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Abstract: The second derivative block hybrid method for the continuous integration of differential
systems within the interval of integration was derived. The second derivative block hybrid method
maintained the stability properties of the Runge–Kutta methods suitable for solving stiff differential
systems. The lack of such stability properties makes the continuous solution not reliable, especially
in solving large stiff differential systems. We derive these methods by using one intermediate off-grid
point in between the familiar grid points for continuous solution within the interval of integration.
The new family had a high accuracy, non-overlapping piecewise continuous solution with very
low error constants and converged under the suitable conditions of stability and consistency. The
results of computational experiments are presented to demonstrate the efficiency and usefulness of
the methods, which also indicate that the block hybrid methods are competitive with some strong
stability stiff integrators.

Keywords: block hybrid method; continuous scheme; differential system; multistep collocation

1. Introduction

The system whose numerical approximation is sought is written in the form{
dy
dx = f (x, y), (a ≤ x ≤ b),
y(x0) = y0 .

(1)

In Equation (1), y : [a, b]→ Rm and f : [a, b]× Rm → Rm are differentiable. To obtain
accurate integration methods, which combine, to some extent, the advantages of the Runge–
Kutta methods (RKMs) and linear multistep methods (LMMs), the use of the multistep
collocation technique has been proposed by many authors, for example, Onumanyi et al. [1],
Chollom and Jackiewicz [2], Chollom and Onumanyi [3], and Jator [4]. In this work,
methods were designed for finding a continuous approximate solution of the system in
Equation (1), where y(x) belongs to C1([a, b], Rm) and the set of points defined as

Ω : a = x0 < x1 < · · · < xn+1 = b,

so that

xn : xn = x0 + nh, n = 0, 1, · · · , N − 1, h = xn+1 − xn and N = (b− a)/h.

The h in this paper, for simplicity, is a constant and N is a positive integer. Some of
the methods derived for Equation (1) were, in fact, to evaluate the solution only at the
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first derivative of Equation (1). Long before our consideration of introducing the off-step
points, Gragg and Stetter [5], Butcher [6,7], and Gear [8] had already considered introducing
some off-step points and referred to them as generalized multistep predictor–corrector
methods, a modified multistep method, and hybrid methods, respectively. Similarly,
the introduction of the second derivative terms had already been considered by many
authors. For example, earlier, Urabe [9] worked on a second derivative method with
y′′ (x) = g(x, y) to obtain a starting method for the single-step integrator in the paper.
In [10], Mitsui changed slightly Urabe’s PC pair to improve the performance of the method.
To unify and extend this result after some years, Cash [11] generalized the PC pair of
Urabe’s type of method. Gupta, in [12], derived and implemented second-derivative
methods. Shaintani [13,14] suggested some integration algorithms very similar to RKMs,
with y′(x) = f (x, y) and y′′ (x) = g(x, y). In [15], the author constructed (p, q)-stage
RKMs, which exhibit y′′ (x) = g(x, y) evaluation. Chan and Tsai [16] considered explicit
two-derivative RKMs, which are cheaper to calculate with fewer function evaluations than
the standard RKMs. Recently, many authors have worked on methods to obtain better
approximate solutions to differential equations or on stability properties to improve the
accuracy and efficiency of solution of differential equations (see, for example, [17–24]).

In this article, we extend the work of Yakubu et al. [25] to derive block-hybrid methods
that show a high order of accuracy with very low error constants and large regions of
absolute stability and converge rapidly to the required solution. We should also point out
that the effectiveness of this class of methods for the treatment of stiff systems is shown
on the basis of their attractive properties and the efficient technique to deal with a large
system of a stiff initial value problem of ordinary differential equations.

Definition 1 ([26]). Let Ym and Fm be vectors given by

Ym = (yn, yn+1, . . . , yn+r−1)
T ,

Fm = ( fn, fn+1, . . . , fn+r−1)
T .

Then the k-block method is of the form

Ym =
k

∑
i=1

AiYm−i +
k

∑
i=0

BiFm−i. (2)

If r = 1, then the above equation in Equation (2) is just the classical k-step method. When B0 = 0,
Equation (2) is explicit; otherwise, it is implicit.

The below diagram depicts the idea of the new methods.
In Figure 1, [a, b] is divided into a series of equal lengths of a block of six points

with size or length h. The approximate solutions {yn+u, yn+1, yn+v, yn+2, yn+w, yn+3} are
computed simultaneously in the block at the points {xn+u, xn+1, xn+v, xn+2, xn+w, xn+3} in
the kth block. Since the methods are self-starting, we do not need predictors to start the
block methods.
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Figure 1. Schematic representation of the block hybrid methods for stiff system of initial
value problems.

