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Abstract: The revised pore–solid fractal (PSF) model is presented by using the largest inscribed
circle-based geometries of squares or cubes to replace the original pore or solid subregions as the
new pore or solid phase in porous media. The revised PSF model changes the discrete lacunar pore
and solid phases in the original PSF model to integrated. Permeability is an intrinsic property of
geomaterials and has broad applications in exploring fluid flow and species transport. Based on
the revised PSF model and critical path analysis, a fractal model for predicting the permeability of
saturated geomaterials is proposed. The permeability prediction model is verified by comparison
with the existing predicted model and the laboratory testing. The results show that the predicted
permeabilities match the measured values very well. This work provides a theoretical framework for
the revised PSF model and its application in predicting the permeability of geomaterials.

Keywords: permeability; geomaterials; pore–solid fractal model; critical path analysis

1. Introduction

Accurate prediction of the permeability for porous media such as geomaterials is
an interesting topic in hydrology, geophysics, petroleum engineering, geotechnical engi-
neering, etc. Permeability is the reflection and measurement of the complex relationship
between the geometry and the topology of the pore phase in porous media, and it has been
commonly used in exploring fluid flow and species transportation in porous media. The
literature on predicting permeability is extensive. In terms of experimental testing, mercury
intrusion porosimetry [1,2] and nuclear magnetic resonance [3,4] have been widely used
in quantifying the pore properties of a porous medium and have become the effective
verification methods for the theoretical models of estimating permeability. In terms of cal-
culation methods, empirical models [5–8] and theoretical models considering porosity and
pore or solid particle size distribution have been proposed; examples include percolation
theory [9–12], effective medium approximation [11–13], critical path analysis [14,15] and
fractal geometry [16]. Critical path analysis (CPA) can explore both throat connectivity
and tortuosity of pore channels in porous media, which has been used to estimate the
permeability of heterogeneous geomaterials [17–20].

The micro geometric structures of porous media have self-similar properties that are
better interpreted and described with fractal geometry. A porous medium can be regarded
as a fractal body, and its micro geometric structures can be analyzed by fractal models
such as a solid or pore fractal model (Sierpinski carpet or Menger sponge) [21], pore–solid
fractal model [22], bunched capillaries fractal model [16,23,24], multifractal model [25] and
intermingled fractal units model [26]. The bunched capillaries fractal model [16,23,24] is
mostly applied to estimate the permeability of a porous medium. This model considers the
porous medium to consist of a bunch of cylindrical pore capillaries of different diameters;
the cumulative pore size distribution and the length of capillaries follow the fractal scaling
law. However, the permeability prediction models based on bunched capillaries fractal
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model lack a characterization of the pore interconnections in real existence in a porous
medium, which is an idealization of a natural porous medium.

The pore or solid fractal model based on the standard two-dimensional Sierpinski
carpet or three-dimensional Menger sponge has been mainly applied to focus on the
cumulative pore or solid particle size distribution, the interface between the pore and
solid, the mass (volume) and the water retention curve. However, based on the mono-
fractal structure, these simplified fractal models cannot reflect the real porous media,
especially geomaterials.

A geometrical, multiscale model of soil structure, which is named a pore–solid fractal
(PSF) model [22], characterizes the structure of soil exhibits self-similarity to a degree; that
is, where local structure appears, it is regarded as similar to the whole structure. It is
achieved through the incorporation of a pore phase, solid phase and fractal phase that can
be decomposed into smaller pore, solid and fractal subregions when iteration increases.
The pore phase and the solid phase both have volume fractions greater than 0 and less than
1 even for infinite iterations, and they coexist at each level in the hierarchy, which is a main
difference from the classical pore or solid fractal model with only the pore and solid phases
based on the standard Sierpinski carpet or Menger sponge. In addition, when the fractal
phase is considered as a solid phase or pore phase, the PSF model is simplified to a solid
fractal model or a pore fractal model, respectively. At present, the PSF model is mostly
used to estimate the soil water retention function [27,28] and determine the unsaturated
hydraulic conductivity [29].

