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1. Introduction

We consider the system of fractional differential equations with ¢;-Laplacian and
02-Laplacian operators

{ DJ! (9, (DL u(t))) +a()i(v(t) =0, t€ (0,1), W
DY (9o, (DRv (1)) + b()g(u(t)) =0, t € (0,1),

subject to the coupled nonlocal boundary conditions

) S
u(0) =0, j=0,...,p—2 DY u(0) =0, DXu(1) = Z/ DY v(7) dsi;(T) + <o,
=170

@

) R m 1 )
v0(0) =0, j=0,...,9—2; DZv(0)=0, Dfv(1) = Z/O DY) u(t) ds(t) + v,
=1

where 11, 12 € (0,1], 6 € (p—1Lpl, 02 € (4=1Lq], p,q € N, p,g > 3,n,m €N,
& € Rforallj =01,....n0< a1 <ar < - <ay < Pop<d—1, 00> 1,‘3]‘ eR
forallj =0,1,...,m 0 < B < B2 < -+ < B < g < 61 — 1, a9 > 1, the functions
f,g: Ry - Ry and a, b : [0,1] — Ry are continuous, (Ry = [0,00)), ¢p and 0y are
positive parameters, 01, 02 > 1, ¢, (0) = [{]%72¢, q;gil = @p; i = QZ_Q—_il, and i =1,2. The
integrals from the conditions (2) are Riemann-Stieltjes integrals with £ i j=1,...,nand
Ri,i=1,...,m functions of bounded variation, and D’é . denotes the Riemann-Liouville
derivative of order k (for k = 1, 81, 72, 02, aj; forj=0,1,...,n Biand fori =0,1,...,m).

We present in this paper sufficient conditions for the functions § and g, and intervals
for the parameters ¢y and 0y such that problem (1) and (2) has at least one positive solution,
or it has no positive solutions. We apply the Schauder fixed point theorem in the proof
of the main existence result. A positive solution of (1) and (2) is a pair of functions
(u,v) € (C([0,1]; R4 ))? that satisfy the system (1) and the boundary conditions (2), with
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u(t) > 0and v(t) > 0 forall t € (0,1]. Now, we present some recent results related to
our problem. By using the Guo—Krasnosel’skii fixed point theorem, in [1], the authors
investigated the system of fractional differential equations

{ Do (¢o, (D' u(h)) + Af (1 u(h), (1) =0, ¢ € (0,1), )
Dg2 (e, (DR V(1)) + ug(t,u(t), v(t) =0, t € (0,1),

supplemented with the boundary conditions (2) with ¢g = 99 = 0, where A and y are
positive parameters, and f,g € C([0,1] x R4 x Ry, R, ). They presented various intervals
for A and p such that problem (2) and (3) with ¢y = 99 = 0 has at least one positive solution
(u(t) > 0forallt € (0,1], or v(t) > 0 forall t € (0,1]). They also studied the nonexistence
of positive solutions. In [2], the author investigated the existence and nonexistence of
positive solutions for the system (3) with the uncoupled boundary conditions

. n 1 ,
u(0) =0, j=0,...,p—2; D3Lu(0) =0, D u(l) = Z/O DY, u(t) d%;(7),
=1
. m 1 .
vi)(0) =0, j=0,...,9—2 DZv(0)=0, D v(1) = Z/O D v(t) dsi(7),
=1

whereaj ERfOI'aHjIO,l,...,T’Z,O <y <ap<---<a,<wg<dy—1,a9> 1,‘3]‘ eR
forallj=0,1,..., m,0<B1 <Po< - - <PBm<Po<d—1,62>15;,i=1,...,nand
ﬁ]-, j=1,---,m are functions of bounded variation. In [3], the authors studied the positive
solutions for the system of nonlinear fractional differential equations

D&, u(t) + a(Hi(v(£) =0, t€ (0,1),
DB v(t) + b(H)a(u(t)) =0, t€ (0,1),

subject to the coupled integral boundary conditions

u(0) =u'(0) =---=u"2(0) =0, ul) = /01 v(T)d$H(T) + <o,

V(O) _ V/(O) — .= V(m—2)(0) =0, V(l) = /01 u(T)dﬁ(T) + 0o,

wheren -1 <a<nm-1<p<mnmecN nm?>3a,b,fgare nonnegative
continuous functions, ¢y and dg are positive parameters, and §) and £ are bounded variation
functions. In [4], the authors investigated the existence and nonexistence of positive
solutions for the system (1) with the nonlocal uncoupled boundary conditions with positive
parameters

