physics [2], plasma waves, heat conduction [3] and chemical physics.
Many scholars have made accurate analysis of various nonlinear problems and put for-
ward some methods to solve them. Examples include Backlund transformation [4], bi-
linear method [5], sine-cosine method [6], Adomian decomposition method [7], varia-
tional iteration method [8], exp-function method [9] and homotopy perturbation method
(HPM) [10,11]. We conclude that HPM is the most effective and simplest method to solve
nonlinear problems.

HPM was first proposed by He [12]. He introduced the HPM into the solution of
nonlinear wave equations. The advantage of this method is that it does not depend on
the small parameters in the topology. There is a homotopy technique in topology that we
can use to construct a homotopy with one parameter, and it is considered to be a small
parameter [13]. HPM is widely used in nonlinear wave equations. It is used to solve water
wave theory [14], heat conduction [15] and diffusion problems [16].

In recent years, Yang [17] redefined and generalized the local order, and constructed a
complete framework of the local order defined on Cantor sets. Local fractions are usually
used to describe various fractal problems in real life and science. Local fraction theory
is a new efficient algorithm to obtain the exact solution of a local fraction problem. The
solution of this theory is defined on the Cantor set. Yang used the local fractional homotopy
perturbation (LFHP) method to solve the wave equations involving Cantor sets [18]. Zhang
used the same method to solve the heat conduction equation in the fractal system [19]. The
results show that the theoretical method is accurate and feasible, and has strong practical
significance.
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A coupled system of nonlinear equations is as follows:
Prr — Py = —5? sin(yp — w), 1)
wit — CPwyy = sin(yp — w),

where J, c are arbitrary constants, and § > 0,c > 0.

The above coupled equations are an extension of the Frenkel-Kontorova model [20].
It simulates one-dimensional nonlinear wave processes in two-component media [21].
Coupled sine-Gordon equations with ¢ = 1 were proposed to describe the open states in a
DNA model. The coupled sine-Gordon equations can describe the propagation of optical
pulses in fiber waveguide [22]. It can also describe long wave motion in shallow water.
In recent years, many scholars have studied and analyzed the system (1). Salas gives its
exact soliton solution and periodic solution [23]. Zhao et al. obtained the exact solution of
the above equation by using the hyperbolic auxiliary function method [24]. Hosseini et al.
solved the above coupling equations in nonlinear optics by using an improved Kudryashov
method [22].

Our main purpose is to solve the traveling wave solutions of the following coupled
local fractional sine-Gordon equations by using the LFHP method.

92 9% > . e
atzlf - axzqu =-0 SIHE(lP _w) ’

2
a2s 2326 .
s — P9 = sine (Y — w)",

where ¢ is the fractal dimension and 0 < ¢ < 1.

In this paper, the basic idea of the local fractional homotopy perturbation method
is introduced and the traveling wave solutions of coupled local fractional sine-Gordon
equations are obtained by using this method. The structure is as follows: The Section 2
introduces the basic theory and operation formula of local fractional calculus. The Section 3
introduces the basic idea and operation process of the LFHP method. In Section 4, we obtain
the traveling wave solutions of coupled local fractional sinusoidal Gordon equations using
the LFHP method, and obtain their wave images using MATLAB. Finally, we summarize
the main conclusions in Section 5.

2. Local Fractional Calculus
2.1. Local Fractional Derivatives

Definition 1. Wedefine C¢(y, v) as a set of the nondifferentiable functions. Setting ¥ (x) € Ce(pt,v),
local fractional derivative of ¥ (x) of order (0 < ¢ < 1) at x = xo is defined by [25]
_ d¥)

€ _
DE¥(y) = — lim AT (x) \FS(XO)]
dXe X=Xo0 X=7X0 (X - XO)

7 (3)

where A[¥ (x) =¥ (x0)] = T(1 +¢)[¥(x) — ¥ (x0)]-

In addition, the local higher order fractional partial derivative is defined as

k times
aks ot as\
W‘F(X/“Y) = TXSMTXST(X'V)'

The properties of the local fractional derivative are listed as follows [26]:
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(R1) D [¥ (x0) £ R(x0)] = DO¥(x0) £ DOR(x0),

