# Oscillators Based on Fractional-Order Memory Elements

## Abstract

**:**

## 1. Introduction

## 2. Preliminaries

#### 2.1. Definition of Fractional-Order Operator

#### 2.2. Numerical Solution of Fractional Differential Equation

## 3. Fractional-Order Memristive Elements

#### 3.1. Memristor

#### 3.2. Memcapacitor

#### 3.3. Meminductor

## 4. Models of the Fractional-Order Chaotic Systems

#### 4.1. Memcapacitor–Meminductor Oscillator

#### 4.2. Memristor–Memcapacitor–Meminductor Oscillator

## 5. Discussion

## 6. Conclusions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Yin, Z.; Tian, H.; Chen, G.; Chua, L.O. What are Memristor, Memcapacitor, and Meminductor? IEEE Trans. Circuits Syst. II Express Briefs
**2015**, 62, 402–406. [Google Scholar] [CrossRef][Green Version] - Chua, L.O. Memristor: The missing circuit element. IEEE Trans. Circuit Theory
**1971**, 18, 507–519. [Google Scholar] [CrossRef] - Strukov, D.B.; Snider, G.S.; Stewart, D.R.; Williams, R.S. The missing memristor found. Nature
**2008**, 453, 80–83. [Google Scholar] [CrossRef] [PubMed] - Chua, L.O.; Sung, M.K. Memristive devices and systems. Proc. IEEE
**1976**, 64, 209–223. [Google Scholar] [CrossRef] - Ventra, M.D.; Pershin, Y.V.; Chua, L.O. Circuit elements with memory: Memristors, memcapacitors and meminductors. Proc. IEEE
**2009**, 97, 1717–1724. [Google Scholar] [CrossRef][Green Version] - Biolek, D.; Biolek, Z.; Biolkova, V. SPICE modeling of memristive, memcapacitative and meminductive systems. In Proceedings of the 2009 European Conference on Circuit Theory and Design, Antalya, Turkey, 23–27 August 2009; pp. 249–252. [Google Scholar] [CrossRef]
- Romero, F.J.; Ohata, A.; Toral-Lopez, A.; Godoy, A.; Morales, D.P.; Rodriguez, N. Memcapacitor and Meminductor Circuit Emulators: A Review. Electronics
**2021**, 10, 1225. [Google Scholar] [CrossRef] - Khalil, N.A.; Fouda, M.E.; Said, L.A.; Radwan, A.G.; Soliman, A.M. A general emulator for fractional-order memristive elements with multiple pinched points and application. AEU—Int. J. Electron. Commun.
**2020**, 124, 153338. [Google Scholar] [CrossRef] - Khalil, N.A.; Hezayyin, H.G.; Said, L.A.; Madian, A.H.; Radwan, A.G. Active emulation circuits of fractional-order memristive elements and its applications. AEU—Int. J. Electron. Commun.
**2021**, 138, 153855. [Google Scholar] [CrossRef] - Cam Taskiran, Z.; Sagbas, M.; Ayten, U.; Sedef, H. A New Universal Mutator Circuit for Memcapacitor and Meminductor Elements. AEU—Int. J. Electron. Commun.
**2020**, 119, 153180. [Google Scholar] [CrossRef] - Arena, P.; Caponetto, R.; Fortuna, L.; Porto, D. Nonlinear Noninteger Order Circuits and Systems: An Introduction; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Elwakil, A.S. Fractional-order circuits and systems: An emerging interdisciplinary research area. IEEE Circuits Syst. Mag.
**2010**, 10, 40–50. [Google Scholar] [CrossRef] - Schafer, I.; Kruger, K. Modelling of lossy coils using fractional derivatives. J. Phys. D Appl. Phys.
**2008**, 41, 045001. [Google Scholar] [CrossRef] - Khalil, N.A.; Said, L.A.; Radwan, A.G.; Soliman, A.M. General fractional order mem-elements mutators. Microelectron. J.
**2019**, 90, 211–221. [Google Scholar] [CrossRef] - Abdelouahab, M.S.; Lozi, R.; Chua, L.O. Memfractance: A Mathematical Paradigmfor Circuit Elements with Memory. Int. J. Bifurc. Chaos Appl. Sci. Eng.
**2014**, 24, 1430023–1430029. [Google Scholar] [CrossRef][Green Version] - Coopmans, C.; Petráš, I.; Chen, Y. Analogue Fractional-Order Generalized Memristive Devices. In Proceedings of the International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, San Diego, CA, USA, 30 August–2 September 2009; Volume 4, pp. 1127–1136. [Google Scholar] [CrossRef]
- Guo, Z.; Si, G.; Diao, L.; Jia, L.; Zhang, Y. Generalized modeling of the fractional-order memcapacitor and its character analysis. Commun. Nonlinear Sci. Numer. Simul.