In this article, a fractal model for predicting the permeability of saturated geomaterials
is proposed. Section 2 establishes a PSF model with circular-based pores to reflect the pore
phase of different geometric pores and a PSF model with circular-based solid particles
to describe the solid phase of different geometric solid particles. The permeability for
the fragmented pore or solid phase is derived using the Kozeny–Carman equation, and
the permeability for continuous geomaterials is predicted by combining the PSF model
with circular-based pores and critical path analysis in Section 3. The revised PSF models
degenerate to the general solid or pore fractal model, and the predicted model is verified
by comparison with the existing predicted model and the laboratory testing in Section 4.
The conclusion is expressed in Section 5.

2. Revised PSF Model

The original PSF model uses a square (or cube) as a basic unit that is the same as
the pore or solid fractal model, which makes the contact between the pore and the solid
complicated and makes theoretical analysis and numerical simulation difficult. In order to
improve the applicability of the PSF model, it should be revised.

2.1. PSF Model with Circular-Based Pores

The model construction is consistent with the original PSF model. Firstly, divide a
region of size L into N equal subregions in the Euclidean space of dimension d as the
initiator. N is calculated by

N = nd. (1)

n = L/r. (2)

where r is the linear length of each subregion and n is the number of divisions in each direction.
Define Nz subregions as the self-similar replicated phase, Ns subregions as the solid

phase of porous media and Np subregions as the pore phase.

p + s + z = 1. (3)

where p, s and z are the proportions of the pore, solid and self-similar replicated phases in
the initiator, respectively.

Take the largest inscribed circles (cylinders) in the Np subregions as the new pore
phase and consider the remaining parts of the Np subregions as the solid phase. The above
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operations are performed in 1st generation as a generator. In the next ith (i ≥ 2) generation,
a recursive process replaces (Nz)i−1 subregions with the reduced replicate of the generator
with the ratio (1/n)i−1. An example of the construction process of the PSF model with
circular-based pores is illustrated in Figure 1.
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Figure 1. Construction process of PSF model with circular-based pores: (a) 0th generation; (b) 1st
generation; (c) 2nd generation.

The cumulative pore size distribution P
(
≥ rp

i

)
of the PSF model with circular-based

pores is still calculated using the corresponding equation of the original PSF model [22]:

P
(
≥ rp

i

)
= Pi−1 + (Nz)i−1Np = Np

(Nz)i − 1
Nz− 1

' Np
Nz− 1

LD
(

rp
i

)−D
. (4)

where D is the fractal dimension of the original PSF model; P
(
≥ rp

i

)
is the cumulative

number of pores after ith generation; rp
i is the pore diameter after ith generation, rp

i = L
ni .

An inscribed circle (cylinder) of maximum diameter in a square (cube) subregion of
size ri instead of the square (cube) pore subregion leads to a decrease in porosity as

ϑ =
rd

i − αrd
i

rd
i

= 1− α. (5)

where α is geometric parameter, circle (cylinder) α = π/4, semicircle (semicylinder)
α = π/8 and square (cube) α = 1.

At the end of the ith generation, the decreased porosity is

dφi = dφi−1 + pϑzi−1 = pϑ
i−1

∑
j=0

zj =
pϑ

p + s
(1− zi). (6)

Therefore, the porosity φi of the PSF model with circular-based pores is shown as

φi =
p

p + s
(1− zi)− pϑ

p + s
(1− zi) =

pα

p + s

1−
(

rp
i
L

)d−D
. (7)

When i→ ∞ , rp
i → 0 , and then φ = pα

p+s .
The surface area of circular-based pores Sp(i) is obtained by

Sp(i) = Sp(i− 1) + πNp(Nz)i−1
(

L
ni

)d−1
= πNp

(
L
n

)d−1 i

∑
j=1

(
Nz

nd−1

)j−1
. (8)
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Noting N = nd, Equation (6) changes to

Sp(i) = πpnLd−1
i

∑
j=1

(nz)j−1. (9)