, . noorl g
ul)(0) =0, j=0,...,p—2; D’Lu(0) =0, Du(l) = 21 /O DY, u(t) d%;(T) + <o,
]:
. m. 1 .
vi)(0)=0, j=0,...,4—2 DZv(0) =0, Dfv(1) = Z/O D§f+v(r) d&j(T) + 0.
j=1

We note that our problem (1) and (2) is different than the problem studied in [4],
because of the boundary conditions, which are coupled in (2) and uncoupled in [4]. Based
on this difference, here, we will use, for problem (1) and (2), other Green functions, different
systems of integral equations, and different operators than those in [4]. We would also
like to mention the papers [5-10], and the monographs [11-13], which contain other recent
results for fractional differential equations and systems of fractional differential equations
with or without Laplacian operators, and for various applications. The novelties of our
problem (1) and (2) with respect to the above papers consist in the consideration of positive
parameters ¢g and 9 in the coupled nonlocal boundary conditions (2) containing fractional



Fractal Fract. 2022, 6, 299

30f15

derivatives of various orders and Riemann-Stieltjes integrals, combined with the system of
fractional differential Equation (1), which has ¢-Laplacian operators.

The paper is structured as follows. In Section 2, we present some auxiliary results,
which include the Green functions associated with our problem (1) and (2) and their
properties. In Section 3, we give the main theorems for the existence and nonexistence of
positive solutions for (1) and (2), and Section 4 contains an example illustrating our results.
Finally, in Section 5, we present the conclusions of this work.

2. Auxiliary Results

In this section, we present some results from [1], which will be used in our main
theorems in the next section.
We consider the system of fractional differential equations

{D“ (9o, (Dgu(t))) +h(t) =0, t€ (0,1), "
DI (pen (D V(1)) +K()) =0, 1€ (0,1)

with the coupled boundary conditions
®)

where h, k € C[0,1]. We denote this by

By = Z ng(é—)) [ e a0, a2 = Z F(g((s—)ﬁ) s,
I'(61)T(52)
['(61 — ao)I'(62 — Bo)

Lemma 1 ([1]). If A # 0, then the unique solution (u,v) € (C[0,1])? of problem (4) and (5) is
given by

A= — MA,.

a(t) = [ &0 UERE) AT+ [ 204,090 (2RO, V1€ 1],

1 N 1 _ (6)
v(t) = [ @at, g0 (TR@) A+ [ 04t @K@, Vi e 0,1],
where it

®1(t,0) = g1(t,0) + : A1<Z/ 01j(T, 0) d&;( ))
t1711(5)

®2(t,0) = 35~ 2 / 02/(7,0) d5;(7), ;
5r—1

&5(1,0) = 4 5lr_‘5;0 / 01/ (7, ) d(v),

15 — n
By(t,0) = g2(t, ) + = (Z/ 92] 7,7) df)]( ))
1
forall (t,¢) € [0,1] x [0,1] and

_ 1 e -ttt gl 0< <<,
gt ) = F((Sl){ 11—l 0<t< <1,

1 T 1 - )il ()BT o< g<T <,
01;(7,0) = TG —B) | P A la—ghl, 0<T<7<,
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1 12711 — )Pl — (1 —)271, 0<7<t<],
w0 = r((sz){ P27l (1 =) Pl 0<t <7<,
1 T(Sz—txk—l(l _ C)&z—‘ﬁo—l _ (T _ 5)52_9%_1, 0 S g S T S 1’
0k (T,0) = M{ Tzsz—ak—l(l _ g)&z—/ﬁo—l, 0<t<Z<1,

forallj=1,... mandk=1,...,n

Lemma 2 ([1]). We suppose that A > 0, i, i=1...,n, ﬁj, j=1,...,m are nondecreasing
functions. Therefore, the functions &;, i =1,...,4 (given by (7)) have the following properties:

(1) &;:[0,1] x [0,1] = R4, i=1,...,4 are continuous functions;
2) &1(t,0) <31(Q) forall (t,7) € [0,1] x [0,1], where

J31(0) = 0(Q) + = <i/l glj(ng)dﬁj<T)>r Vg elo1],

o 1) = k(1= 0011 (1= %) foral ¢ € 01
(3) &1(t,0) = " 151(0) forall (£,) € [0,1] x [0,1];
(4) &,(t,0) < J(C )forall (t, g) [0,1] x [0,1], where

32(f) = AT((S(ji,BO / $2i(7,0)d%Hi(t), V¢ €10,1];