2. The Block Hybrid Methods

The block hybrid methods in this segment are based on the polynomial of the form

y(x) = α0 + α1x + α2x2 + · · ·+ αp−1xp−1 =
p−1

∑
i=0

αixi (3)

and are referred to as interpolation polynomials, which is twice continuously differentiable.
The y(x) is interpolated at

{
xn+j

}
, and y′(x) and y′′ (x) are collocated at

{
cn+j

}
to obtain

the system,

y(xn+j) = y(xn + jh), j ∈ {0, 1, 2, . . . , r− 1}, (4)

y′(cn+j) = fn+j = f (xn + jh, y(xn + jh)), j = 0, 1, 2, . . . , s− 1, (5)

y′′ (cn+j) = gn+j = fx + fyy′ = fx + f fy, j = 0, 1, 2, . . . , t− 1. (6)

Following Yakubu et al. [25], we put Equations (4)–(6) as:

Vα = y (7)

to have

V =



1 xn x2
n x3

n x4
n · · · xp−1

n
...

...
...

...
...

. . .
...

1 xn+r−1 x2
n+r−1 x3

n+r−1 x4
n+r−1 · · · xp−1

n+r−1
0 1 2xn 3x2

n 4x3
n · · · D’xp−2

n

...
...

...
...

...
. . .

...
0 1 2xn+s−1 3x2

n+s−1 4x3
n+s−1 · · · D’xp−2

n+s−1
0 0 2 6xn 12x2

n · · · D”xp−3
n

...
...

...
...

...
. . .

...
0 0 2 · · · 6xn+t−1 12x2

n+t−1 · · · D”xp−3
n+t−1



(8)
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α = (α0, α1, α2, · · · , αp−1)
T , y = (yn, · · · , yn+r−1, fn, · · · , fn+s−1, gn, · · · , gn+t−1)

T .

The D′ = (p− 1) and D′′ = (p− 1)(p− 2) are first and second derivatives. From
Equation (7), we have

α = Uy, where U = V−1 (9)

which is rearranged to have

y(x) =
r−1

∑
j=0

αj(x)yn+j + h
s−1

∑
j=0

β j(x) fn+j+h2
t−1

∑
j=0

γj(x)gn+j, (10)

where

αj(x) =
p−1

∑
i=0

αj, i+1xi, j = 0, 1, 2, . . . , r− 1, (11a)

hβ j(x) = h
p−1

∑
i=0

β j, i+1xi, j = 0, 1, 2, . . . , s− 1, (11b)

h2γj(x) = h2
p−1

∑
i=0

γj, i+1xi, j = 0, 1, 2, . . . , t− 1. (11c)

In fact, the coefficients in Equation (11) can be calculated from the inverse of the matrix
U, as in Equation (9), or written as

U = V−1. (12)

Insert Equation (11) into Equation (10) (see Yakubu et al. [25,27]) to have

y(x) =
r−1

∑
j=0

r+s+t−1

∑
i=0

αi+1,jyn+jPi(x) + h
s−1

∑
j=0

r+s+t−1

∑
i=0

βi+1,j fn+jPi(x)+h2
t−1

∑
j=0

r+s+t−1

∑
i=0

γi+1,jgn+jPi(x)

which is factorized to obtain

y(x) =
r+s+t−1

∑
i=0

{
r−1
∑

j=0
αi+1,jyn+j + h

s−1
∑

j=0
βi+1,j fn+j+h2

t−1
∑

j=0
γi+1,jgn+j

}
Pi(x)

=
r+s+t−1

∑
i=0

ϕiPi(x)
(13)

where

φi =
r−1

∑
j=0

αi+1,jyn+j + h
s−1

∑
j=0

βi+1,j fn+j+h2
t−1

∑
j=0

γi+1,jgn+j.

Then Equation (13) becomes

y(x) =

{
r−1

∑
j=0

αj,1 yn+j + h
s−1

∑
j=0

β j,1 fn+j+h2
t−1

∑
j=0

γj,1gn+j,

r−1
∑

j=0
αj,2yn+j + h

s−1
∑

j=0
β j,2 fn+j+h2

t−1
∑

j=0
γj,2gn+j,

...
...

...

r−1

∑
j=0

αj,r+s+t−1yn+j + h
s−1

∑
j=0

β j,r+s+t−1 fn+j+h2
t−1

∑
j=0

γj,r+s+t−1gn+j

}(
1, x, x2, · · · , xr+s+t−1

)T
. (14)

Expanding Equation (14) fully, we obtain

y(x) = (yn, · · · , yn+r−1, fn, · · · , fn+s−1, gn, · · · , gn+t−1)
TUT(1, x, · · · , xr+s+t−1)

T
. (15)
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The T in Equation (15) denotes the transpose of.