Since the construction process of the PSF model with circular-based pores is consistent
with the original PSF, refer to the original PSF model (Perrier et al., 1999 [22]); the pore–solid
interface area Ssp(i) is achieved by

Ssp(i) = (1− φ)Sp(i) = φSs(i). (10)

So, the surface area of the solid phase Ss(i) is written as

Ss(i) =
1− φ

φ
Sp(i) =

pϑ + s
pα

Sp(i). (11)

Assume Ms

(
≤ rp

i

)
is the cumulative mass of solid phase when the pore diameter is

less than or equal to rp
i , which is obtained by multiplying the solid volume of pore diameter

smaller than or equal to rp
i and solid density ρs. After T − 1 iterations (Tth generation) of

the PSF model with circular-based pores, Ms

(
≤ rp

i

)
is derived as follows:

Ms

(
≤ rp

i

)
= ρsLd[s + (1− α)p]

T
∑
j=i

zj−1 = ρsLd s+(1−α)p
s+p

(
zi−1 − zT)

= ρsLd s+(1−α)p
s+p

[(
rp

i
rp

max

)d−D
−
(

rp
T
L

)d−D
] (12)

When T → ∞ , rp
T → 0 , and then

Ms

(
≤ rp

i

)
=

s + (1− α)p
s + p

ρsLd

(
rp

i

rp
max

)d−D

. (13)

2.2. PSF Model with Circular-Based Solid Particles

The construction process is similar to the PSF model of circular-based pores except
that the largest inscribed circles (spheres) in the Ns(Nz)i−1 subregions of size ri are used to
represent the new solid phase and the remaining parts of the Ns(Nz)i−1 subregions of size
ri are regarded as the pore phase.

The cumulative solid particle size distribution S
(
≥ rs

i
)

of the PSF model with circular-
based solid particles is still calculated as

S(≥ rs
i ) = Si−1 + (Nz)i−1Ns = Ns

(Nz)i − 1
Nz− 1

' Ns
Nz− 1

LD(rs
i )
−D. (14)

where S
(
≥ rs

i
)

is the cumulative number of solid particles after ith generation; rs
i is the

solid particle diameter after ith generation, rs
i =

L
ni .

An inscribed circle (sphere) of maximum diameter in a square (cube) subregion of size
ri replaces the square (cube) solid subregion, which causes an increase in porosity as

υ =
rd

i − βrd
i

rd
i

= 1− β. (15)

where β is a geometric parameter. When the subregion is a circle, β = π/4; sphere,
β = π/6; square (cube), β = 1.
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At the end of the ith generation, the increased porosity is

dφi = dφi−1 + sυzi−1 = sυ
i−1

∑
j=0

zj =
sυ

p + s
(1− zi). (16)

Therefore, the porosity φi of the PSF model with circular-based solid particles is
obtained as

φi =
p

p + s
(1− zi) +

sυ

p + s
(1− zi) =

p + sυ

p + s

[
1−

(
rs

i
L

)d−D
]

. (17)

when i→ ∞ , rs
i → 0 , and then φ = p+sυ

p+s .
According to the PSF model with circular-based pores, the surface area of circular-

based solid particles Ss(i) is written as

Ss(i) = πsnLd−1
i

∑
j=1

(nz)j−1. (18)

The surface area of the pore phase Sp(i) is obtained as

Sp(i) =
φ

1− φ
Ss(i) =

p + sυ

sβ
Ss(i) (19)

The cumulative mass of the solid phase Ms
(
≤ rs

i
)

when the solid particle diameter is
less than or equal to rs

i is derived as

Ms(≤ rs
i ) = ρssβLd

r

∑
j=i

zi−1 =
s

s + p
ρsβLd

[(
rs

i
rs

max

)d−D
−
(

rs
T
L

)d−D
]

(20)

When T → ∞ , then

Ms(≤ rs
i ) =

sβ

s + p
ρsLd

(
rs

i
rs

max

)d−D
. (21)

When the subregions of solid phase are squares (cubes), β = 1. Equation (20) coincides
with the cumulative mass of the solid phase given by Bird et al. [30].