(5) G(t,0) =t""15(C )fomll (t,C) [0,1] < [0, 1);
6) &3(t,0) <J3(C )forall (t,2) € [0,1] x [0,1], where
30 = g 2/ £1j(T,0)dsfy(x), ¥ € [0,1;

(7) G3(t,0) =t 135(C )forﬂll (t,¢) € [0,1] x [0,1];
(8) ®4(t,0) < 34(§)f0r all (¢,¢) € [0,1] x [0, 1], where

34(0) = ba(0) + 22 (2 [ et é)dH]-(T)>, vze o,
j=1
and h2(() = mz) (=02 P 11— (1=)f), forall £ € [0,1].
(9) B4(t,0) > t27134(Q), forall (t,¢) € [0,1] x [0,1].

Lemma 3. We suppose that A > 0, $;, i = 1,...,n, &, j = 1,...,m are nondecreasing

functions, and h, k € C([0,1];R..). Therefore, the solutzon (u(t) V(t)) t € [0,1] of problem
(4) and (5) (given by (6)) satisfies the inequalities u(t) > 0, v(t) > 0, u(t) > 1 tu(v),
v(t) > t27 v (v) forall t,v € [0,1].

Proof. Under the assumptions of this lemma, by using relations (6) and Lemma 2, we find

that u(f) > Oand v(f) > 0 for all € [0,1]. In addition, for all , v € [0, 1], we obtain the
following inequalities:

1 ~ 1 ~
u(t) = 57 ([ 3@ (RR@) -+ [ 22000 (1K)
> 01 ([ 010, (RR@) 0 + [ 020009 (TR 2 )

= t‘sl’lu(v),

1 ~ 1 ~
()2 271 ([ 0a@en (RR@) 6 + [ @ on RO a2 )
1 1 ~

= t‘52_1v(1/).
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3. Main Results

In this section, we study the existence and nonexistence of positive solutions for
problem (1) and (2) under some conditions on a, b, f, and g, when the positive parameters
¢p and 9¢ belong to some intervals.

We now give the assumptions that we will use in the next part.

(K1) y1, 72 € (0,1],01 € (p—1,p],020€ (9—1,9,,p,g € N, p,g >3, n,meN, aj € R
forallj =0,1,...,n,0 < <ay < - <ap, < Pgp<dh—1 6 > 1,f3]- € R for all
j:O,l,...,m,O <pBi < ,32 < - <le <ay<d—1,a0>1,¢9g>0and o9 > 0, H;,
i=1,...,nand £,j=1,...,mare nondecreasing functions, and A > 0.

(K2) The functions a, b : [0,1] — R are continuous, and there exist 71, 7» € (0,1) such
that Cl(Tl) >0, b(Tz) > 0.

(K3) The functions f, g : Ry — R are continuous, and there exists ¢y > 0 such that
011 01
f(z) < eOL ,0(z) < eoL for all z € [0, ¢g], where

20113, 1 01—1
L= e ()1 4 ) ic 1.3\
max{r(% Z5([ s vag) e 1,3,

202715y ! 72(02—1) 4 e 24
Ji B ’ j € v ’

T(72+1) (/O 3i(0)¢ C) j€{24}
with By = sup o g a(1), By = SUPc(o 1] b(7).

(K4) The functions f, g : Ry — R are continuous and satisfy the conditions limg, o %

_ : o(w) _
= oo and limy 0 T = o

By assumptions (K1) and (K2) and Lemma 2, we obtain that the constant L from
assumption (K3) is positive.
Now, we consider the following system of fractional differential equations:

13
D (g, (D, (1)) =0, t€ (0,1), ©
Dyt (9o, (D y (1)) =0, t € (0,1),
subject to the coupled boundary conditions
x0(0)=0, j=0,...,p—2; DSLx(0) =0, D x(1) = f /01 Dy, y(1) dH;(T) + <o,
©)

. m 1 .
y(0) =0, j=0,...,9—2 DZy(0)=0, DFy(1) = Z/o DY) x(7) ds;(7) + 20.
j=1
Lemma 4. Under assumption (K1), the unique solution (x,y) € (C[0,1])? of problem (8) and
(9) is

61—1 br—1
X(t) = tA (col—-(;;(iz?go) +30A1), y(t) = tA (COAZ"'_DOI—(;(*%)/ te [011]/ (10)

which satisfies the conditions x(t) > 0 and y(t) > 0 forall t € (0,1].