3. Specification of the Multistep Block Hybrid Methods
3.1. Block Hybrid Method of Seventh Order

In this segment, we use the multistep approach for the construction of the new block
hybrid method with symmetric points of order seven. We introduce three off-step points,
u = 1

2 , v = 3
2 , and w = 5

2 , and η = (x− xn) for the construction of the continuous scheme.
These points are carefully chosen to guarantee the convergence of the method, as pointed
out by [28–30]. From Equation (10), putting r = 1 and s = 7 gives the block hybrid method
of the form

y(x) = α0(x)yn + h
6

∑
j=0

β j(x) fn+j. (16)

Simplifying Equation (16), the interpolation and collocation polynomial in Equation
(10) reduces to the proposed continuous scheme of the form in Equation (15), as follows:

y(x) = α0(x)yn + h[β0(x) fn + β1(x) fn+u + β2(x) fn+1 + β3(x) fn+v + β4(x) fn+2 + β5(x) fn+w + β6(x) fn+3] (17)

where

α0(x) = 1,

β0(x) =
[

96η7 − 1176hη6 + 5880h2η5 − 15, 435h3η4 + 22, 736h4η3 − 18, 522h5η2 + 7560h6η

7560h6

]
,

β1(x) =
[
−24η7 + 280hη6 − 1302h2η5 + 3045h3η4 − 3654h4η3 + 1890h5η2

315h6

]
,

β2(x) =
[

480η7 − 5320hη6 + 23, 016h2η5 − 48, 405h3η4 + 49, 140h4η3 − 18, 900h5η2

2520h6

]
,

β3(x) =
[
−240η7 + 2520hη6 − 10, 164h2η5 + 19, 530h3η4 − 17, 780h4η3 + 6300h5η2

945h6

]
,

β4(x) =
[

480η7 − 4760hη6 + 17, 976h2η5 − 32, 235h3η4 + 27, 720h4η3 − 9450h5η2

2520h6

]
,

β5(x) =
[
−24η7 + 224hη6 − 798h2η5 + 1365h3η4 − 1134h4η3 + 378h5η2

315h6

]
,

β6(x) =
[

96η7 − 840hη6 + 2856h2η5 − 4725h3η4 + 3836h4η3 − 1260h5η2

7560h6

]
,

Evaluate Equation (17) at xn+u, xn+1xn+v, xn+2, xn+w, and xn+3 to obtain the method:

yn+u = yn +
h

120, 960
[19, 087 fn + 65, 112 fn+u − 46, 461 fn+1 + 37, 504 fn+v − 20, 211 fn+2 + 6312 fn+w − 863 fn+3] (18)

yn+1 = yn +
h

7560
[1139 fn + 5640 fn+u + 33 fn+1 + 1328 fn+v − 807 fn+2 + 264 fn+w − 37 fn+3]

yn+v = yn +
h

4480
[685 fn + 3240 fn+u + 1161 fn+1 + 2176 fn+v − 729 fn+2 + 216 fn+w − 29 fn+3]

yn+2 = yn +
h

945
[143 fn + 696 fn+u + 192 fn+1 + 752 fn+v + 87 fn+2 + 24 fn+w − 4 fn+3]

yn+w = yn +
h

24, 192
[3715 fn + 17, 400 fn+u + 6375 fn+1 + 16, 000 fn+v + 11, 625 fn+2 + 5640 fn+w − 275 fn+3]

yn+3 = yn +
h

280
[41 fn + 216 fn+u + 27 fn+1 + 272 fn+v + 27 fn+2 + 216 fn+w + 41 fn+3]
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3.2. Second-Derivative Block Hybrid Method of Order 14

Here, we introduce the second-derivative term to have the block hybrid method of
order 14 whereby we have the following interpolation and collocation polynomial of the
form

y(x) = α0(x)yn + h
6

∑
j=0

β j(x) fn+j + h2
6

∑
j=0

γj(x)gn+j (19)

Simplify Equation (19) to obtain the proposed continuous scheme of the form in
Equation (15) as:

y(x) = α0(x)yn + h[β0(x) fn + β1(x) fn+u + β2(x) fn+1 + β3(x) fn+v + β4(x) fn+2 + β5(x) fn+w + β6(x) fn+3]
+h2[γ0(x)gn + γ1(x)gn+u + γ2(x)gn+1 + γ3(x)gn+v + γ4(x)gn+2 + γ5(x)gn+w + γ6(x)gn+3]