3. Permeability for Revised PSF Model
3.1. Fragmented Pore or Solid Phase

The Kozeny–Carman equation is widely used to estimate the permeability of porous
media [5,6], which is expressed as

k =
φ3

C(1− φ)2S2
. (22)

where k is the permeability, φ is the porosity, C is the empirical parameter and S is the
specific surface area per unit volume of the solid phase.

From the revised PSF model construction, a porous medium can be fragmented into
circular-based pores of different sizes embedded in an aggregated solid phase or circular-
based solid particles surrounded by pore space.



Fractal Fract. 2022, 6, 351 6 of 11

For circular-based pores, according to Equation (11), the specific surface area per unit
volume of solid phase in ith iteration Si is

Si =
Ss(i)

V
=

π(1− φ)pn
φL

i

∑
j=1

(nz)j−1. (23)

If nz = 1,

Si =
π(1− φ)pni

φL
ki =

φ5
(

rp
max

)2

C(1− φ)4(πpi)2 . (24)

If nz 6= 1,

Si =
πpn

L
(nz)i − 1

nz− 1
ki =

φ5
(

rp
max

)2
(nz− 1)2

C(1− φ)4(πp)2
[
(nz)i − 1

]2 . (25)

For circular-based solid particles, based on Equation (18), Si is obtained by

Si =
Ss(i)

V
=

πsn
L

i

∑
j=1

(nz)j−1. (26)

If nz = 1,

Si =
πsni

L
ki =

φ3(rs
max)

2

C(1− φ)2(πsi)2 . (27)

If nz 6= 1,

Si =
πsn

L
(nz)i − 1

nz− 1
ki =

φ3(rs
max)

2(nz− 1)2

C(1− φ)2(πs)2
[
(nz)i − 1

]2 . (28)

3.2. Continuous Geomaterials

Equations (4) and (13) show that the cumulative discrete pore size distribution and
solid particle size distribution of the revised PSF model obey P ∼ r−D and S ∼ r−D,
respectively. Hunt argues that pore size is commonly used to characterize continuous
porous media and can be translated into the case of using solid particles [31,32]. Learning
from this, the continuous probability density function of pore size f (r) is obtained as

f (r) =
αp(d− D)

(p + s)rd−D
max

r−1−D. (29)

where rmax is the maximum pore diameter.
When α = 1, Equation (29) degenerates to the formula proposed by

Ghanbarian et al. [11,29].
The cumulative probability distribution function for pore diameter smaller than r is

achieved by integrating Equation (29) as

V(A) =
αp(d− D)

(p + s)rd−D
max

∫ r

rmin

rd−1−Ddr =
αp

p + s

[(
r

rmax

)d−D
−
(

rmin

rmax

)d−D
]

. (30)

If r = rmax,

V(A) =
αp

p + s

[
1−

(
rmin

rmax

)d−D
]

. (31)

It is obvious that Equation (31) is the equivalent of Equation (7).
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The water retention function θ is obtained with the process of the original PSF
model [30] as

θ = φ− αp
p + s

[
1−

(
h

hmin

)d−Dp
]

hmin ≤ h ≤ hmax. (32)

where hmin and hmax are the water tension heads at which the maximum and minimum
pore diameters occur in the porous media, respectively.

According to critical path analysis [17,19,20], the percolation threshold pc of pore
volume for saturated condition (θ = φ) is defined as

pc =
∫ rmax

rc
f (r)dr =

αp
(p + s)

[
1−

(
rc

rmax

)3−D
]

. (33)

where rc is the critical pore diameter for saturated porous media.
Transform Equation (33) to obtain

rc = rmax

[
1− pc(p + s)

αp

] 1
3−D

. (34)

The percolation threshold pc and the critical pore diameter rc for an unsaturated
condition (θ 6= φ) are

pc =
∫ r

rc
f (r)dr =

αp
(p + s)

[(
r

rmax

)3−D
−
(

rc

rmax

)3−D
]

