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Abstract: Recently, the insurance industry in China has been greatly developed. The number of
domestic insurance companies and foreign investment insurance companies has greatly increased.
Competition between different insurance companies is becoming increasingly fierce. Grasping the
internal competition law of different insurance companies is a very meaningful work. In this present
work, we set up a novel fractional-order delayed duopoly game model in insurance market and
discuss the dynamics including existence and uniqueness, non-negativeness, and boundedness of
solution for the established fractional-order delayed duopoly game model in insurance market. By
selecting the delay as a bifurcation parameter, we build a new delay-independent condition ensuring
the stability and creation of Hopf bifurcation of the built fractional-order delayed duopoly game
model. Making use of a suitable definite function, we explore the globally asymptotic stability of
the involved fractional-order delayed duopoly game model. By virtue of hybrid controller which
includes state feedback and parameter perturbation, we can effectively control the stability and
the time of creation of Hopf bifurcation for the involved fractional-order delayed duopoly game
model. The research indicates that time delay plays an all-important role in stabilizing the system and
controlling the time of onset of Hopf bifurcation of the involved fractional-order delayed duopoly
game model. To check the rationality of derived primary conclusions, Matlab simulation plots are
explicitly presented. The established results in this manuscript are wholly novel and own immense
theoretical guiding significance in managing and operating insurance companies.

Keywords: fractional-order duopoly game model; insurance market; existence and uniqueness;
non-negativeness; boundedness; stability; Hopf bifurcation; hybrid control

MSC: 34C23; 34K18; 37GK15; 39A11; 92B20

1. Introduction

With the rapid development of the insurance market in China, different kinds of
domestic insurance companies and foreign investment companies come forward in large
numbers. In order to survive and better serve the people, the competition among various
insurance companies is very fierce. The level of monopoly of the insurance market in
China has gradually declined, but it still remains at the state of oligopoly. The monopoly
competition game between oligarchs has become a very important research topic. In order
to reveal the inherent law of competition among different oligarchs, it is necessary for us
to set up mathematical models on competition and explore the quantitative relation of
competition models among different oligarchs. Plenty of excellent and meaningful works
on this topic have been published. For instance, Elabbsy et al. [1] set up a nonlinear
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triopoly game model concerning heterogeneous players and discussed the stability of
equilibrium points, and displayed the bifurcation and chaos of this model via computer
simulations. Yu and Yu [2] explored the stability and duality of dynamic Cournot and
Bertrand duopoly model involving comprehensive preference. Tu and Wang [3] studied
the local stability, Hopf bifurcation, and chaos control issue for a dynamic R&D Bertrand
triopoly game system. Ma and Wang [4] made a detailed analysis on the complex dynam-
ical behavior of a Cournot–Bertrand mixed game model concerning delayed bounded
rationality. Tu et al. [5] dealt with the complex dynamics and chaos control for a Bertrand
duopoly game model involving R&D activities. Zhang et al. [6] investigated the stability
and bifurcation phenomenon for the Bertrand model concerning bounded rationality. For
more concrete literature, we refer the readers to [7–14].

The price plays a very crucial role in competition among different insurance companies.
The price is a very sensitive aspect, which has important effect on people’s needs and the
distribution of products [7]. How to adjust the price of products is naturally a focus
problem for insurance companies. During the past several decades, many valuable works
on this theme have been reported. For example, Ma and Li [7] considered the complex
dynamical behavior for a Bertrand–Stackelberg pricing model. Wei et al. [15] explored the
pricing decision issue for complementary products involving companies’ different market
powers. Mukhopadhyay et al. [16] discussed a Stackelberg price model of complementary
goods under information asymmetry. Ma and Sun [17] studied the price game model
and its complex characteristics of triopoly in different decision-making rule. In 2012,
Xu and Ma [18] studied bifurcation dynamics of the following duopoly game involving
time delay in insurance market:{

ẏ1(t) = ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1],
ẏ2(t) = ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2],

(1)

where y1(t) stands for the price of the first insurance company, y2(t) stands for the price
of the second insurance company, ρ1 stands for the speed of price adjustment of the first
insurance company, ρ2 stands for the speed of price adjustment of the second insurance
company, α represents the possible largest demand, β1 denotes the effect of which the price
of product 1 has on its quantity, β2 denotes the effect of which the price of product 2 has on
its quantity, δ1 stands for substitution rate which the products of 1 shows to the products of 2,
δ2 stands for substitution rate which the products of 2 shows to the products of 1, µ ∈ (0, 1)
denotes the weight of the current price at time t, 1− µ denotes the weight of the current
price at time t− θ, θ is a time delay, and all the parameters ρi, βi, γi, δi, α, µ, θ, (i = 1, 2) are
positive constants. For more details, one can refer to Refs. [18,19]. Taking advantage of
stability criterion and bifurcation theory of delayed differential equation, Xu and Ma [18]
set up a sufficient condition which guarantees the stability and the onset of Hopf bifurcation
for model (1).

It is noteworthy that all the involved literature above on game model in insurance
market (see [1–19]) are basically concerned with the integer-order dynamical models. A
large number of studies indicate that fractional-order differential equation has been deemed
as a more valid tactics to describe the authentic natural phenomenon in the world than
the conventional integer-order counterparts. At present, fractional dynamical systems
have been applied in many areas such ascomplex networks, biological systems, artificial
intelligence, various waves in physics, viscoelasticity, capacitor principle, biomedical
treatment, electrical engineering, economics, and so on [20–26]. Its great application value
comes from the powerful memory trait and hereditary superiority for various materials
and evolutionary process [27,28]. In recent years, fractional dynamical systems have
attracted great attention from many scientific circles and great achievements have been
acquired. For example, Xu et al. [29] revealed the impact of delay on Hopf bifurcation
of a class of fractional-order delayed bidirectional associate memory neural networks.
Eshaghi et al. [30] explored the Hopf bifurcation, chaos control, and synchronization issues
for a chaotic fractional-order dynamical model. Zhou et al. [31] probed into the Hopf
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bifurcation control problem of fractional-order prey–predator system involving delays via
hybrid controller. For more concrete publications, one can see [32–36].