Proof. We note that ¢,, (Dgﬂrx(t)) = ¢(t), (pgz(Dgiy(t)) = ¢(t). Therefore, the problem
(8) and (9) is equivalent to the following three problems:

DJL¢(t) =0, DJ2y(t) =0,
of e o {E
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and
o
{Dg;xu)qopl(q»(t), e O,
D2 y(t) = @p, (¥(t)), 1),
with
(I11) x0(0) =0, j=0,...,p—2, D§%x( /D0+y )d9H;(T) + <o,
(I11);
y(0) =0, j=0,...,g—2, DEy( 2/ Dy, x(1) dj(T) + 2.

Problem (I) has the solution ¢(t) = 0 for all t € [0,1], and problem (II) has the
solution ¢(t) = 0 for all ¢ € [0, 1]. Therefore, problem (III) can be written as

Dgi () =0, t€(0,1), .
{ D2 y(t) =0, te(0,1), (11)

supplemented with the boundary conditions (II1),. The solutions of system (11) are

x(t) = a4 apth =2 a1 7P, e [0,1], 12)

y(t) = byt L+ byt 2 4o 4 pt271, + € [0, 1],

withay, ... ap,by, ..., by € R. By using the boundary conditions x(0)=0,j=0,...,p—

2, y0) =0,j = 0,...,q 2 (from (III);), we obtainay = --- = a, = 0 and by =
- = by = 0. Then, the functions in Equation (12) become x(t) = a;t%171, t € [0,1],

y(t) = byt2~1, t € [0,1]. For these functions, we find

DX x(t) = al(r(él)t‘sl X0~ 1, DﬂO ]/( ) — blL(sz)ﬁz*ﬁo*l/

DO ! f’l((s )(XO) F(ff%zs )ﬂo
o s B; L
O{i-y(f) = b1w;272aj>t02 b 1/ 0.+] x(f) = alﬁtél Bi 1.

Therefore, by now using the above fractional derivatives and the conditions Dgix(l) =

) fo D0+y 7) d$;(T) + ¢o and D’goy " fo T) d&i(T) + 0 (from (IIT)y),
we deduce the following system for a; and bl

Z/ 52 527“].71(157)]'(77)4—(0,

51“'“0 524,
TG - fo) 52 - ﬁo 2 / l 517’37*1 d8;(t) + 0,
or equivalently
ml"(%;i—:;m) =b1M + <o,
blm = a1 + 2.
The determinant of the above system in the unknown a; and by is

o L(8)T (%)

iAz 0 & B (61 — ag)T (62 — Bo) — A Ay, = A

I'(62 — o)
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Then, we obtain

Therefore, we deduce the solution (x(t),y(t)) of problem (8) and (9) presented in (10).
By assumption (K1), we find that x(t) > 0and y(t) > Oforallt € (0,1]. O

We use the functions x(t) and y(t), t € [0,1] (given by (10)), and we make a change of
unknown functions for our boundary value problem (1) and (2) such that the new boundary
conditions have no positive parameters. For a solution (u, v) of problem (1) and (2), we
define the functions & (t) and k(t), t € [0,1] by

|
h(t) =u(t) — x(t) = u(t) — ] (COF(F((Sz) ; +DOA1), te0,1],

r

Then, problem (1) and (2) can be equivalently written as the system of fractional
differential equations

{ D3 (@, (DRLA(E))) + a(t)j(k(t) +y(t)) =0, t € (0,1), 13
D2 (o, (DR k(1)) + b(t)a(h(t) +x(t)) =0, t€ (0,1),

with the boundary conditions without parameters
W) (0) =0, j=0,...,p—2; DL1(0) =0, DX (1 Z/ DY k(t) d%;(7),

(14)
k0)(0)=0, j=0,...,9—2; Dk(0) =0, D5 k(1 2/ D h(z) dstj(x).

Using the Green functions ®;, i = 1,...,4 and Lemma 1, a pair of functions (4, k)
is a solution of problem (13) and (14) if and only if (h, k) is a solution of the system of
integral equations

() = / ®1(t,0) g, (I} (a(O)TK(E) +v(2)))) dE

+ [ @204, 2009 (I3 (0@)0(h() + <) dC, 1€ [0,1]
k(1) = /O ®a(t,0)gp (1]} (a()FK(E) +v(£)))) dE

+ [ 046,090 (2 (6(Oa(h(@) + X)) dC, 1€ [0,1].