**2018**, 59, 177–189. [Google Scholar] [CrossRef] - Yang, N.N.; Xu, C.; Wu, C.; Jia, R.; Liu, C. Fractional-order cubic nonlinear flux-controlled memristor: Theoretical analysis, numerical calculation and circuit simulation. Nonlinear Dyn.
**2019**, 97, 33–44. [Google Scholar] [CrossRef] - Zhou, P.; Tang, J. Clarify the physical process for fractional dynamical systems. Nonlinear Dyn.
**2020**, 100, 2353–2364. [Google Scholar] [CrossRef] - Tenreiro Machado, J.A.; Lopes, A.M. Multidimensional scaling locus of memristor and fractional order elements. J. Adv. Res.
**2020**, 25, 147–157. [Google Scholar] [CrossRef] - Tenreiro Machado, J. Fractional generalization of memristor and higher order elements. Commun. Nonlinear Sci. Numer. Simul.
**2013**, 18, 264–275. [Google Scholar] [CrossRef][Green Version] - Petráš, I. Fractional-Order Nonlinear Systems; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef][Green Version]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Petráš, I. Fractional Order Systems: Modeling and Control Applications; World Scientific: Singapore, 2010. [Google Scholar] [CrossRef]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Westerlund, S.; Ekstam, L. Capacitor theory. IEEE Trans. Dielectr. Electr. Insul.
**1994**, 1, 826–839. [Google Scholar] [CrossRef] - Lopez, C.S.; Gomez, V.H.C.; Aguilar, M.A.C.; Lopez, F.E.M. PID controller design based on memductor. Int. J. Electron. Commun.
**2019**, 101, 9–14. [Google Scholar] [CrossRef] - Pershin, Y.V.; Ventra, M.D. Memristive circuits simulate memcapacitors and meminductors. Electron. Lett.
**2010**, 46, 517–518. [Google Scholar] [CrossRef][Green Version] - Ma, X.; Mou, J.; Liu, J.; Ma, C.; Yang, F.; Zhao, X. A novel simple chaotic circuit based on memristor–memcapacitor. Nonlinear Dyn.
**2020**, 100, 2859–2876. [Google Scholar] [CrossRef] - Innocenti, G.; Liu, X.; Bi, X.; Yan, H.; Mou, J. A Chaotic Oscillator Based on Meminductor, Memcapacitor, and Memristor. Complexity
**2021**, 2021, 7223557. [Google Scholar] [CrossRef] - Wang, X.; Yu, J.; Jin, C.; Iu, H.H.C.; Yu, S. Chaotic oscillator based on memcapacitor and meminductor. Nonlinear Dyn.
**2019**, 96, 161–173. [Google Scholar] [CrossRef] - Radwan, A.G.; Fouda, M.E. On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Petráš, I.; Chen, Y. Fractional-order circuit elements with memory. In Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 28–31 May 2012; pp. 552–558. [Google Scholar] [CrossRef]
- Itoh, M.; Chua, L.O. Memristor oscillation. Int. J. Bifurcat. Chaos Appl. Sci. Eng.
**2008**, 18, 3183–3206. [Google Scholar] [CrossRef] - Petráš, I. Fractional-order memristor-based Chua’s circuit. IEEE Trans. Circuits Syst. II Express Briefs
**2010**, 57, 975–979. [Google Scholar] [CrossRef] - Westerlund, S. Dead Matter Has Memory! Causal Consulting: Kalmar, Sweden, 2002. [Google Scholar]
- Wang, S.F.; Ye, A. Dynamical Properties of Fractional-Order Memristor. Symmetry
**2020**, 12, 437. [Google Scholar] [CrossRef][Green Version] - Petráš, I. “Comments on “Chaotic oscillator based on memcapacitor and meminductor” (Nonlinear Dyn, DOI: 10.1007/s11071-019-04781-5). Nonlinear Dyn.
**2020**, 102, 2945–2950. [Google Scholar] [CrossRef] - Wolf, A.; Swift, J.B.; Swinney, H.L.; Vastano, J.A. Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenom.
**1985**, 16, 285–317. [Google Scholar] [CrossRef][Green Version]

**Figure 2.**Chaotic oscillator circuit based on two memory elements [31].

**Figure 5.**Orbits of the fractional-order oscillator (22) in state spaces $x-y-z$, $u-w-v$, respectively.

**Figure 6.**One-scroll attractors of the system (22) in state space $x-y-z$ (

**left**) and $u-w-v$ (

**right**).

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Petráš, I.
Oscillators Based on Fractional-Order Memory Elements. *Fractal Fract.* **2022**, *6*, 283.
https://doi.org/10.3390/fractalfract6060283

**AMA Style**

Petráš I.
Oscillators Based on Fractional-Order Memory Elements. *Fractal and Fractional*. 2022; 6(6):283.
https://doi.org/10.3390/fractalfract6060283

**Chicago/Turabian Style**

Petráš, Ivo.
2022. "Oscillators Based on Fractional-Order Memory Elements" *Fractal and Fractional* 6, no. 6: 283.
https://doi.org/10.3390/fractalfract6060283