(R2) DY (x0)R(x0)] = ¥ (x0)DD¥ (x0) + ¥ (x0)DOR(x0),

(R3) D) [‘i’m)} _ {290 R(x0) — ¥(0) [DRGr0) |}
R(x0) R (x0) '
where R(x0) # 0, and ¥(x0), R(x0) € Ce(p,v).
2.2. Local Fractional Integral
Definition 2. The local fraction integral of ®(x) is defined as [27]

(6) 1 ; TN e
JE00 “ g [, PO = g dim B o), @

where ®(x) € Ce(pt,v), and Axe = Xo11 — Xo With xo =a < x1 < -+ < XN-1 < XN = B

The properties of the local fractional integral are as follows:

SVt [, [P9900] @0 = o) - @)

(52D | gy [ e 0] = o).

2.3. Basic Operation
It defines the generalized function by [28]

Ee(Xs) _ Ee(—Xs) _ 0 X(2K+1)s
2 =T+ (2x+1)e)’

= T(1+2ke)’

Local fractional calculus has the following properties [28]

de e .

d—XSEg(CXS) = CE¢(Cx®), e sing (Cx®) = C cose(Cx?),

de . . o 45 e e
i cose(Cx*) = —Csing(Cx®), g sinh (Cx®) = C coshe(Cx®),
de de P X(Kfl)s

dye Coshe(CX0) = Csinhe(CX), Z5 T ) ~ T4 (- D))’

and

I(S) P _ X(K+1)e
O T(1+xe) T+ (x+1)e)




Fractal Fract. 2022, 6, 404 40f 10

3. Local Fractional Homotopy Perturbation Method

For a given class of local fractional differential equations,
La((PU) = 0/ (P E R/ (5)

where L, is a local fractional differential operator.
First, let us set up a homotopy mapping [18]:

Hq(@,0) =(1=07)(Le(¢7) = Lo(97)) + 07 Lo (97),

¢ €R,pe[0,1], ©)

or
Hq(¢,0) =Le(97) — Lo(97) + 0" Lo (7).,

p €R,pe[0,1], @

where p is an imbedding parameter and ¢ is an initial approximation of Equation (5).
Let Hy (¢, p) = 0, then we can obtain, from Equation (6),

Hy(u,0) = Ly (¢7) — Lo(9g) = 0;

8
Ho(9,1) = Lo(g) = 0. ®

According to the homotopy perturbation theory, p can be treated as a small parameter.
Suppose that the solution ¢ of Equation (6) can be expressed as a power series of p

97 = 9§ + "] + > 95 +p* 5 + ... = Zp“’ 7. ©)

Substituting Equation (9) into Equation (6), we obtain

Hv(épiﬁl’i/P) =(1-p") <L0<iﬂ)p’¢i> —~ La(%)) +p"La<fépi¢i>.

An extended form of L, (¢”) [19]
Loty = ot + T B0 ) o (g ) |
= Lo(¢3) + dﬂ(za(;fg)) ( i=%f();afia)_ (PO) <<i ) >,

such that
He (9, p,0)
= (1=p)"(Le(¢7) — Lo(95)) + p"Lo(¢7)
—(1-p) <Lg(q)g) + da(il‘;ffg)) (T Orfl jfl - %) o ( (fjpiq)i - €Do> ) - La(f/)g)) (10)

Ao (Lo(8)) (Thor™ el = 9f) . v
t (La(%H i g oG ))
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which reduces to

Hq(¢,0) = Lo(¢”) — Lo (@)
_ d7(Le(F)) (Eiop'ei —¢0)” N 42 (Lo (¢5)) (Tigp'ei — 90)™

dg” I'(l1+o) de% I'(1+20)
L4 (Lo(96) (Tlop'ei—90)™ |
dono I'(1+4no) o

and
Hﬂ(q)/l) = LU(QUU)
i i 2
= Lo (§) + d7 (Lo (95)) (o p'pi — 90)° N d2 (Lo (9%)) (Zigpiei — @0)~

dg” I1+o) de? r(1+20)
L A (Lolg) (Soe - 90"
done I'(1+ no) T

Using the expression Equation (10), we find that
P+ La(9) = Lo(@§) = 0,

1o 47 (Lo(ef))  of
' dee T(1+0)
20, 4(Lo(98)) 95 d(Le(9f)) o1
P4 T(+o) dg%  T(1+20)

when p — 1, we have the approximate solution of the form:

P + Lo(9g) =0,

=0.

no n
o7 =lim) 0] =} ¢f.
e S

4. Solution of System of Equations

In this section, the solutions of coupled local fractional sine-Gordon equations
are discussed.