(15)

We consider the Banach space X = C|0, 1] with the supremum norm ||z|| = SUP¢(o1 |z(T)]
for z € X, and the Banach space J) = X x X with the norm || (i, k) ||y = max{||h]|, ||k||} for
(h, k) € Y. We define theset V = {(h,k) € Y, 0 < h(t) < e, 0 <k(t) <ey, Vte[0,1]}.
We also define the operator S : V — Y, S = (51, S2),

S1(h, k) (t) :A &1(t,0)@p, (I (a(0)F k() +y(2)))) dg
+ [ ®2(6,0)90s 02 (6(a((@) + x@)) L, 1€ (0,1,
1
Sa(h, k) (t) :/0 G3(t, ) ppy (I (a(Q)F(k(C) +y(2)))) dC

+ [ 044,209 (I3 (6(@)0(h() + <) dC, 1€ [0,1]



Fractal Fract. 2022, 6, 299

8 of 15

for (h,k) € V. We easily see that (h, k) is a solution of system (15) if and only if (h,k) is a
fixed point of operator S. Therefore, our next task is the detection of the fixed points of
operator S. The first result is the following existence theorem for problem (1) and (2):

Theorem 1. We assume that assumptions (K1) — (K3) are satisfied. Therefore, there exist ¢; > 0
and 91 > 0 such that for any ¢y € (0, ¢1] and vy € (0,01], the problem (1) and (2) has at least one
positive solution.

Proof. By assumption (K3) we deduce that there exist 59 > 0 and ty > 0 such that
o -1 g -1

f(w) < 90— forall w € [0, ¢y + 50, and g(w) <
¢1 and 97 as follows:

e IfA; #0and A; # 0, then
508 AL (02 — Bo) _ . [50AL(01 —ag) toA
= mm{ZAz (6 TN T e 2a S
e IfA; =0and A; #0, then
o — mind %08 %A% — o) _ 50AL(4 — &)
! 20, T(&) J0 T @)
. If Ay #0and Ay = 0, then
foAr(52 — ﬁ()) . 50AF(51 — DC()) A
o) TN T TGy 2A
° If Ay =0and Ay, =0, then
o = WA —po) o _ s0AT(%1 — o)
I() I'(01)
Let ¢ € (0,¢1] and 99 € (0,01]. Then, for (h,k) € V and { € [0,1], we have

forall w € [0, ¢g + tp]. We define now

¢ =

k(@) +y(Q) <eo+ 3 (CoAz + Dor(r(m )) <eo+ %(Clﬁz +o r(ﬂf‘s_l,io)) < ¢ + 50,
h(Z) +x(0) < o+ & (copppZhy +2081) < o+ & (e +0181) S eo+ b,

and so
01—1 -1

(k@) +¥(0) < 2, (h(@) +x(2)) < . (16)

By using Lemma 3, we deduce that Sj(h,k)(t) > 0,i = 1,2 for all t € [0,1] and
(h, k) € V. By inequalities (16), for all (h,k) € V, we obtain

101 (a(Q)F(K(D) +¥(0))) = 1"(171) /é(C— )" a(T)f(k(T) + y(1)) dT
Ql* z B 201 z -

< LO( )/ (-7 a(r)dr < &&1) | @=mmntar

B =1 e g’h

and (’Yl—i—l) veelod)

2 1 4 1

Iy: (6(Z)a(h(T) +x(0))) = F(’rz)/o (C—1)”  b(T)g(h(T) + x(1)) dT
i /é(é—r)”ﬂb(r) dr < Eef /5(6—7)”’1 dt

B Lr(?z) LT (72) Jo

"‘260 g?z

= IM(72 2 1)’ vV e [0,1].
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Then, by Lemma 2 and the definition of L from (K3), we find
1 7 e 1rm
~ ule g uzeo g
< — 7
Si(hk)(t) < /0 31(8) Py (Lr(% 1 ) dg + / 32(8) e, <LF(72 n 1)>dC

Hpedl ! ot
- [ =1% ~ m(e1-1) g
(LF(%H)) | @ 4
. -

= 02 p2—1 1
=0 ~ ’)/2(‘02—1) < 270 370 _
<LF(72+1)> /0 %2(0)8 A< o+ =w Vte[01],

and
1 = m Epelem
82(h,k)(t)§/0 33(0) @, (W) C+/ 34(0) @ps <L12”EO')/2+1)>!1C
=001 et
- (H(ﬁfﬂ)) | @i e
. _