(20)

where

α0(x) = 1,

β0(x) =

 56η14

10,125h13 −
16,384η13

131,625h12 +
38,339η12

30,375h11 −
15,428η11

2025h10 + 1,028,069η10

33,750h9 −
2,578,814η9

30,375h8 + 54,733,637η8

324,000h7

− 2,737,391η7

11,340h6 + 29,786,393η6

121,500h5 −
173,613,232η5

101,250h4 + 1,383,221η4

18,000h3 −
48,587η3

2700h2 + η

,

β1(x) =

 352η14

3375h13 −
100,064η13

43,875h12 + 3016η12

135h11 −
320,048η11

2475h10 + 2,762,014η10

5625h9 − 12,992,474η9

10,125h8

+ 1,588,042η8

675h7 − 14,281,196η7

4725h6 + 2,995,066η6

1125h5 − 2,864,446η5

1875h4 + 12,798η4

25h3 − 375η3

5h2

,

β2(x) =

 8η14

27h13 −
2192η13

351h12 + 1583η12

27h11 −
31984η11

99h10 + 104,287η10

90h9 − 229,583η9

81h8 +

4,159,523η8

864h7 − 2,142,395η7

378h6 + 36,235η6

8h5 − 35,194η5

15h4 + 2865η4

4h3 −
100η3

h2

,

β3(x) =

 256η13

1053h12 −
128η12

27h11 + 36,224η11

891h10 −
5440η10

27h9 + 154,928η9

243h8 − 12,088η8

9h7 +

1,079,840η7

567h6 − 48,448η6

27h5 + 436,624η5

405h4 − 10,160η4

27h3 + 1600η3

27h2

,

β4(x) =

 − 8η14

27h13 +
2176η13

351h12 −
1559η12

27h11 + 31,244η11

99h10 − 101,107η10

90h9 + 221,290η9

81h8

− 3,999,539η8

864h7 + 4,132,745η7

756h6 − 158,999η6

36h5 + 70,051η5

30h4 − 11,745η4

16h3 + 425η3

4h2

,

β5(x) =

 − 352η14

3375h13 +
92,128η13

43,875h12 −
63,496η12

3375h11 + 244,912η11

2475h10 −
1,908,574η10

5625h9 + 8,060,938η9

10,125h8

− 4,402,922η8

3375h7 + 1,411,868η7

945h6 − 146,794η6

125h5 + 1,136,462η5

1875h4 − 23,334η4

125h3 + 664η3

25h2

,

β6(x) =

 − 56η14

10,125h13 +
14,192η13

131,625h12 −
1139η12

1215h11 + 9712η11

2025h10 −
180,403η10

11,250h9 + 1,117,297η9

30,375h8

− 3,827,857η8

64,800h7 + 1,884,301η7

28,350h6 −
12,502,381η6

243,000h5 + 1,326,917η5

50,625h4 −
21,559η4

2700h3 + 152η3

135h2

,

γ0(x) =

 8η14

14,175h12 −
112η13

8775h11 +
791η12

6075h10 −
392η11

495h9 + 21,581η10

6750h8 −
18,277η9

2025h7 +

1,184,153η8

64,800h6 −
3613η7

135h5 + 685,307η6

24,300h4 −
23,569η5

1125h3 + 37,849η4

3600h2 −
49η3

15h + η2

2

,

γ1(x) =

 32η14

1575h12 −
1312η13

2925h11 + 40η12

95h10 −
4304η11

165h9 + 12,594η10

125h8 −
60,514η9

225h7 +

22,796η8

45h6 − 212,308η7

315h5 + 46,658η6

75h4 − 47618η5

125h3 + 702η4

5h2 −
24η3

h

,
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γ2(x) =

 8η14

63h12 −
320η13

117h11 + 79η12

3h10 −
1644η11

11h9 + 16,649η10

30h8 − 38,182η9

27h7 +

725,969η8

288h6 − 791,491η7

252h5 + 21,449η6

8h4 − 29,929η5

20h3 + 495η4

h2 −
75η3

h

,

γ3(x) =

 128η14

567h12 −
128η13

27h11 + 10,784η12

243h10 −
6592η11

27h9 + 118,264η10

135h8 − 19,352η9

9h7 +

298,168η8

81h6 − 830,608η7

189h5 + 872,360η6

243h4 − 258,952η5

135h3 + 5480η4

9h2 −
800η3

9h

 ,

γ4(x) =

 8η14

63h12 −
304η13

117h11 + 71η12

3h10 −
1392η11

11h9 + 13,229η10

30h8 − 28,373η9

27h7 +

503,201η8

288h6 − 255,529η7

126h5 + 19,361η6

12h4 − 4208η5

5h3 + 4185η4

16h2 −
75η3

2h

,

γ5(x) =

 32η14

1575h12 −
1184η13

2925h11 + 808η12

225h10 −
3088η11

165h9 + 7954η10

125h8 −
33,338η9

225h7 +

54,256η8

225h6 −
86,468η7

315h5 + 5366η6

25h4 −
13,786η5

125h3 + 846η4

25h2 −
24η3

5h

,

γ6(x) =

 8η14

14,175h12 −
32η13

2925h11 +
23η12

243h10 −
716η11

1485h9 +
10,841η10

6750h8 −
7436η9

2025h7 +

76,213η8

12,960h6 −
8317η7

1260h5 + 247,819η6

48,600h4 −
35,009η5

13,500h3 + 71η4

90h2 −
η3

9h

,

Evaluating the continuous scheme in Equation (20) as usual at xn+u, xn+1xn+v, xn+2,
xn+w, and xn+3, we obtain the method

yn+u = yn + h
1,245,404,160,000

 199, 368, 819, 177 fn − 68, 951, 829, 552 fn+u − 380, 416, 470, 375 fn+1 + 300, 642, 304, 000 fn+v