We consider the following system of local fractional equations:

92 9% 5 . e
at;f — alef = —4°sing (Y — w)",

(11)
0w _ 20%w

o12¢ ox2¢

= sing (Y — w)*.

In order to solve the coupled local part sine-Gordon equations, we can construct the
following nondifferentiable homotopy:

825 825 928 .
(1—p%) atzlf +p° [ atzlf - alef + 62 sing (¢ — a))} =0,
(12)
2¢ 92¢ 2¢ .
(1- pe)aatz‘;’ +pf [ at;f - CZ%X;’ — sing (¢ — w)} = 0.
Moreover, '
Y =YZ00 Y=o+ p P +p* ¢t
(13)

w = }?‘;Opfswj = wo + pfwy + p%wy + -+ - .
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Submitting Equation (13) into Equation (12), we have

aZs 9% St
|:Z] Op] ¢](X t):| - lg?z(sx )
- 9% ' 1)k(l/] )2k+1 aZelp (x,t)
=P {m {ijo P]S‘/’J(xft)} [Ek 0 "T(1+(2k+1)e) } o }
(14)
2e 92¢ 3
atZs [Z] Opjsw](x t)} - %
. (4] w)2k+1 9%, (x,t)
=p { Fywr {Z] Opfsw](x t)} {Zk 0 r(1+ 2k+1)e) } T }
Taking k = 1, 2, 3, then rearranging according to the power of p-terms, we obtain:
aZs 3 2¢ :
T - TR =0, ol ) = Acosi(kx),
P . (15)
0~ b d b
wofut) _ 0lul) — 0, wy(x,t) =0.
Py _ Py gago-wo | 52 ¥E=S¥fwotStowi—w]
ot2e ax2€ 1"(1+£) T(1+3¢)
_ 52 ¥ —5¢5wo+10¢3wi —1093wi+5¢fwi +5dowi—wy %y
5 T(1+5¢) e
o (16)
0% wy _ 23 wo 4 Po—wy 3 —33wo+3powi —wi
TorE ox% T T(1+e) T'(1+3¢)
n Y5 —5¢gwo+10¢3wi — 1093w +5¢Fwi +5powi—wy 9wy
T(1+5¢) 912
aZs aZe
at;liz — ax;/? — 2 [whﬁfﬁ -z (1138) (331 — Bydwr — 6Yoyprwy + 6yPowows + 3P w3 — Bwiw)
+ T(1+5£) (21[701[71 + 21/131#1 — 10y wo — 51[]01/71600 — 51[70601 + 30¢01/)1w0 + 201/10(,()06(}1
\ —30p3wiws — 2091wl + 10yowows + Spowiw + 591w — 2wiw; — 2wiwr )],
P . 17)
9 9%
atgéz = 2 axfoSl + ¢E1+s) F(l-li-Ss) (31/1(2)1/11 - 31p§w1 - 61P01/J1(U0 + 61/]0(4)0(4]1 + 31/}1(4]% - 3(4]8(,01)

+ r(1+5g) (29391 + 29591 — 109y wo — SYPgp1wo — SYgws + 30y3r w3 + 20¢3wowy
—30p3wiw — 20¢oy1wi + 10yowows + Sphowiwr + 5¢prwi — 2wiwy — 2wiwy ).

Solving Equations (15)—(17), we obtain:

Po(x,t) = Acos(kx),
wo(x,t) =0.
(1) =t [ AR cose (k) — P — L A cose (kx')
¥ (x, =t 1) CoS; s cos (kx
> 1 3 3 e 2 15 5
+6 F(l+3£)A cos; (kx®) — ¢ F(1+5£)A cos; (kxt)
wr(n,t) = L Acose(kx®) — =1 A3 cosd (kxt)
WS =T v 2e) [T(1+e) <% T(143e) " CO%W
1 5 5ip.e
+F(1+5£)A cos (kx )}
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t4e

Py (x, 1) = W{A{kZ —|—2k2F(1 vy

+ A4

—A%|2
[ I(1+3e

t4£

wy(x, t) = T(1+4e)