. (35)

and

rc =

[
r3−D − pc(p + s)

αp
r3−D

max

] 1
3−D

. (36)

The generalized equation for permeability k derived by CPA is expressed
as [17,18,20,29,33]

k =
γ2

c
4CF

. (37)

where F is the formation factor and C is a constant according to the specific porous materials.
The formation factor F of saturated porous media is approximated from the water

retention curve for the saturated condition (θ = φ) and is written as [20,33]

1
F
=

φ

3

[
1−

(
rc

3rmax

)3−D
]

. (38)

Equation (38) has been successfully used for predicting the permeability of
geomaterials [20,33].

Substitute the critical pore diameter Equation (34) and the formation factor Equation (38)
into Equation (37) to yield the permeability as

k =
r2

maxφ

12C

[
1−

(
1
3

)3−D(
1− pc(p + s)

αp

)][
1− pc(p + s)

αp

] 2
3−D

. (39)

4. Discussion and Results
4.1. General Pore or Solid Fractal Model

When s = 0, p + z = 1, and the PSF model with circular-based pores degenerates to
the general solid fractal model. P and z are the proportions of pore and solid. An example
of a general solid fractal model with circular-based pores is illustrated in Figure 2.
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φi = α
(

1− zi
)
= α

[
1−

( ri
L

)d−D ′
]

. (40)

where D′ is the fractal dimension of the general solid fractal model.
When i→ ∞ , φ = α.
For the solid fractal model based on a standard two-dimensional Sierpinski carpet or

three-dimensional Menger sponge, similarly, take the largest inscribed circles (cylinders) in
the square (cube) pore subregions of size ri as the new pore phase; the porosity is

φi = α

(
1−

(
8
9

)i
)

= α
(

1− zi
)

. (41)

It can clearly be seen that the solid fractal model with circular-based pores based on
standard Sierpinski carpet or Menger sponge is a special case of the general solid fractal
model changed from PSF.

When p = 0, s + z = 1, and the PSF model with circular-based solid particles changes
to the general pore fractal model. s and z are the proportions of solid and pore. The porosity
of the pore fractal model with circular-based solid particles is

φi = υ(1− zi) + zi = 1− β + βzi = 1− β + β
( ri

L

)d−D′′
. (42)

where D′′ is the fractal dimension of the general pore fractal model.
When i→ ∞ , φ = υ = 1− β.
For the pore fractal model based on a Sierpinski carpet or Menger sponge, the largest

inscribed circles (spheres) in the square (cube) solid subregions of size ri are used to
represent the new solid phase; the porosity is

φi = υ

[
1−

(
8
9

)i
]
+

(
8
9

)i
= υ(1− zi) + zi. (43)

Equation (43) coincides with the Khabbazi formula [34].
Obviously, the pore fractal model with circular-based solid particles based on a Sier-

pinski carpet or Menger sponge is also a special case of the general pore fractal model
transformed from PSF.
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4.2. Permeability

Equation (39) is applied to predict the permeabilities of the geomaterials samples used
in Daigle’s prediction [17]. The comparison of predicted permeabilities and the measured
values is shown in Figure 3.
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Figure 3. (a) Comparison of predicted permeabilities, measured values and existing predicted values.
(b) Distribution of the ratio of predicted to measured permeabilities.

It can be seen from Figure 3 that the predicted permeabilities with Equation (36) are
almost consistent with the measured permeabilities and kmea − kpre = ±0.4× 10−11 is

the upper and lower boundary. Meanwhile, the ratio kpre
kmea

is between 0.9 and 1.1 when

log
(

rmax
rmin

)
≥ 2.7; for log

(
rmax
rmin

)
< 2.7, the error between the predicted permeabilities and

the measured values is 20% to 10%.
The difference between the predicted values in this article and Daigle’s predictions

is mainly due to the difference in the calculation method of formation factor F. Therefore,
the accurate expression of formation factor F determines the accuracy of permeability
prediction.