+457, 138, 998, 375 fn+2 + 110, 327, 270, 448 fn+w + 4, 592, 987, 927 fn+3


h2

249,080,832,000

 1, 784, 098, 013gn − 33, 488, 665, 488gn+u − 71, 514, 207, 675gn+1 − 77, 935, 000, 000gn+v

−3, 164, 886, 075gn+2 − 3, 963, 034, 512gn+w − 90, 441, 763gn+3

 (21)

yn+1 = yn +
h

4,864,860,000

[
783, 720, 817 fn + 706, 775, 424 fn+u − 457, 058, 625 fn+1 + 1, 387, 808, 000 fn+v

+1, 957, 353, 375 fn+2 + 466, 919, 808 fn+w + 19, 341, 201 fn+3

]
h2

972,972,000

[
7, 057, 013gn − 117, 681, 984gn+u − 337, 970, 925gn+1 − 336, 793, 600gn+v

−134, 615, 475gn+2 − 16, 742, 592gn+w − 380, 629gn+3

]
yn+v = yn +

h
5,125,120,000

[
826, 473, 395 fn + 775, 497, 456 fn+u + 688, 759, 875 fn+1 + 2, 699, 264, 000 fn+v

+2, 168, 488, 125 fn+2 + 508, 254, 480 fn+w + 20, 942, 669 fn+3

]
h2

1,025,024,000

[
7, 450, 095gn − 123, 030, 576gn+u − 333, 689, 625gn+1 − 390, 561, 600gn+v

−147, 584, 025gn+2 − 18, 189, 360gn+w − 411, 921gn+3

]
yn+2 = yn +

h
152,026,875

[
24, 532, 563 fn + 23, 488, 800 fn+u + 23, 587, 500 fn+1 + 116, 768, 000 fn+v

+99, 037, 875 fn+2 + 15, 993, 312 fn+w + 645, 700 fn+3

]
h2

30,405,375

[
221, 317gn − 3, 633, 120gn+u − 9, 727, 200gn+1 − 10, 524, 800gn+v

−5, 041, 125gn+2 − 567, 648gn+w − 12, 680gn+3

]
yn+w = yn +

h
1,992,646,656

[
322, 126, 585 fn + 322, 599, 120 fn+u + 379, 475, 625 fn+1 + 1, 617, 920, 000 fn+v

+1, 719, 564, 375 fn+2 + 609, 445, 680 fn+w + 10, 485, 255 fn+3

]
h2

1,992,646,656

[
14, 560, 225gn − 235, 515, 600gn+u − 614, 964, 375gn+1 − 623, 480, 000gn+v

−210, 324, 375gn+2 − 64, 098, 000gn+w − 1, 010, 975gn+3

]
yn+3 = yn +

h
20,020,000

[
3, 310, 219 fn + 5, 014, 656 fn+u + 11, 161, 125 fn+1 + 21, 088, 000 fn+v

+11, 161, 125 fn+2 + 5, 014, 656 fn+w + 3, 310, 219 fn+3

]
h2

4,004,000

[
30, 711gn − 409, 536gn+u − 726, 975gn+1 + 726, 975gn+2

+409, 536gn+w − 30, 711gn+3

]
The order and error constants for the constructed block hybrid methods are presented in
Table 1. It is clear from the table that the members of the block hybrid method without a
second-derivative evaluation are all of order seven except the last member in the block,
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which has an order higher than the remaining members in the block (order eight). The
members of the block hybrid method with a second derivative are of uniform accuracy of
order 14 with smaller error constants and, hence, are more accurate than those without a
second derivative.

Table 1. Order and error constants for the block hybrid methods.

Method Order Error Constants

Block method (18)

(i) yn + u, P = 7 C8 = 4.4403 × 10−5

(ii) yn + 1, P = 7 C8 = 3.3068 × 10−5

(iii) yn + v, P = 7 C8 = 3.9236 × 10−5

(iv) yn + 2, P = 7 C8 = 3.3068 × 10−5

(v) yn + w, P = 7 C8 = 4.4403 × 10−5

(vi) yn + 3, P = 8 C9 = 1.2555 × 10−5

Uniform order block method
(21)

(i) yn + u, P = 14 C15 = 1.4789 × 10−12

(ii) yn + 1, P = 14 C15 = 1.5718 × 10−12

(iii) yn + v, P = 14 C15 = 1.5989 × 10−12

(iv) yn + 2, P = 14 C15 = 1.6261 × 10−12

(v) yn + w, P = 14 C15 = 1.7190 × 10−12

(vi) yn + 3, P = 14 C15 = 3.1979 × 10−12

4. Regions of Absolute Stability (RAS) of the Block Hybrid Methods

Generally, in designing a new numerical method, it is very important to consider the
stability properties of the method. Therefore, in this paper, we reformulate the block hybrid
methods, as in [31,32], by the partitioning (s + r)× (s + r) of the form[

Y[n]

y[n−1]

]
=

[
A|U
B |V

][
h f
(

Y[n]
)

y[n]

]
, n = 1, 2, . . . , N, (22a)

where

Y[n] =


Y[n]

1

Y[n]
2
...