Considering that the fractional-order delayed duopoly game model can better re-
flect the memory trait and hereditary superiority in price of two insurance companies
and is motivated by the investigation above and based on model (1), in the current
work, we will set up the following fractional-order delayed duopoly game model in
insurance market:{ Dηy1(t) = ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1],

Dηy1(t) = ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2],
(2)

where η ∈ (0, 1]. All other parameters and variables own the same economic meaning as
those in model (1).

In this manuscript, we principally probe into the following four problems: (a) Inves-
tigate the existence and uniqueness, non-negativeness, and boundedness of the solution
for system (2); (b) Set up the delay-independent condition guaranteeing the stability and
the occurrence of Hopf bifurcation of model (2); (c) Build the sufficient condition to ensure
the globally asymptotic stability of model (2); and (d) Control the time of onset of Hopf
bifurcation of model (2) via hybrid controller.

The chief contributions of this manuscript are elaborated as follows: (1) Based on
the earlier works, a novel fractional-order delayed duopoly game model in insurance
market is proposed. (2) The sufficient condition ensuring the globally asymptotic stability
of model (2) is set up via constructing an appropriate positive definite function. (3) Hopf
bifurcation of model (2) is successfully dominated via hybrid control strategy. So far, very
few scholars focus on the Hopf bifurcation control issue of fractional-order models by
utilizing hybrid controller. (4) The influence of time delay on the stability behavior and the
occurrence of Hopf bifurcation of model (2) and its controlled system is revealed. (5) The
research approach can be applied to study the bifurcation control issue of lots of fractional
dynamical models in numerous areas.

The novelty of this research lies in the design of hybrid controller for the fractional-
order delayed duopoly game model in insurance market. By designing a suitable hy-
brid controller, we can successfully control the stability region and Hopf bifurcation
of model (2). The obtained results play a vital role in controlling the price of two
insurance companies.

The structure of this research is arranged as follows. Some necessary basic knowledge
about fractional-order differential equation is given in Section 2. Section 3 proves the
existence and uniqueness, non-negativeness, and boundedness of the solution for model (2).
A new delay-independent sufficient criterion which ensures the stability and the creation
of Hopf bifurcation for model (2) is set up in Section 4. Section 5 explores the globally
asymptotic stability of model (2) via a definite function. Hybrid control tactics are executed
to control the stability and creation of Hopf bifurcation of model (2) in Section 6. Software
simulation results are distinctly displayed to support the established key conclusions in
Section 7. Section 8 draws a simple conclusion to complete this research.

2. Prerequisite Knowledge

In this segment, some essential basic theories about fractional-order differential equa-
tion are presented.

Definition 1 ([37]). The fractional integral of order η for the function h(ε) is defined in the
following form:

Iηh(ε) =
1

Γ(η)

∫ ε

ε0

(ε− ν)η−1h(ν)dν,

where ε > ε0, η > 0, Γ(ν) =
∫ ∞

0 sν−1e−sds stands for the Gamma function.
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Definition 2 ([38]). Define the Caputo-type fractional-order derivative of order η for the function
h(ε) ∈ ([ε0, ∞), R) as follows:

Dηh(ε) =
1

Γ(ι− η)

∫ ε

ε0

h(l)(s)
(ε− s)η−l+1 ds,

where ε ≥ ε0 and l denotes a positive integer (l − 1 ≤ η < l). Peculiarly, if η ∈ (0, 1), then

Dηh(ε) =
1

Γ(1− η)

∫ ε

ε0

h
′
(s)

(ε− s)η ds.

Lemma 1 ([39]). Consider the fractional order system: Dηy = Qy, y(0) = y0 where η ∈ (0, 1),
y ∈ Rm,Q ∈ Rm×m. Let νl(l = 1, 2, · · · , m) denote the root of the characteristic equation of
Dηy = Qy, then system Dηy = Qy is said to be locally asymptotically stable
⇔ |arg(νl)| > ηπ

2 (l = 1, 2, · · · , m). The system is stable⇔ |arg(νl)| > ηπ
2 (l = 1, 2, · · · , m)

and each critical eigenvalue, which satisfies |arg(νl)| = ηπ
2 (l = 1, 2, · · · , m), owns geometric

multiplicity one.

Lemma 2 ([39]). Let φ(t) ∈ C[t0, ∞) and satisfy{
Dηφ(t) ≤ −σ1φ(t) + σ2,
φ(t0) = φt0 ,

where η ∈ (0, 1), σ1, σ2 ∈ R, σ1 6= 0, t0 ≥ 0, then

φ(t) ≤
(

φ(t0)−
σ2

σ1

)
Eη [−σ1(t− t0)

η ] +
σ2

σ1
.

3. Dynamics Investigation on the Solution

In this segment, we are to explore the existence and uniqueness, non-negativeness,
and boundedness of the solution for model (2) by virtue of Lemma 2 and Banach fixed
point theorem.

Theorem 1. Set Ψ = {y1, y2) ∈ R2 : max{|y1|, |y2|} ≤ Y}, where Y stands for a positive
constant. For each (y10, y20) ∈ Ψ, system (2) concerning the initial value (y10, y20) possesses a
unique solution Y = (y1, y2) ∈ Ψ.

Proof. Set up the following mapping:

h(Y) = (h1(Y), h2(Y)), (3)

where {
h1(Y) = ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1],
h2(Y) = ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2].