=022 P21 1
—0 %led< ~ =r¢, Yte[0,1].
Therefore, we find that S(V) C V. By using a standard method, we conclude that S is a
completely continuous operator. Therefore, by the Schauder fixed point theorem, we deduce
that S has a fixed point (1, k) € V, which is a non-negative solution for problem (15), or
equivalently, for problem (13) and (14). Hence, (u,v), where u(t) = h(t) + x(t) and v(t) =
k(t ) + y( ) forallt € [0 1] is a positive solution of problem (1) and (2). This solution (u, v)

i (corgs 2y + 201) < u(t) < F Copgs By + 08) + s and

(CoAz—FDor( [(31) )) <v(t) < tbz& (C0A2+DOI~( [(0) ))—l—eoforallte [0,1]. O

t2

The second result is the following nonexistence theorem for the boundary value
problem (1) and (2).

Theorem 2. We assume that assumptions (K1), (K2), and (K4) are satisfied. Then, there exist
¢ > 0and 0y > 0 such that for any ¢y > ¢y and 09 > 0y, the problem (1) and (2) has no
positive solution.

Proof. By assumption (K2), there exist [171,72] C (0,1), 1 < 1 such that 7y, > € (11, 12),
and then

a= "0 ( / g (1) (g —)m! dr) "o

pa= "3 ( / g () (¢ — 7)1 dr)p“d@ >0

We define the number

20T (1) 2271T(72)
Ro= max{ a2 yer1’ | G Do) pu-1 [

By using (K4), for Ry defined above, we obtain that there exists Ly > 0 such that
f(w) > Row® ! and g(w) > Row® ! for all w > Ly. We define now ¢, and 0, as follows:
e If Ay #0and Ay # 0, then

LoAT (3 — o) Lo LoA  LoAT(6; — ag)
¢p = max 5 1 51 , 02 = max 51 51 .
2ny' T (62) 217 27 Ay 27y A 2177 T(6y)
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e If Ay =0and A, # 0, then

. L()AF(52 ‘Bo) LQA 0 — L()AF(51 — D(())
T U e 2 A T 22T
VA (62) m 2 M (61)

o If Ay # 0and Ap =0, then

LQAF(52 — ﬁo) L()A LQAF((51 — IXQ)
CZZ?, 02 = max 5T Fy 1 .
217" T (é2) 2 Myt T(6)

e If Ay =0and A, = 0, then

o = LoAT (62 — Bo) 2y = LoAT (01 — o)
7T (5) ny2 T (o)

Let ¢g > ¢y and 99 > 0. We assume that (u, v) is a positive solution of (1) and (2).
Then, the pair (h, k), where h(t) = u(t) — x(t), k(t) = v(t) —y(t), t € [0,1], with x and y
given by (10), is a solution of problem (13) and (14), or equivalently, of system (15). By
using Lemma 3, we find that h(t) > t%71|h||, k(t) > t271|k| for all t € [0,1]. Then,

infsepy, ) B(S) = ;7;5171 (1]l infse ) K(5) = 17‘52 k]| By the definition of the functions x
and y, we obtain

61—1
. Ui ( I'(5;) ) 5
inf  x(s ¢ +00A1 | = x|,
selmir ) = I3 0Ty = pg) T 200 ) =l
. 7712 < 1"((51) > 5—1
inf s oMy + 09—V ) = .
elnf ¥ =g {coda +oogs Ty ) =l

Hence, we deduce

inf (h(s)+x(s)) > inf h(s)+ inf x(s) >y |kl + gy x|
s€n, 112] . 86[1715172]1 s€[n1,172]

= (IRl + (=] > 3 e+ ),

inf (k(s)+y(s)) > inf k(s)+ inf y(s) >y k| + 72 ly|
s€(n 2]() ) s€ln, : ]1 sen1.12]

=n> (Il +yl) =772 Ik +yll.

In addition we have

. 1 I'(6)
inf (h(s)+ x(s x| =12 (c—i—DA)
Se[Wm(l( )+ x( z; | x| = A\ TG, = pgy T M
&-11 2
=R/ N (CZF(cSZ — Bo) +02A1) > Lo,

s€n1.12] T(é1 —ap)

inf(k(s) +y(s)) = 72yl = 5 (comao <r<51) )
5-11

I'(s
> (DYAVS —|—02(1)> > L.
1— )
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By using Lemma 3 and the above inequalities we find

Zr(Ig)l)/,hé(C—T)l a(7) (k(7) +y())2 " dr )
Zirggéfi—rﬁl%ww(mgﬂﬂwuq+yu»> i
- 19(';]’1) /m( - )" () dT, V€ ),

and then

! 61—1
h(in) 2/ 7 31 @p, (I3 (a(0)F(k(2) +y(2)))) 4L

) 01 z p1—1
/’7 61— 131 (ROL’)/l) /};(g—”[)’hla(’r)dT> dC

B RPl L ;7 1A
(T(y1))Prt
We deduce that ||h|| > h(#;) > 0. In a similar manner, we obtain

Ig3 (6(0)g(h(2) +x(2)))

> 0.