Y[n]
s

, y[n−1] =


y[n−1]

1

y[n−1]
2

...
y[n−1]

r

, f
(

Y[n]
)
=


f (Y[n]

1 )

f (Y[n]
2 )
...

f (Y[n]
s )

, y[n] =


y[n]1

y[n]2
...

y[n]r

,

A =

[
0 0
A B

]
, U =

[
I 0 0

0 µ e− µ

]
, B =

 A B
0 0

νT ωT

, V =

I µ e− µ
0 0 I

0 0 I − θ

,

and e = [1, · · · , 1]T ∈ Rm.
Thus, Equation (22a) is 

Y[n]
1

Y[n]
2
...

Y[n]
s
−

y[n]1
...

y[n]r


=

[
A | U
B | V

]



h f (Y[n]
1 )

h f (Y[n]
2 )

...
h f (Y[n]

s )
−

y[n−1]
1

...
y[n−1]

r


. (22b)
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The values r and s denote output and stage values, respectively. Applying Equation (22)
to the linear test equation y′ = λy,x ≥ 0 and λ ∈ C, we have M(z) as

M(z) = V + zB(1− zA)−1U (23)

and the stability polynomial ρ(η, z) of the method can easily be obtained as

ρ(η, z) = det(η I −M(z)). (24)

The region of absolute stability < of the method is defined as

< = x ∈ C : ρ(η, z) = 1⇒ |η| ≤ 1.

Computing the stability function gives the stability polynomial of the method, which
is plotted to produce the required graph of the region of absolute stability of the method,
as shown in Figure 2.
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Figure 2. Regions of absolute stability of the block hybrid methods. (a) Method (18) is A(α)-stable.
(b) Method (21) is A-stable.

Remark 1. In the stable block hybrid second-derivative implicit method, we added the matrix D1
obtained from the coefficients of h2 to the matrices A, C, B, and D, which enabled us to plot the
region of absolute stability of the new method. The region of absolute stability of method (18) is
A(α)-stable while the region of absolute stability of the second-derivative implicit method (21) is
A-stable since the region contains the complex plane outside the enclosed figure.

5. Numerical Illustrations

For the illustration of the performance of the derived methods, we consider both linear
and nonlinear challenging systems. To provide a direct comparison, Matlab software codes
were written for the preliminary test experiments using a fixed step length. We present
the calculated results in tables and depict the curves in figures. Here, nfe and Ext are the
function evaluations and exact values, respectively.

Example 1. The Kaps problem [30].
We consider the nonlinear Kaps stiff system,[

y′1(x)
y′2(x)

]
=

[
−1002 y1(x) + 1000 y2

2(x)
y1(x)− y2(x)(1 + y2(x))

]
,
[

y1(0)
y2(0)

]
=

[
1
1

]
.
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The exact value of the system is [
y1(x)
y2(x)

]
=

[
exp(−2x)
exp(−x)

]
.

The solutions of this example are shown in Table 2 and the solution curves are depicted
in Figure 3.

Table 2. Absolute errors in the numerical integration of Example 1.

x yi Method (18) Method (21)

y1 1.223052805026881 × 10−3 1.228938367083599 × 10−3

5 y2 1.290570363021715 × 10−6 1.800318343625484 × 10−6

y1 3.320709446422848 × 10−5 3.325679258575631 × 10−5

50 y2 9.887815172193726 × 10−8 5.804723043345561 × 10−7

y1 3.619658989642897 × 10−12 3.622719245691676 × 10−12

250 y2 2.523305960607913 × 10−11 2.101212666995355 × 10−10

y1 7.167561881971770 × 10−21 7.173620185942641 × 10−21

500 y2 1.122741130992365 × 10−15 9.350493168888896 × 10−15
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Figure 3. Graphical plots of Example 1 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 1 using (18); (b) solution curve of Example 1 using (21).

Example 2. Consider the linear stiff system.y
′
1(x)

y
′
2(x)

y
′
3(x)

 =

 0 1 0
−1 0 0
25 1 −25

y1(x)
y2(x)
y3(x)

,

y1(0)
y2(0)
y3(0)

 =

0
1
2

.

The exact value is y1(x)
y2(x)
y3(x)

 =

 sin(x)
cos(x)
sin(x) + 2 exp(Lx)

.
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The results of using the newly constructed methods are shown in Table 3 and the
solution curves are in Figure 4.