(4)
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For each Y, Ỹ ∈ Ψ, we get

||h(Y)− h(Ỹ)||
= |ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1]
− {ρ1ỹ1(t)[α− 2β1µỹ1(t)− 2β1(1− µ)ỹ1(t− θ) + δ1ỹ2(t) + β1γ1]}|
+ |ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2]
− {ρ2ỹ2(t)[α− 2β2ỹ2(t) + δ2µỹ1(t) + δ2(1− µ)ỹ1(t− θ) + β2γ2]}|
≤ ρ1α|y1(t)− ỹ1(t)|+ 4ρ1β1µY|y1(t)− ỹ1(t)|+ 4ρ1β1(1− µ)|y1(t)− ỹ1(t)|
+ ρ1δ1Y|y1(t)− ỹ1(t)|+ ρ1δ1Y|y2(t)− ỹ2(t)|+ ρ1β1γ1|y1(t)− ỹ1(t)|
+ ρ2α|y2(t)− ỹ2(t)|+ 4ρ2β2µY|y2(t)− ỹ2(t)|+ ρ2δ2µY|y1(t)− ỹ1(t)|
+ ρ2δ2µY|y2(t)− ỹ2(t)|+ ρ2δ2(1− µ)Y|y1(t)− ỹ1(t)|
+ ρ2δ2(1− µ)Y|y2(t)− ỹ2(t)|+ ρ2β2γ2|y2(t)− ỹ2(t)|

= [ρ1α + 4ρ1β1µY + 4ρ1β1(1− µ) + ρ1δ1Y + ρ1β1γ1 + ρ2δ2Y ]|y1(t)− ỹ1(t)|
+ [ρ1δ1Y + ρ2α + 4ρ2β2µY + ρ2δ2Y + ρ2β2γ2]|y2(t)− ỹ2(t)|

= Y1|y1(t)− ỹ1(t)|+ Y2|y2(t)− ỹ2(t)|
≤ Y||Y− Ỹ||,

(5)

where { Y1 = ρ1α + 4ρ1β1µY + 4ρ1β1(1− µ) + ρ1δ1Y + ρ1β1γ1 + ρ2δ2Y ,
Y2 = ρ1δ1Y + ρ2α + 4ρ2β2µY + ρ2δ2Y + ρ2β2γ2

(6)

and
Y = max{Y1,Y2}. (7)

Then h(Y) obeys Lipschitz condition with respect to Y (one can see [39]). Taking advantage
of Banach fixed point theorem, one concludes that Theorem 1 is true.

Theorem 2. (a) Every solution to system (2) starting with R2
+ is non-negative; (b) If the foll-

owing inequality

min{2ρ1β1µ, 2ρ2β2} >
1
2

ρ1δ1 +
1
2

ρ2δ2(1− µ)

holds, then every solution to system (2) starting with R2
+ is uniformly bounded.

Proof. Let the initial value of system (2) be Y(t0) = (y1(t0), y2(t0)). Assume that ∃ a
constant t∗ satisfying t ∈ (t0, t∗) such that

y1(t) = 0, t ∈ (t0, t∗),
y1(t∗) = 0,
y1(t+∗ ) < 0.

(8)

According to system (2), we have

Dηy1(t)|y1(t∗)=0 = 0. (9)

By Lemma of [40], one gets y1(t+∗ ) = 0. By (8), we find that it is contradiction. Therefore,
y1(t) ≥ 0, ∀ t ≥ t0. Similarly, one can easily check that y2(t) ≥ 0, ∀ t ≥ t0. The proof of (a)
ends. In the sequel, we shall prove uniformly boundedness of system (2). Set

Φ(t) = y1(t) + y2(t). (10)

Then
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DηΦ(t) + κΠ(t) = Dηy1(t) +Dηy2(t) + κy1(t) + κy2(t)
= ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1]

+ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2]
+κy1(t) + κy2(t)

≤ (ρ1α + ρ1β1γ1 + κ)y1(t)− 2ρ1β1µy2
1(t) + ρ1δ1y1(t)y2(t)

+(ρ2α + ρ2β2γ1 + κ)y2(t)− 2ρ2β2y2
2(t) + ρ2δ2(1− µ)y1(t− θ)y2(t)

≤ (ρ1α + ρ1β1γ1 + κ)y1(t)− 2ρ1β1µy2
1(t) +

1
2 ρ1δ1y2

1(t) +
1
2 ρ1δ1y2

2(t)
+(ρ2α + ρ2β2γ1 + κ)y2(t)− 2ρ2β2y2

2(t) +
1
2 ρ2δ2(1− µ)y2

1(t− θ)

+ 1
2 ρ2δ2(1− µ)y2

2(t)
= (ρ1α + ρ1β1γ1 + κ)y1(t)−

[
2ρ1β1µ− 1

2 ρ1δ1 − 1
2 ρ2δ2(1− µ)

]
y2

1(t)

+(ρ2α + ρ2β2γ1 + κ)y2(t)−
[
2ρ2β2 − 1

2 ρ1δ1 − 1
2 ρ2δ2(1− µ)

]
y2

2(t)
≤ Q,

(11)

where κ > 0 is a constant and

Q =

[
2ρ1β1µ− 1

2 ρ1δ1 − 1
2 ρ2δ2(1− µ)

]2

4(ρ1α + ρ1β1γ1 + κ)
+

[
2ρ2β2 − 1

2 ρ1δ1 − 1
2 ρ2δ2(1− µ)

]2

4(ρ2α + ρ2β2γ1 + κ)
. (12)

Then
DηΦ(t) ≤ −κΦ(t) +Q. (13)

According to Lemma 2, we get

Φ(t) ≤
(

Φ(t0)−
Q
κ

)
Eη [−κ(t− t0)

η ] +
Q
κ

, (14)

then
Φ(t)→ Q

κ
, as t→ ∞. (15)

The proof of Theorem 2 finishes.

4. Bifurcation Study

It is not difficult to know that model (2) owns the following equilibrium points:

Y1(0, 0), Y2

(
0,

α + β2γ2

2β2

)
, Y3

(
α + β1γ1

2β1
, 0
)

, Y4(y1∗, y2∗),

where 
y1∗ =

2αβ2 + 2β1β2γ1 + αδ1 + β2γ2δ1

4β1β2 − δ1δ2
,

y2∗ =
2αβ1 + 2β1β2γ2 + αδ2 + β1γ1δ2

4β1β2 − δ1δ2
.