Ro ¢ _ 2—1 in 021
- I(72) /1171 (€= 78(© <T€[r]1f172](h(1—) +x(‘L'))> dr
00— z
> RIQ(L,(;z) /}71(5— T)’Yz—lb(r) dr, Y € [n,m2l,

and so

k() /wﬁ'“ 0) s (112 (6(D)5(h(2) +x(2)))

. ROLQZ Lo - Pt

_ RPz "Lop®2 1A4
(F(vz))pz‘1

We deduce that || k|| > k(171) > 0.
In addition, from the above inequalities we have

I3 (a(Q)f(k(2) +y(2)))

-1
s [t k(o) +ute)) e

> 0.

TE([m,172]
_ Ropl e 7
> k|t [ @ =ma()dr, VS € n,mal,
I'(7) mn
and so
(G2-1)(e1—1)\ P11 11
2 o1y Rory </g -1 )
J —_— k + — 1) a(T)dt d
)z [ ( o ) lk+yl( [ @0 at) ¢
1701+02 —2pP1—
IRkl 2 20yl 208

(T(y1)) !
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Hence,
1 1
Il < ShCm) < 51l (17)

In a similar manner, we deduce

172 (6(D)a(h(Z) +x(2))) 01
Z 2
(51-1)(e2-1) ’

Rorpy 1 ¢ -1
_|[h & x||% —T)27e(t)dt, VI € 11,12,

Vv

and then

(61-1)(

2 R 0—1)\ P21 z p2—1
kon) > ! n?‘m(@)(“mm)) 2 ([ €= o) az

§1+§272R8271
Agllh+ x| = 2[h+ x| = 2[[R]].

(T(7y2))r21
Therefore,

Il < 3KGm) < 3] (18)

NI~

Hence, by (17) and (18), we conclude that || k|| < 1||k|| < 1||1||, which s a contradiction
(we saw before that ||h|| > 0). Therefore, problem (1) and (2) has no positive solution. []

4. An Example
We consider 1 = %,’yz = %,(51 = 13—4,(p:5),(52 = %,(q:6,n:2,m: 1,00 =¥
po=R =3 m=¥p=3a=R a=%n=540n=37d)=10b()=1
forall t € [0,1], H1(t) = 2t forall t € [0,1], H(t) = {%, te0,3); & te 3
f(t) = {%, telo,&); %, te[2,1] } We introduce the functions f, g; [0,00) — [0, c0

f(z) = w127, g(z) = wpz” for all z € [0, 0) with wy, wp > 0, 09, 0» > 0, 07 > %, oy > %.

7

—_
—

7

_ —

We have lim; ;e Z’;(lz,)l = oo and lim, ¢ %EZ)] = oo,

We consider the system of Riemann-Liouville fractional differential equations

DS_/'_4 P73/12 <D(1)i/3u(t))) + wq (V(t))gl =0, te (O; 1)/ (19)
Dgfj (P59/8 (Déi/ZV(t)>) -+ wz(u(t))ffz = 0, te (0, 1)/
subject to the coupled boundary conditions
u®(0) =0, i=0, 2 .,3, D§*%u(0) =0,
91 4 2
17/8 _ 3/2 16/7
[)0Jr 1.1(1) = ? 0 D0+ V(t) dt+gDo+ V<3> +C(), (20)

. 10 8
_ T 11/2 _ 19/6 _ 3/7
vD(0)=0,i=0,...,4, Dy “v(0) =0, Dy /"v(1) = 13D0+u(11> + 0p.
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We obtain here A; ~ 40.01662964, A, ~ 0.49478575, and A ~ 452.46647281 > 0.
Therefore, assumptions (K1), (K2), and (K4) are satisfied. In addition, we deduce