Table 3. Absolute errors in the numerical integration of Example 2.

x yi Method (18) Method (21)

y1 0 0
5 y2 1.110223024625157 × 10−16 1.110223024625157 × 10−16

y3 7.993605777301127 × 10−15 0

y1 5.551115123125783 × 10−17 4.163336342344337 × 10−17

50 y2 3.330669073875470 × 10−16 3.330669073875470 × 10−16

y3 1.038058528024521 × 10−14 0

y1 2.220446049250313 × 10−16 1.110223024625157 × 10−16

250 y2 1.110223024625157 × 10−16 1.110223024625157 × 10−16

y3 3.330669073875470 × 10−16 1.665334536937735 × 10−16

y1 4.440892098500626 × 10−16 3.330669073875470 × 10−16

500 y2 2.220446049250313 × 10−16 1.110223024625157 × 10−16

y3 3.330669073875470 × 10−16 2.220446049250313 × 10−16
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Figure 4. Graphical plots of Example 2 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 2 using (18); (b) solution curve of Example 2 using (21).

Example 3. The linear problem by Enright [33] is given by:
y
′
1(x)

y
′
2(x)

y
′
3(x)

y
′
4(x)

 =


−1 0 0 0
0 −10 0 0
−1 0 −100 0
−1 0 0 −1000




y1(x)
y2(x)
y3(x)
y4(x)

,


y1(0)
y2(0)
y3(0)
y4(0)

 =


1
1
1
1

.

The results of the integration are largely self-explanatory. If we examine the accuracy
obtained, however, we see that the newly constructed methods are considerably accurate
(see Table 4). The plotted curves are displayed in Figure 5.
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Table 4. Absolute errors in the numerical integration of Example 3.

x yi Method (18) Method (21)

y1 0 0
5 y2 0 0

y3 0 0
y4 1.110223024625157 × 10−16 1.110223024625157 × 10−16

y1 2.220446049250313 × 10−16 2.220446049250313 × 10−16

50 y2 4.440892098500626 × 10−16 4.440892098500626 × 10−16

y3 1.110223024625157 × 10−16 1.110223024625157 × 10−16

y4 2.220446049250313 × 10−16 1.110223024625157 × 10−16

y1 5.551115123125783 × 10−16 5.551115123125783 × 10−16

250 y2 7.771561172376096 × 10−16 7.771561172376096 × 10−16

y3 7.771561172376096 × 10−16 1.110223024625157 × 10−16

y4 5.204170427930421 × 10−18 5.204170427930421 × 10−18

y1 2.220446049250313 × 10−16 2.220446049250313 × 10−16

500 y2 5.551115123125783 × 10−16 5.551115123125783 × 10−16

y3 3.885780586188048 × 10−16 2.775557561562891 × 10−16

y4 1.626303258728257 × 10−19 3.388131789017201 × 10−20

Fractal Fract. 2022, 6, 386 14 of 18 
 

 

Table 4. Absolute errors in the numerical integration of example 3. 

x iy  Method (18) Method (21) 

 1y  0 0 
5 2y  0 0 
 3y  0 0 
 4y  1.110223024625157 × 10−16 1.110223024625157 × 10−16 
 1y  2.220446049250313 × 10−16 2.220446049250313 × 10−16 

50 2y  4.440892098500626 × 10−16 4.440892098500626 × 10−16 
 3y  1.110223024625157 × 10−16 1.110223024625157 × 10−16 
 4y  2.220446049250313 × 10−16 1.110223024625157 × 10−16 
 1y  5.551115123125783 × 10−16 5.551115123125783 × 10−16 

250 2y  7.771561172376096 × 10−16 7.771561172376096 × 10−16 
 3y  7.771561172376096 × 10−16 1.110223024625157 × 10−16 
 4y  5.204170427930421 × 10−18 5.204170427930421 × 10−18 
 1y  2.220446049250313 × 10−16 2.220446049250313 × 10−16 

500 2y  5.551115123125783 × 10−16 5.551115123125783 × 10−16 
 3y  3.885780586188048 × 10−16 2.775557561562891 × 10−16 
 4y  1.626303258728257 × 10−19 3.388131789017201 × 10−20 

 

  
(a) (b) 

Figure 5. Graphical plots of Example 3 using block hybrid methods with nfe = 500. (a) Solution curve 
of Example 3 using (18); (b) solution curve of Example 3 using (21). 

Example 4. This is given by Gear [34]: 

.0)0(,25001000013.0
,1)0(,2500
,1)0(,1000013.0

3323113

2322

13111

=−−−=′
=−=′
=−−==′

yyyyyyy
yyyy
yyyyy

  

We solve this problem, and the solution curves are presented in Figure 6. 