(16)

Suppose that
(S1) 4β1β2 > δ1δ2

holds, then the equilibrium point Y4(y1∗, y2∗) is a positive equilibrium point. Considering
the actual meaning in insurance market, we are only concerned with the positive equilib-
rium point Y4(y1∗, y2∗) of model (2). The linear system of model (2) near Y4(y1∗, y2∗) owns
the expression:

Dηy(t) = A1y(t) +A2y(t− θ), (17)

where

y(t) =
[

y1(t)
y2(t)

]
,A1 =

[
a1 a2
a3 a4

]
,A2 =

[
a5 0
a6 0

]
, (18)
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where 

a1 = ρ1α− 2ρ1β1µy1∗ + 2ρ1β1y1∗ + ρ1δ1y2∗ + ρ1β1γ1,
a2 = ρ1β1y1∗,
a3 = ρ2β2µy2∗,
a4 = ρ2α− 4ρ2β2y2∗ + ρ2δ2y1∗ + ρ2β2γ2,
a5 = −2ρ1β1(1− µ)y1∗,
a6 = ρ2δ2(1− µ)y2∗.

(19)

The characteristic equation of system (17) owns the following expression:

det
[

sη − a1 − a5e−sθ −a2
−a3 − a6e−sθ sη − a4

]
= 0, (20)

which generates
s2η + b1sη + b2 + (b3sη + b4)e−sθ = 0, (21)

where 
b1 = −(a1 + a4),
b2 = a1a4 − a2a3,
b3 = −a5,
b4 = a4a5 − a1a6.

(22)

When θ = 0, then Equation (21) becomes:

λ2 + (b1 + b3)λ + b2 + b4 = 0, (23)

If
(S2) b1 + b3 > 0, b2 + b4 > 0

is fulfilled, then the two roots λ1, λ2 of Equation (23) obey |arg(λ1)| > ηπ
2 , |arg(λ2)| > ηπ

2 .
It follows from Lemma 1 that the positive equilibrium point Y4(y1∗, y2∗) of model (2)
involving θ = 0 is locally asymptotically stable.

Denote s = iς = ς
(
cos π

2 + i sin π
2
)

the root of Equation (21). Then, Equation (21) takes the
following expression:

ς2η(cos ηπ + i sin ηπ) + b1ςη
(
cos ηπ

2 + i sin ηπ
2
)
+ b2

+
[
b3ςη

(
cos ηπ

2 + i sin ηπ
2
)
+ b4

]
(cos ςθ − i sin ςθ) = 0.

(24)

Then { C1 cos ςθ + C2 sin ςθ = C3,
C2 cos ςθ − C1 sin ςθ = C4,

(25)

where 

C1 = b3ςη cos
ηπ

2
+ b4,

C2 = b3ςη sin
ηπ

2
,

C3 = −ς2η cos ηπ − b1ςη cos
ηπ

2
− b2,

C4 = −ς2η sin ηπ − b1ςη sin
ηπ

2
.

(26)

It follows from (25) that
C2

1 + C2
2 = C2

3 + C2
4 , (27)

which implies
ς4η + τ1ς3η + τ2ς2η + τ3ςη + τ4 = 0, (28)
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where 
τ1 = 2b1

(
cos ηπ cos

ηπ

2
+ sin ηπ sin

ηπ

2

)
,

τ2 = 2b2 cos ηπ + b2
1 − b2

3,

τ3 = 2(b1b2 − b3b4) cos
ηπ

2
,

τ4 = b2
2 − b2

4.

(29)

Let
Υ(ς) = ς4η + τ1ς3η + τ2ς2η + τ3ςη + τ4. (30)

Suppose that
(S3) |b2| < |b4|

holds true, considering dΥ(ς)
dς > 0,∀ ς > 0, then one can easily know that Equation (28) has

at least one positive real root. Therefore, Equation (21) owns at least one pair of purely
roots. Making use of Sun et al. [41], the following assertion can be easily available.

Lemma 3. (i) If τl > 0(l = 1, 2, 3, 4) holds, then Equation (21) owns no root with zero real parts
provided that θ ≥ 0. (ii) If (S3) holds and τl > 0(l = 1, 2, 3), then Equation (21) has a pair of
purely imaginary roots ±iς0 for θ = θh(h = 1, 2, · · · , ) where

θ
(h)
0 =

1
ς0

[
arccos

(
C1C3 + C2C4

C2
1 + C2

2

)
+ 2hπ

]
, (31)

where h = 0, 1, 2, · · · , and ς0 > 0 represents the unique zero of Υ(ς).

Here we omit the concrete proof of Lemma 1, one can consult [41]. Denote θ0 = θ
(0)
0 .

In the sequel, we make the following necessary assumption:

(S4) I1RI2R + I1II2I > 0,

where 

I1R = 2ης
2η−1
0 cos

(2η − 1)π
2

+ ηb1ς
η−1
0 cos

(η − 1)π
2

+ ηb3ς
η−1
0

[
cos

(η − 1)π
2

cos ς0θ0 + sin
(η − 1)π

2
sin ς0θ0

]
,

I1I = 2ης
2η−1
0 sin

(2η − 1)π
2

+ ηb1ς
η−1
0 sin

(η − 1)π
2

− ηb3ς
η−1
0

[
cos

(η − 1)π
2

sin ς0θ0 − sin
(η − 1)π

2
cos ς0θ0

]
,

I2R =
(

b3ς
η
0 cos

ηπ

2
+ b4

)
ς0 sin ς0θ0 +

(
b3ς

η
0 cos

ηπ

2

)
ς0 cos ς0θ0,

I2I =
(

b3ς
η
0 cos

ηπ

2
+ b4

)
ς0 sin ς0θ0 −

(
b3ς

η
0 cos

ηπ

2

)
ς0 cos ς0θ0.

(32)

Lemma 4. Let s(θ) = ω1(θ) + iω2(θ) be the root of Equation (21) near θ = θ0 such that

ω1(θ0) = 0, ω2(θ0) = ς0, then Re
(

ds
dθ

)∣∣∣
θ=θ0,ς=ς0

> 0.