Figure 4 shows the predicted permeability kpre is highly correlated with the critical
pore diameter rc. The permeability is not only influenced by micro geometric characteristics
such as pore diameter, pore size distribution and interface area of pores and solid particles,
but also influenced by topological properties such as connectivity between pore and solid
phases in the porous medium, which were also obtained by Ghanbarian et al. [20].



Fractal Fract. 2022, 6, 351 10 of 11

Fractal Fract. 2022, 6, x FOR PEER REVIEW 10 of 12 
 

 

max

min
log 2.7r

r
  ≥ 
 

; for max

min
log 2.7r

r
  < 
 

, the error between the predicted permeabilities 

and the measured values is 20% to 10%. 
The difference between the predicted values in this article and Daigle’s predictions 

is mainly due to the difference in the calculation method of formation factor F. Therefore, 
the accurate expression of formation factor F determines the accuracy of permeability pre-
diction. 

Figure 4 shows the predicted permeability prek  is highly correlated with the critical 

pore diameter cr . The permeability is not only influenced by micro geometric character-
istics such as pore diameter, pore size distribution and interface area of pores and solid 
particles, but also influenced by topological properties such as connectivity between pore 
and solid phases in the porous medium, which were also obtained by Ghanbarian et al. 
[20]. 

 
Figure 4. Relationship of predicted permeability and critical pore diameter. 

5. Conclusions 
The revised PSF models use the largest inscribed circle-based geometries in pore or 

solid subregions instead of original squares or cubes to represent pores or solid particles 
in porous media, which increases the integrated contact between pores and the solid 
phase. 

A fractal model for predicting the permeability of geomaterials based on the PSF 
model with circular-based pores and critical path analysis is proposed; the permeability 
is highly correlated with the critical pore diameter. 

Author Contributions: Funding acquisition, J.W.; Conceptualization, J.W.; Methodology, L.K.; Su-
pervision, J.W.; validation, L.K.; Writing—original draft, L.K.; Writing—review and editing, L.K. 
and W.L. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was supported by the Fundamental Research Funds for the Central Univer-
sities of Sun Yat-sen University (Grant no. 22qntd290) and the National Natural Science Foundation 
of China (Grant no. 51708512). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are available in the article. 

Conflicts of Interest: The authors declare no conflict of interest. 

  

Figure 4. Relationship of predicted permeability and critical pore diameter.

5. Conclusions

The revised PSF models use the largest inscribed circle-based geometries in pore or
solid subregions instead of original squares or cubes to represent pores or solid particles in
porous media, which increases the integrated contact between pores and the solid phase.

A fractal model for predicting the permeability of geomaterials based on the PSF
model with circular-based pores and critical path analysis is proposed; the permeability is
highly correlated with the critical pore diameter.

Author Contributions: Funding acquisition, J.W.; Conceptualization, J.W.; Methodology, L.K.; Super-
vision, J.W.; validation, L.K.; Writing—original draft, L.K.; Writing—review and editing, L.K. and
W.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Fundamental Research Funds for the Central Universi-
ties of Sun Yat-sen University (Grant no. 22qntd290) and the National Natural Science Foundation of
China (Grant no. 51708512).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available in the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Katz, A.J.; Thompson, A.H. Quantitative prediction of permeability in porous rock. Phys. Rev. B 1986, 34, 8179–8181. [CrossRef]
2. Ghanbarian, B.; Torres-Verdín, C.; Lake, L.W.; Marder, M. Gas permeability in unconventional tight sandstones: Scaling up from

pore to core. J. Pet. Sci. Eng. 2018, 173, 1163–1172. [CrossRef]
3. Coates, G.; Xiao, L.; Prammer, M. NMR Logging: Principles and Applications; Haliburton Energy Services: Houston, TX, USA, 1999;

Volume 344.
4. Glover, P.W.; Zadjali, I.I.; Frew, K.A. Permeability prediction from MICP and NMR data using an electrokinetic approach.