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y(1)

y(2)

y(3)

y(4)

y(1)Ext

y(2)Ext

y(3Ext

y(4)Ext

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y(1)

y(2)

y(3)

y(4)

y(1)Ext

y(2)Ext

y(3)Ext

y(4)Ext

Figure 5. Graphical plots of Example 3 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 3 using (18); (b) solution curve of Example 3 using (21).

Example 4. This is given by Gear [34]:

y′1 == −0.013 y1 − 1000 y1y3, y1(0) = 1,
y′2 = −2500 y2y3, y2(0) = 1,
y′3 = −0.013 y1 − 1000 y1y3 − 2500 y2y3, y3(0) = 0 .

We solve this problem, and the solution curves are presented in Figure 6.
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Table 5. Absolute errors of numerical integration of example 5. 

x yi Method (18) Method (21) 
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0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y(1)

y(2)

y(3)

y(1)ode

y(2)ode

y(3)ode

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

y(1)

y(2)

y(3)

y(1)ode

y(2)ode

y(3)ode

Figure 6. Graphical plots of Example 4 using the block hybrid methods with nfe = 500. (a) Solution
curve of Example 4 using (18); (b) solution curve of Example 4 using (21).

Example 5. Here, the present problem was solved by [35]. Therefore, for comparison, we present the
graphical plots of this example in Figure 7, comparing with the exact solution curves. The application
of the newly derived methods to this problem is to demonstrate their performance. However, we
considered only the first four components {y1, y2, y3, y4}, as shown in Table 5.

y
′
1(x)

y
′
2(x)

y
′
3(x)

y
′
4(x)

y
′
5(x)

y
′
6(x)


=



−10 100 0 0 0 0
−100 −10 0 0 0 0

0 0 −4 0 0 0
0 0 0 −1 0 0
0 0 0 0 −0.5 0
0 0 0 0 0 −0.1





y1(x)
y2(x)
y3(x)
y4(x)
y5(x)
y6(x)

,



y1(0)
y2(0)
y3(0)
y4(0)
y5(0)
y6(0)

 =



1
1
1
1
1
1

.

Table 5. Absolute errors of numerical integration of Example 5.

x yi Method (18) Method (21)

y1 2.024105327791403 × 10−10 2.220446049250313 × 10−16

y2 4.056337835067758 × 10−10 1.318389841742373 × 10−16

5 y3 0 0
y4 0 0

y1 1.721994824510631 × 10−9 3.330669073875470 × 10−16

y2 1.453979242560521 × 10−9 7.771561172376096 × 10−16

50 y3 4.440892098500626 × 10−16 4.440892098500626 × 10−16

y4 0 1.110223024625157 × 10−16

y1 2.077217382476237 × 10−10 6.591949208711867 × 10−17

y2 1.233960850166582 × 10−11 1.734723475976807 × 10−18

250 y3 2.775557561562891 × 10−17 8.326672684688674 × 10−17

y4 6.661338147750939 × 10−16 6.661338147750939 × 10−16

y1 2.711908290569135 × 10−12 6.810144895924575 × 10−19

y2 6.195955749334348 × 10−13 2.710505431213761 × 10−20

500 y3 6.938893903907228 × 10−18 4.857225732735060 × 10−17

y4 3.885780586188048 × 10−16 3.330669073875470 × 10−16
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6. Concluding Remarks 
The presented second-derivative block hybrid method for a stiff system of ordinary 

differential equations is suitable for large systems. The second-derivative block hybrid 
time integrator provides good performance. Numerical results for the new second-
derivative block hybrid method are promising and are demonstrably comparable to those 
obtained from popular high-order stiff time integrators found in the literature. Their 
stability properties, based on Remark 1, indicate that they are good candidates for large 
stiff systems. The next step of our research is to further apply some new methods to 
modeled differential equations that arise in other areas of scientific fields, such as chemical 
reaction, enzyme kinetics, cardiac electrophysiology, models of drug magnetic 
nanoparticle transport, and a model of tumor immune interaction, to mention just a few. 
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Figure 7. Graphical plots of Example 5 using block hybrid methods with nfe = 500. (a) Solution curve
of Example 5 using method (18); (b) solution curve of Example 5 using method (21).

6. Concluding Remarks

The presented second-derivative block hybrid method for a stiff system of ordinary
differential equations is suitable for large systems. The second-derivative block hybrid time
integrator provides good performance. Numerical results for the new second-derivative
block hybrid method are promising and are demonstrably comparable to those obtained
from popular high-order stiff time integrators found in the literature. Their stability
properties, based on Remark 1, indicate that they are good candidates for large stiff systems.
The next step of our research is to further apply some new methods to modeled differential
equations that arise in other areas of scientific fields, such as chemical reaction, enzyme
kinetics, cardiac electrophysiology, models of drug magnetic nanoparticle transport, and a
model of tumor immune interaction, to mention just a few.
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