Proof. Using Equation (21), one derives[
2ηs2η−1 + ηb1sη−1] ds

dθ + ηb3sη−1e−sθ ds
dθ

−e−sθ
(

ds
dθ θ + s

)
(b3sη + b4) = 0,

(33)

which implies (
ds
dθ

)−1
=
I1(s)
I2(s)

− θ

s
, (34)
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where {
I1(s) = 2ηs2η−1 + ηb1sη−1 + ηb3sη−1e−sθ ,
I2(s) = se−sθ [b3sη + b4].

(35)

Hence

Re

[(
ds
dθ

)−1
]

θ=θ0,ς=ς0

= Re
[I1(s)
I2(s)

]
θ=θ0,ς=ς0

=
I1RI2R + I1II2I

I2
2R + I2

2I
. (36)

Taking advantage of (S4), one gets

Re

[(
ds
dθ

)−1
]

θ=θ0,ς=ς0

> 0, (37)

which completes the proof.

Making use of Lemma 1, one gets the following result.

Theorem 3. If (S1)–(S4)holds, then Y4(y1∗, y2∗) of model (2) is locally asymptotically stable
provided that θ ∈ [0, θ0) and a Hopf bifurcation of model (2) arises near Y4(y1∗, y2∗) for θ = θ0.

5. Global Asymptotic Stability Exploration

In this part, we will explore the global stability issue of the positive equilibrium point
Y(y1∗, y2∗) of model (2). Firstly, we give the following assumption:

(S5) ρ1ρ2β1β2 <
(ρ1δ1 + ρ2δ2)

2

4
.

Theorem 4. If (S5) is fulfilled, then the positive equilibrium point Y(y1∗, y2∗) of model (2) is
globally asymptotically stable.

Proof. Setting up the following positive definite function:

V(t) =
2

∑
l=1

(
yl(t)− yl∗ − yl∗ ln

yl(t)
yl∗

)
. (38)

Then

DηV(t) = y1(t)−y1∗
y1(t)

Dηw1(t) +
y2(t)−y2∗

y2(t)
Dηy2(t)

≤ (y1(t)− y1∗)[ρ1(α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1)]
+(y2(t)− y2∗)[ρ2(α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2)]

= ((y1(t)− y1∗)[−2ρ1β1µy1(t) + 2ρ1β1µy1∗ − 2ρ1β1(1− µ)y1(t− θ)
+2ρ1β1(1− µ)y1∗ + ρ1δ1y2(t)− ρ1δ1y2∗]
+(y2(t)− y2∗)[−2ρ2β2y2(t) + 2ρ2β2y2∗ + ρ2δ2µy1(t)
−ρ2δ2µy1∗ + ρ2δ2(1− µ)y1(t− θ)− ρ2δ2(1− µ)y1∗]

≤ −ρ1β1(y1(t)− y1∗)2 + ρ1δ1(y1(t)− y1∗)(y2(t)− y2∗)
−ρ2β2(y2(t)− y2∗)2 + ρ2δ2(y1(t)− y1∗)(y2(t)− y2∗)

= −ρ1β1(y1(t)− y1∗)2 − ρ2β2(y2(t)− y2∗)2

+(ρ1δ1 + ρ2δ2)(y1(t)− y1∗)(y2(t)− y2∗).

(39)

By (S5), we can know that DηV(t) ≤ 0, which completes the proof.

6. Hybrid Control Technique for Bifurcation Control

In this part, we will make use of an appropriate hybrid controller which consists of
state feedback and parameter perturbation to control the stability and Hopf bifurcation for
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model (2). By virtue of the research ideas in [42–44], we get the fractional-order controlled
duopoly game model:

Dηy1(t) = σ1{ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1]}
+ σ2(y1(t)− y1∗),

Dηy1(t) = σ1{ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2]}
+ σ2(y2(t)− y2∗),

(40)

where σ1, σ2 represent feedback gain parameters. Models (40) and (2) own the same
equilibrium points

Y1(0, 0), Y2

(
0,

α + β2γ2

2β2

)
, Y3

(
α + β1γ1

2β1
, 0
)

, Y4(y1∗, y2∗).

If (S1) holds, then Y4(y1∗, y2∗) is positive equilibrium point. The linear system of model (41)
near Y4(y1∗, y2∗) owns the expression:

Dηy(t) = B1y(t) + B2y(t− θ), (41)

where

y(t) =
[

y1(t)
y2(t)

]
,B1 =

[
g1 g2
g3 g4

]
,B2 =

[
g5 0
g6 0

]
, (42)

where 

g1 = σ1[ρ1α− 2ρ1β1µy1∗ + 2ρ1β1y1∗ + ρ1δ1y2∗ + ρ1β1γ1] + σ2,
g2 = σ1ρ1β1y1∗,
g3 = σ1ρ2β2µy2∗,
g4 = σ1[ρ2α− 4ρ2β2y2∗ + ρ2δ2y1∗ + ρ2β2γ2] + σ2,
g5 = −2σ1ρ1β1(1− µ)y1∗,
g6 = σ1ρ2δ2(1− µ)y2∗.

(43)

The characteristic equation of system (41) owns the following expression:

det
[

sη − g1 − a5e−sθ −g2
−g3 − g6e−sθ sη − g4

]
= 0, (44)

which generates
s2η + h1sη + h2 + (h3sη + h4)e−sθ = 0, (45)

where 
h1 = −(g1 + g4),
h2 = g1g4 − g2g3,
h3 = −g5,
h4 = g4g5 − g1g6.

(46)

When θ = 0, then Equation (45) becomes:

λ2 + (h1 + h3)λ + h2 + h4 = 0, (47)

If
(S6) h1 + h3 > 0, h2 + h4 > 0

is fulfilled, then the two roots λ1, λ2 of Equation (47) obey |arg(λ1)| > ηπ
2 , |arg(λ2)| > ηπ

2 .
It follows from Lemma 1 that the positive equilibrium point Y4(y1∗, y2∗) of model (40)
involving θ = 0 is locally asymptotically stable.