Geophysics 2006, 71, F49–F60. [CrossRef]
5. Kozeny, J. Ueber kapillare leitung des wassers im boden. Stizungsber. Akad. Wien Akad. Wiss 1927, 136, 271–306.
6. Carman, P.C. Permeability of saturated sands, soils and clays. J. Agric. Sci. 1939, 29, 262–273. [CrossRef]
7. Brutsaert, W. Some Methods of Calculating Unsaturated Permeability. Trans. ASAE 1967, 10, 400–404. [CrossRef]
8. Mishra, S.; Parker, J.C. On the Relation Between Saturated Conductivity and Capillary Retention Characteristics. Ground Water

1990, 28, 775–777. [CrossRef]
9. Sahimi, M. Applications of Percolation Theory; Taylor and Francis: London, UK, 1994.
10. Stauffer, D.; Aharony, A. Introduction to Percolation Theory; Taylor and Francis: London, UK, 1994.
11. Ghanbarian, B.; Hunt, A.; Skinner, T.; Ewing, R. Saturation dependence of transport in porous media predicted by percolation

and effective medium theories. Fractals 2015, 23, 1540004. [CrossRef]
12. Richesson, S.; Sahimi, M. Hertz-Mindlin Theory of Contacting Grains and the Effective-Medium Approximation for the Perme-

ability of Deforming Porous Media. Geophys. Res. Lett. 2019, 46, 8039–8045. [CrossRef]
13. Sahimi, M. Heterogeneous Materials I: Linear Transport and Optical Properties; Springer: New York, NY, USA, 2003.

http://doi.org/10.1103/PhysRevB.34.8179
http://doi.org/10.1016/j.petrol.2018.10.057
http://doi.org/10.1190/1.2216930
http://doi.org/10.1017/S0021859600051789
http://doi.org/10.13031/2013.39683
http://doi.org/10.1111/j.1745-6584.1990.tb01991.x
http://doi.org/10.1142/S0218348X15400046
http://doi.org/10.1029/2019GL083727


Fractal Fract. 2022, 6, 351 11 of 11

14. Hunt, A. Applications of percolation theory to porous media with distributed local conductances. Adv. Water Resour. 2001, 24,
279–307. [CrossRef]

15. Hunt, A. Comments on “Fractal Fragmentation, Soil Porosity, and Soil Water Properties: I. Theory”. Soil Sci. Soc. Am. J. 2007, 71,
1418–1419. [CrossRef]

16. Cai, J.; Luo, L.; Ye, R.; Zeng, X.; Zhang, L.; Hu, Z. Recent advances on fractal modeling of permeability for fibrous porous media.
Fractals 2015, 23, 1540006. [CrossRef]

17. Daigle, H. Application of critical path analysis for permeability prediction in natural porous media. Adv. Water Resour. 2016, 96,
43–54. [CrossRef]

18. Skaggs, T. Assessment of critical path analyses of the relationship between permeability and electrical conductivity of pore
networks. Adv. Water Resour. 2011, 34, 1335–1342. [CrossRef]

19. Hunt, A.; Ghanbarian, B.; Saville, K.C. Unsaturated hydraulic conductivity modeling for porous media with two fractal regimes.
Geoderma 2013, 207–208, 268–278. [CrossRef]

20. Ghanbarian, B.; Hunt, A.; Skaggs, T.H.; Jarvis, N. Upscaling soil saturated hydraulic conductivity from pore throat characteristics.
Adv. Water Resour. 2017, 104, 105–113. [CrossRef]

21. Sergeyev, Y. Evaluating the exact infinitesimal values of area of Sierpinski’s carpet and volume of Menger’s sponge. Chaos Solitons
Fractals 2009, 42, 3042–3046. [CrossRef]

22. Perrier, E.; Bird, N.; Rieu, M. Generalizing the fractal model of soil structure: The pore–solid fractal approach. Geoderma 1999, 88,
137–164. [CrossRef]

23. Yu, B.; Cheng, P. A fractal permeability model for bi-dispersed porous media. Int. J. Heat Mass Transf. 2002, 45, 2983–2993.
[CrossRef]