1 t11/3(1_€)37/24_(t_g)ll/?), OS@S t<1,
g1(t,0) = 1“(14/3){ AU3(1 - gP7/2% g<t<7<1,
1 T68/21(1 o §)37/24 . (T . §)68/21’ 0< g <7t<1,
o1 (7, Q) = T(89/21) { /21 (1 _0)/M g <1< <1,
1 2103 —(t=0)%% 0<7<t<1,
02(t:¢) = (11/2){ P2(1-0)¥3, 0<t<7<1,
1( 3 0)4/3 3 0<c<t<1,
921(T’€)_6{ 7351 g%‘*/?’, 0(<r<)g<1,€
1 31/14(1 )4/3 (T €)31/14 0 < g <7< 1,
922(7, ) _I“(45/14){ DU )43 <7< <1,
8

0A 11/3
&1(6,0) = aa(t,0) + o (.0

t11/31(11/2) /91 4 2
Ba(t, () = AT 7/3/ ( /gzl(T/C dT+5922<3,C>>,

10t9/2r(14/3
63(t1€) 13AF(61/%§2 ( é ’
®4(t, ) = g2(t,0) + t Az <91/ o1(7, @)dT—i‘égzz(i C)),
51(0) = Fa7a7 (1 - 5)37/24(1 -9,
52(0) = i (1 - 0 (1- (- 0),

forall ¢, 7, € [0,1]. In addition, we find

IN
IN

IS :\oo

=

)

X w|h X

WIN

B { 01(0) + rmmmtar | ()2 - 072 - (5 - 0%, o< < &,
- h1(€)+13A1108A91/21 (i1 )68/21 g7/, c=1

st { A~ DY (1 94* S /19)
) l &(5)31/14(1 L) (g _ @)31/14} } 0<7< %
| B |- - (-0t + s

( 31/14(1_@4/3 ,2<r<,
B { 13Ar(2€5(2{1%/r3(259/21) [(%)68/21<1 . €)37/24 _ (% _ §)68/21}, 0<< 8
- mmi‘iiéii“ég/zn (B)* M-, B <r<
UZ@) {,%%4(1 - €>4/3 - ﬂ(l - 2/11_ T (4 3/14) ,
4/3

@) = X[(Ai) 1-0*-G-0""} 0=i<}

h2(0) + 2 | B (1) -
/

31/14
x(3

We also obtain £y = 1 and H, = 1. After some computations, we find

7

(1= O+ st/
-0, 3<es<t.

261/12 61/12

1
P = S / 3 9/61 4 > ~ 411609161 x 1077,
Vit () w07 -

P, = 2 ( / 1:,2(g)g16/255dg) A 3.11233481 x 10719,
I'(7/5) \Jo
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261/12 1 61/12
P = < /0 33(0)7°/0! d§> ~ 1.39796164 x 10718,

251/8 ! 16/255 4 o/ 13
Pyi= ——— / J ~ 1.16007238 x 10~ 7,
i persy () (@8 )
and so L = max{P;, i = 1,...,4} = P;. We choose ¢y = 10, 07 = —361, 0y = —123, and

if we select w; < $1071/12 and w, < 11071/8, then we deduce that f(z) < mﬁi/u and

a(z) < @ for all z € [0,10]. For example, if w; < 2.0053 x 10% and w, < 1.8218 x 108,
then the above conditions for f and g are satisfied. Therefore, assumption (K3) is also
satisfied. By Theorem 1, we conclude that there exist positive constants ¢; and 9; such that
for any ¢ € (0,¢1] and dg € (0,01], problem (19) and (20) has at least one positive solution
(u(t),v(t)), t € [0,1]. By Theorem 2, we deduce that there exist positive constants ¢, and
0 such that for any ¢y > ¢z and 9p > 93, problem (19) and (20) has no positive solution.

5. Conclusions

In this paper, we studied the system of coupled Riemann-Liouville fractional differ-
ential Equation (1) with g;-Laplacian and ¢p-Laplacian operators, subject to the nonlocal
coupled boundary conditions (2), which contain fractional derivatives of various orders,
Riemann-Stieltjes integrals, and two positive parameters ¢y and 9. Under some assump-
tions for the nonlinearities f and g of system (1), we established intervals for the parameters
¢p and g such that our problem (1) and (2) has at least one positive solution. First, we made
a change of unknown functions such that the new boundary conditions have no positive
parameters. By using the corresponding Green functions, the new boundary value problem
was then written equivalently as a system of integral equations (namely the system (15)).
We associated to this integral system an operator (S), and we proved the existence of at
least one fixed point for it by applying the Schauder fixed point theorem. Intervals for
parameters ¢g and 0 were also given such that problem (1) and (2) has no positive solution.
Finally, we presented an example to illustrate our main results.
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