Denote s = iξ = ξ
(
cos π

2 + i sin π
2
)

the root of Equation (45). Then, Equation (45) takes
the following expression:

ξ2η(cos ηπ + i sin ηπ) + h1ξη
(
cos ηπ

2 + i sin ηπ
2
)
+ h2

+
[
h3ξη

(
cos ηπ

2 + i sin ηπ
2
)
+ h4

]
(cos ξθ − i sin ξθ) = 0.

(48)
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Then { G1 cos ξθ + G2 sin ξθ = G3,
G2 cos ξθ − G1 sin ξθ = G4,

(49)

where 

G1 = h3ξη cos
ηπ

2
+ h4,

G2 = h3ξη sin
ηπ

2
,

G3 = −ξ2η cos ηπ − h1ξη cos
ηπ

2
− h2,

G4 = −ξ2η sin ηπ − h1ξη sin
ηπ

2
.

(50)

It follows from (49) that
G2

1 + G2
2 = G2

3 + G2
4 , (51)

which implies
ξ4η + ι1ξ3η + ι2ξ2η + ι3ξη + ι4 = 0, (52)

where 
ι1 = 2h1

(
cos ηπ cos

ηπ

2
+ sin ηπ sin

ηπ

2

)
,

ι2 = 2h2 cos ηπ + h2
1 − h2

3,

ι3 = 2(h1h2 − h3h4) cos
ηπ

2
,

ι4 = h2
2 − h2

4.

(53)

Let
Π(ξ) = ξ4η + ι1ξ3η + ι2ξ2η + ι3ξη + ι4. (54)

Suppose that
(S7) |h2| < |h4|

holds true, considering dΠ(ξ)
dξ > 0,∀ ξ > 0, then one can easily know that Equation (52) has

at least one positive real root. Therefore, Equation (45) owns at least one pair of purely
roots. Making use of Sun et al. [41], the following assertion can be easily available.

Lemma 5. (i) If ιl > 0(l = 1, 2, 3, 4) holds, then Equation (45) owns no root with zero real parts
provided that θ ≥ 0. (ii) If (S7) holds and ιl > 0(l = 1, 2, 3), then Equation (45) has a pair of
purely imaginary roots ±iξ0 for θ = θh(h = 1, 2, · · · , ) where

θ
(h)
0 =

1
ξ0

[
arccos

(
G1G3 + G2G4

G2
1 + G2

2

)
+ 2hπ

]
, (55)

where h = 0, 1, 2, · · · , and ξ0 > 0 represents the unique zero of Π(ξ).

Here we omit the concrete proof of Lemma 5; one can consult [41]. Denote θ0∗ = θ
(0)
0 .

In the sequel, we make the following necessary assumption:

(S8) I1RI2R + I1II2I > 0,
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where 

I1R = 2ης
2η−1
0 cos

(2η − 1)π
2

+ ηh1ξ
η−1
0 cos

(η − 1)π
2

+ ηh3ξ
η−1
0

[
cos

(η − 1)π
2

cos ξ0θ0∗ + sin
(η − 1)π

2
sin ξ0θ0∗

]
,

I1I = 2ηξ
2η−1
0 sin

(2η − 1)π
2

+ ηh1ξ
η−1
0 sin

(η − 1)π
2

− ηh3ξ
η−1
0

[
cos

(η − 1)π
2

sin ξ0θ0∗ − sin
(η − 1)π

2
cos ξ0θ0∗

]
,

I2R =
(

h3ξ
η
0 cos

ηπ

2
+ h4

)
ξ0 sin ξ0θ0∗ +

(
h3ξ

η
0 cos

ηπ

2

)
ξ0 cos ξ0θ0∗,

I2I =
(

h3ξ
η
0 cos

ηπ

2
+ h4

)
ξ0 sin ξ0θ0∗ −

(
h3ξ

η
0 cos

ηπ

2

)
ξ0 cos ξ0θ0∗.

(56)

Lemma 6. Let s(θ) = v1(θ) + iv2(θ) be the root of Equation (45) near θ = θ0∗ such that

v1(θ0∗) = 0, v2(θ0∗) = ξ0, then Re
(

ds
dθ

)∣∣∣
θ=θ0∗ ,ξ=ξ0

> 0.

Proof. Using Equation (45), one derives[
2ηs2η−1 + ηh1sη−1] ds

dθ + ηh3sη−1e−sθ ds
dθ

−e−sθ
(

ds
dθ θ + s

)
(h3sη + h4) = 0,

(57)

which implies (
ds
dθ

)−1
=
I1(s)
I2(s)

− θ

s
, (58)

where {
I1(s) = 2ηs2η−1 + ηh1sη−1 + ηh3sη−1e−sθ ,
I2(s) = se−sθ [h3sη + h4].

(59)

Hence,

Re

[(
ds
dθ

)−1
]

θ=θ0∗ ,ξ=ξ0

= Re
[I1(s)
I2(s)

]
θ=θ0∗ ,ξ=ξ0

=
I1RI2R + I1II2I

I2
2R + I2

2I
. (60)

Taking advantage of (S8), one gets

Re

[(
ds
dθ

)−1
]

θ=θ0∗ ,ξ=ξ0

> 0, (61)

which completes the proof.

Making use of Lemma 1, one gets the following result.

Theorem 5. If (S1), (S6), (S7) and (S8) hold, then Y4(y1∗, y2∗) of model (40) is locally asymptot-
ically stable provided that θ ∈ [0, θ0∗) and a Hopf bifurcation of model (40) arises near Y4(y1∗, y2∗)
for θ = θ0∗.