24. Kou, L.; Miao, R.H.; Miao, F.Y. Fractal analysis of non-Newton fluid grouting through soil composed of arbitrary cross-sectional
capillaries. Fractals 2021, 29, 2150139. [CrossRef]

25. Perfect, E.; Gentry, R.; Sukop, M.; Lawson, J. Multifractal Sierpinski carpets: Theory and application to upscaling effective
saturated hydraulic conductivity. Geoderma 2006, 134, 240–252. [CrossRef]

26. Pia, G.; Sanna, U. An intermingled fractal units model and method to predict permeability in porous rock. Int. J. Eng. Sci. 2014,
75, 31–39. [CrossRef]

27. Huang, G.; Zhang, R. Evaluation of soil water retention curve with the pore–solid fractal model. Geoderma 2005, 127, 52–61.
[CrossRef]

28. Hwang, S.I.; Yun, E.Y.; Ro, H.M. Estimation of soil water retention function based on asymmetry between particle- and pore-size
distributions. Eur. J. Soil Sci. 2011, 62, 195–205. [CrossRef]

29. Ghanbarian-Alavijeh, B.; Hunt, A. Unsaturated hydraulic conductivity in porous media: Percolation theory. Geoderma 2012,
187–188, 77–84. [CrossRef]

30. Bird, N.; Perrier, E.; Rieu, M. The water retention function for a model of soil structure with pore and solid fractal distributions.
Eur. J. Soil Sci. 2000, 51, 55–63. [CrossRef]

31. Hunt, A. Continuum percolation theory for transport properties in porous media. Philos. Mag. 2005, 85, 3409–3434. [CrossRef]
32. Hunt, A.; Sahimi, M. Flow, Transport, and Reaction in Porous Media: Percolation Scaling, Critical-Path Analysis, and Effective

Medium Approximation. Rev. Geophys. 2017, 55, 993–1078. [CrossRef]
33. Ghanbarian, B. Predicting Single-Phase Permeability of Porous Media Using Critical-Path Analysis. In Complex Media and

Percolation Theory; Sahimi, M., Hunt, A.G., Eds.; Encyclopedia of Complexity and Systems Science Series; Springer: New York, NY,
USA, 2021.

34. Khabbazi, A.E.; Hinebaugh, J.; Bazylak, A. Analytical tortuosity–porosity correlations for Sierpinski carpet fractal geometries.
Chaos Solitons Fractals 2015, 78, 124–133. [CrossRef]

http://doi.org/10.1016/S0309-1708(00)00058-0
http://doi.org/10.2136/sssaj2007.0152l
http://doi.org/10.1142/S0218348X1540006X
http://doi.org/10.1016/j.advwatres.2016.06.016
http://doi.org/10.1016/j.advwatres.2011.06.010
http://doi.org/10.1016/j.geoderma.2013.05.023
http://doi.org/10.1016/j.advwatres.2017.03.016
http://doi.org/10.1016/j.chaos.2009.04.013
http://doi.org/10.1016/S0016-7061(98)00102-5
http://doi.org/10.1016/S0017-9310(02)00014-5
http://doi.org/10.1142/S0218348X21501395
http://doi.org/10.1016/j.geoderma.2006.03.001
http://doi.org/10.1016/j.ijengsci.2013.11.002
http://doi.org/10.1016/j.geoderma.2004.11.016
http://doi.org/10.1111/j.1365-2389.2010.01347.x
http://doi.org/10.1016/j.geoderma.2012.04.007
http://doi.org/10.1046/j.1365-2389.2000.00278.x
http://doi.org/10.1080/14786430500157094
http://doi.org/10.1002/2017RG000558
http://doi.org/10.1016/j.chaos.2015.07.019

	Introduction 
	Revised PSF Model 
	PSF Model with Circular-Based Pores 
	PSF Model with Circular-Based Solid Particles 

	Permeability for Revised PSF Model 
	Fragmented Pore or Solid Phase 
	Continuous Geomaterials 

	Discussion and Results 
	General Pore or Solid Fractal Model 
	Permeability 

	Conclusions 
	References