{-a

+ A3

_ A5

+ 47 [ T(1+3e)T(1+ 55)} cose (kx®) — A” [r(l +5e)T(1 + 5¢) |

_ A4

+A® {2

52

5t 462 52

_12k2L
I I'(1+ 3e)

52

+

+20A2K2

FroriTe AR T

52 5t 452 ]
[(1+5¢) T(1+¢€)I(1+ 3¢)
36 + 662 5+ 52

+4

] cose (kx®)

cos? (kx®)

2
_27k I'(1+ 5¢)

564 4 862

+ T(1+¢)T(1+ 5¢)

| T(1+ 3¢)T(1 + 5¢)

_2k2 o2

4 2
] cos? (kx®) + A’ { 207 150 }

I'(1+ 5¢)I'(1+ 5e)
o4

T(1+5)
54

2T+ T +5¢)

] cos? (kx°)

54

T'(1+3¢)T'(1+ 3¢)

] cos? (kx°)

cos] (kx°)

—2 C2+1

)T(1 + 5¢)

} cos® (kxt) + A8 [Zr

2 +1

| T(1+e¢)
r 2
C
12k2
T

(14 3¢)

c2

I(14+¢&)(1+e¢)

20A%k?
+20 -

C2
64 Ty +3£)]

2 2 +1
(450 *TA+eT(+30
36+ 6 52 +1

(1+5¢)T(1+ 55)] cos (kx) }

cose (kx?)

cos? (kx¢)

27k2
| T(145¢)
562 +8

* I'(1+4¢€)I'(1+ 5¢)

26245

I'(1+43¢)I'(14 3¢

(52

1
22
R

52

+2

T(1+e)r(1 +55)} cosg (kx)

52

] ] cos? (kx¢)

cos] (kx°)

T(1+3¢)0(1 + 5e)

] cos® (kxt) — A8 {2

T +50)(1 +5€)] Cosg(kxe)}'

When p — 1, the solutions of the coupled local fractional sine-Gordon equations are

|

¥(x, ) = o(x, 1) + 91 (x 8) + ¥2(x, 1),

w(x,t) = wo(x, t) + wi(x, t) + wa(x, t)

(18)

When the fractal dimension is ¢ = In2/1n3, the corresponding diagrams of ¢(x, ) and
w(x, t) are as shown in Figures 1 and 2.

(@)

(b)

Figure 1. In the case of {(x, t) solution in the local fractional sine-Gordon equations, by choosing
A=1k=1c=16=1 @0<t<1L;(b)-1<t<1L
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w ()

w (Y

(a)

Figure 2. In the case of w(x, t) solution in the local fractional sine-Gordon equations, by choosing
A=1k=1c=16=1.a@)0<t<1(b)-1<t<l.

The time-dependent behavior of ¢(x, t) and w(x, t) obtained from the theory of the
local number order homotopy perturbation method is shown in Figure 3. We show the
elastic interaction between two solitons. It can be seen that both solitons maintain their
initial velocity and shape after interaction. In Figure 4, we compare the local motion
diagram of the sine-Gordon equation with integer order and fractal dimension & = [n2/In3.
Compared with the general homotopy perturbation method, the behavior graph obtained
by this method is more realistic.

150 —

20

wYu‘) (XVI)

-20

Figure 3. In the case of local fractional sine-Gordon equations, by choosing parameters A =1,k =1,
c=1,6=1.
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w (X,t)

-100
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Figure 4. Comparison of integer order ¢ = 1 and fractional dimension & = [n2/In3.

5. Conclusions

In this paper, we obtain the exact solution of a coupled local fractional sinusoidal
Gordon equation by using the LFHP method, and show the special function graphs defined
on the Cantor set when the fractal dimension is € = [n2/In3. The results show that the
technique is effective in solving nonlinear partial order equations. The LFHP method solves
many nonlinear problems in science and engineering. We consider that the LFHP method
can theoretically solve the ac-driven sine-Gordon equation [29]. We will study it in future
work. With the help of MATLAB and other mathematical software, this method provides
a powerful mathematical tool for more complex nonlinear systems. In a word, the LFHP
method provides highly accurate fractal solutions for nonlinear problems.
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