Theorem 6. In 2012, Xu and Ma [18] explored the local stability and the creation of Hopf bifurca-
tion of integer-order (1). In this current work, we mainly explore the various dynamics including
the existence and uniqueness, non-negativeness, boundedness of the solution, local stability, on-
set of Hopf bifurcation, and Hopf bifurcation control problem for the established fractional-order
delayed duopoly game model (2), which comes from the modified version of integer-order delayed
duopoly game model (1). All investigation approaches and ideas practically differ from those in
Xu and Ma [18]. The exploration idea of Xu and Ma [18] can not be applied to study the dy-
namical characteristics of model (2) in this work. From this viewpoint, we hold that our works
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replenish the research of [18] and expedite the development of bifurcation principle of fractional
differential system.

7. Software Simulations

Example 1. Consider the following fractional-order delayed duopoly game model:{ D0.92y1(t) = ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1],
D0.92y1(t) = ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2],

(62)

where ρ1 = 0.2, ρ2 = 0.2, α = 5, β1 = 4.5, β2 = 5, µ = 0.2, δ1 = 0.7, δ2 = 0.6, γ1 = 1
90 ,

γ2 = 0.0001. By algebraic operation, one can derive that the unique positive equilibrium point
of system (62) takes the value Y(0.5978, 0.5359). It is checked that the hypotheses (S1)–(S4) in
Theorem 3 are all met. Utilizing Matlab software, one can determine that ς0 = 5.3122, θ0 = 1.7.
To test the correctness of the key conclusions of Theorem 3, in the sequel, we will fix two delay values.
Firstly, set θ = 1.52 which is less than θ0 = 1.7, namely, θ falls into the range of value [0, θ0). For
this case, the Matlab simulation plots are provided in Figure 1. Apparently, Figure 1 demonstrates
that the price of the first insurance company y1 will approach to 0.5978 and the price of the second
insurance company y2 will approach to 0.5359 with the increase of time t. Secondly, set θ = 1.94
which is greater than θ0 = 1.7, namely, θ exceeds the key value θ0). For this case, the Matlab
simulation plots are provided in Figure 2. Apparently, Figure 2 demonstrates that the price of
the first insurance company y1 will oscillate around the value 0.5978 and the price of the second
insurance company y2 will oscillate around the value 0.5359 with the increase of time t. That is to
say, a Hopf bifurcation (a limit cycle) will take place near the equilibrium point Y(0.5978, 0.5359).
In addition, in order to intuitively display the bifurcation value of delay, we give the
bifurcation diagrams that show the bifurcation point θ0 ≈ 1.7 (see Figures 3 and 4).

Example 2. Consider the following fractional-order controlled delayed duopoly game model:
D0.92y1(t) = σ1{ρ1y1(t)[α− 2β1µy1(t)− 2β1(1− µ)y1(t− θ) + δ1y2(t) + β1γ1]}

+ σ2(y1(t)− y1∗),
D0.92y1(t) = σ1{ρ2y2(t)[α− 2β2y2(t) + δ2µy1(t) + δ2(1− µ)y1(t− θ) + β2γ2]}

+ σ2(y2(t)− y2∗).

(63)

where ρ1 = 0.2, ρ2 = 0.2, α = 5, β1 = 4.5, β2 = 5, µ = 0.2, δ1 = 0.7, δ2 = 0.6, γ1 = 1
90 ,

γ2 = 0.0001. Let σ1 = 0.2, σ2 = 0.4. By algebraic operation, one can derive the unique pos-
itive equilibrium point of system (63) takes the value Y(0.5978, 0.5359). It is checked that the
hypotheses (S1)–(S8) in Theorem 5 are all met. Utilizing Matlab software, one can determine
that ξ0 = 4.007, θ0∗ = 1.33. To test the correctness of the key conclusions of Theorem 5, in the
sequel, we will fix two delay values. Firstly, set θ = 1.1 which is less than θ0∗ = 1.33, namely,
θ falls into the range of value [0, θ0∗). For this case, the Matlab simulation plots are provided in
Figure 5. Apparently, Figure 5 demonstrates that the price of the first insurance company y1 will
approach to 0.5978 and the price of the second insurance company y2 will approach to 0.5359 with
the increase of time t. Secondly, set θ = 1.45 which is greater than θ0∗ = 1.33, namely, θ exceeds
the key value θ0). For this case, the Matlab simulation plots are provided in Figure 6. Apparently,
Figure 6 demonstrates that the price of the first insurance company y1 will oscillate around the
value 0.5978 and the price of the second insurance company y2 will oscillate around the value
0.5359 with the increase of time t. Thai is to say, a Hopf bifurcation (a limit cycle) will take place
near the equilibrium point Y(0.5978, 0.5359). In addition, in order to intuitively display the
bifurcation value of delay, we give the bifurcation diagrams that show the bifurcation point
θ0∗ ≈ 1.7 (see Figures 7 and 8).
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Theorem 6.1 are all met. Utilizing Matlab software, one can determine that ξ0 = 4.007, θ0∗ = 1.33. To

test the correctness of the key conclusions of Theorem 6.1, in the sequel, we will fix two delay values.

Firstly, set θ = 1.1 which is less than θ0∗ = 1.33, namely, θ falls into the range of value [0, θ0∗). For

this case, the Matlab simulation plots are provided in Figure 5. Apparently, Figure 5 demonstrates that

the price of the first insurance company y1 will approach to 0.5978 and the price of the second insurance

company y2 will approach to 0.5359 with the increase of time t. Secondly, set θ = 1.45 which is greater

than θ0∗ = 1.33, namely, θ exceeds the key value θ0). For this case, the Matlab simulation plots are

provided in Figure 6. Apparently, Figure 6 demonstrates that the price of the first insurance company

y1 will oscillate around the value 0.5978 and the price of the second insurance company y2 will oscillate

around the value 0.5359 with the increase of time t. Thai is to say, a Hopf bifurcation (a limit cycle) will

take place near the equilibrium point Y (0.5978, 0.5359). In addition, in order to intuitively display

the bifurcation value of delay, we give the bifurcation diagrams that show the bifurcation point

θ0∗ ≈ 1.7(see Figures 7-8).
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Figure 1. Numerical simulation results of model (7.1) concerning θ = 1.52 < θ0 = 1.7. The positive

equilibrium point Y (1.0221, 16.0947) remains locally asymptotically stable level.
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Figure 1. Numerical simulation results of model (62) concerning θ = 1.52 < θ0 = 1.7. The positive
equilibrium point Y(1.0221, 16.0947) remains at a locally asymptotically stable level.
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Figure 2. Numerical simulation results of model (7.1) concerning θ = 1.94 > θ0 = 1.7. Hopf bifurcation

appears near the positive equilibrium point Y (1.0221, 16.0947).
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Figure 2. Numerical simulation results of model (62) concerning θ = 1.94 > θ0 = 1.7. Hopf
bifurcation appears near the positive equilibrium point Y(1.0221, 16.0947).
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Figure 2. Numerical simulation results of model (7.1) concerning θ = 1.94 > θ0 = 1.7. Hopf bifurcation

appears near the positive equilibrium point Y (1.0221, 16.0947).
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Figure 3. Bifurcation figure of model (62): the relation of t and y1. The bifurcation value is approxi-
mately equal to 1.7.
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Figure 5. Numerical simulation results of model (7.2) concerning θ = 1.1 < θ0∗ = 1.33. The positive

equilibrium point Y (1.0221, 16.0947) remains locally asymptotically stable level.
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Figure 4. Bifurcation figure of model (62): the relation of t and y2. The bifurcation value is approxi-
mately equal to 1.7.
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equal to 1.7.
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Figure 5. Numerical simulation results of model (63) concerning θ = 1.1 < θ0∗ = 1.33. The positive
equilibrium point Y(1.0221, 16.0947) remains at a locally asymptotically stable level.
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Figure 6.Numerical simulation results of model (7.2) concerning θ = 1.45 > θ0∗ = 1.33. Hopf bifurcation

appears near the positive equilibrium point Y (1.0221, 16.0947).
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Figure 6. Numerical simulation results of model (63) concerning θ = 1.45 > θ0∗ = 1.33. Hopf
bifurcation appears near the positive equilibrium point Y(1.0221, 16.0947).
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Figure 6.Numerical simulation results of model (7.2) concerning θ = 1.45 > θ0∗ = 1.33. Hopf bifurcation

appears near the positive equilibrium point Y (1.0221, 16.0947).
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Figure 7. Bifurcation figure of model (63): the relation of t and y1. The bifurcation value is approxi-
mately equal to 1.33.
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Figure 8. Bifurcation figure of model (7.2): the relation of t and y2. The bifurcation value is approximately

equal to 1.33.

Remark 7.1. By making us of a suitable hybrid controller, we can narrow the stability

region and advance the onset of Hopf bifurcation of the fractional-order duopoly game

model (1.2). From an economic point of view, we can advance the cyclic state of the price

of the tow insurance companies via adjusting the delay and feedback gain parameters.

8. Conclusions

The price of insurance companies plays an important role in dominating the market and attracting the

consumers. The price competition of insurance companies is a vital topic. In this current research, we

propose a new fractional-order duopoly game model with delays in insurance market. The existence and

uniqueness, non-negativeness, boundedness of solution, stability, Hopf bifurcation, globally asymptotical

stability and Hopf bifurcation control of the involved fractional-order delayed duopoly game model in

insurance market have been systematacially explored. A series of sufficient conditions which guarantee the

existence and uniqueness, non-negativeness, boundedness of solution, stability of the positive equilibrium,

onset of Hopf bifurcation, globally asymptotical stability of the addressed fractional-order delayed duopoly

game model in insurance market are derived. By virtue of hybrid control technique, we successfully

control the stability domain and the time of generation of Hopf bifurcation of the involved fractional-

order delayed duopoly game model in insurance market. The obtained study results own great theory

value and praxis function using for reference in administering and running insurance companies. In

addition, the research approach is also used to probe into bifurcation dynamics and its control issue

of a number of other fractional-order systems appearing in many areas. Here we must point that

although we can control the stability region and the time of onset of Hopf bifurcation of

the fractional-order duopoly game model via hybrid controller, we may not be able to other

fractional-order delayed models via same hybrid controller. We must take some adequate

measures to control the stability region and the time of onset of Hopf bifurcation according

to different fractional-order delayed models. We will deal with this aspect in near future.
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Remark 1. By making use of a suitable hybrid controller, we can narrow the stability
region and advance the onset of Hopf bifurcation of the fractional-order duopoly game
model (2). From an economic point of view, we can advance the cyclic state of the price of
the tow insurance companies via adjusting the delay and feedback gain parameters.

8. Conclusions

The price of insurance companies plays an important role in dominating the market
and attracting the consumers. The price competition of insurance companies is a vital topic.
In this current research, we propose a new fractional-order duopoly game model with
delays in insurance market. The existence and uniqueness, non-negativeness, boundedness
of solution, stability, Hopf bifurcation, globally asymptotic stability, and Hopf bifurcation
control of the involved fractional-order delayed duopoly game model in insurance market
have been systematically explored. A series of sufficient conditions which guarantee the ex-
istence and uniqueness, non-negativeness, boundedness of solution, stability of the positive
equilibrium, onset of Hopf bifurcation, and globally asymptotic stability of the addressed
fractional-order delayed duopoly game model in insurance market, are derived. By virtue
of hybrid control technique, we successfully control the stability domain and the time of
generation of Hopf bifurcation of the involved fractional-order delayed duopoly game
model in insurance market. The obtained study results own great theory value and praxis
function use for reference in administering and running insurance companies. In addition,
the research approach is also used to probe into bifurcation dynamics and its control issue
of a number of other fractional-order systems appearing in many areas. Here we must
point out that although we can control the stability region and the time of onset of Hopf
bifurcation of the fractional-order duopoly game model via hybrid controller, we may
not be able to other fractional-order delayed models via the same hybrid controller. We
must take some adequate measures to control the stability region and the time of on-
set of Hopf bifurcation according to different fractional-order delayed models. We will
address this aspect in the near future.
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