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Abstract: The averaging process between two-dimensional fractional Navier–Stokes equations driven
by a singularly oscillating external force and the averaged equations corresponding to the limiting
case are investigated. The uniform boundedness of the global attractors for a fractional Navier–Stokes
equation with a singularly external force is established. Furthermore, these global attractors converge
uniformly to the attractor of the averaged equations under suitable assumptions on the singularly
external force, and the explicit convergence rate of the global attractors is guaranteed.
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1. Introduction

Navier–Stokes (N–S) equations have been investigated so extensively all the time
mainly because of the wide range of applications in many important physical phenomena
and theoretical studies, such as aeronautical sciences, meteorology, thermohydraulics, etc.
It is known that the following N–S equations{

ut − ν∆u + (u · ∇)u +∇p = f , (t, x) ∈ (0, T]×Ω,
∇u = 0, (t, x) ∈ (0, T]×Ω,

(1)

controlled by external forces have attracted a lot of attention in recent years, where u
denotes the velocity field, the symbols ∆ and ∇ stand for the Laplace operator and the
gradient acting in the x-space, respectively, the parameter ν > 0 is the kinematic viscosity
with the assumption that the density of the fluid is constant, p := p(x, t) represents the
associated pressure and f is an external force.

Among the many notable results regarding (1), it is worth noting that the controllability
of N–S Equation (1) with periodic boundary conditions was established in [1], where the
external force of the system was degenerating. Moreover, the investigation on the uniform
global attractor of this N–S Equation (1) is also an important subject in many papers
and monographs (see [2–5] and other references). When the external force f = f (x)
depends only on spatial variable x, Vishik and Chepyzhov [6] established that the trajectory
attractor of the three-dimensional (3D) N–S equations, where the trajectory attractor was
composed of a type of solutions to system (1) on the positive semi-interval of the time
axis, was bounded, which can be extended to the entire time axis, and further obtained the
convergence of the uniform global attractor. When the external force f = f (x, t) depends
not only on time but also on spatial variables, the structure of the uniform global attractor of
the nonautonomous 2D N–S Equation (1) was examined in [7], where the different structural
features of the uniform global attractors were discussed with quasi-periodic and oscillating
external force. In [8], Vishik and Chepyzhov later also discussed the related properties
of the uniform global attractors of the nonautonomous 2D N–S equations with singular
oscillatory external forces f0(x, t) + ε−ρ f1(

x
ε , t), for x ∈ Ω ⊆ R2, t ∈ R, and 0 ≤ ρ ≤ 1.
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In [9], they further considered the attractors of the following two nonautonomous 2D N–S
equations: {

ut − ν∆u + (u · ∇)u = −∇p + f0(t) + ε−ρ f1(
t
ε ),

∇u = 0,
(2)

where ρ ∈ (0, 1), ε > 0, and f is a singular oscillating external force, and subject to the
average equations (with respect to the case ε = 0){

ut − ν4u + (u · ∇)u = −∇p + f0(t),
∇u = 0.

(3)

It has been demonstrated that the uniform global attractor set Aε of Equation (2)
is uniformly bounded and Aε is convergent to the uniform global attractor set A0 of
Equation (3) as ε → 0+. In addition, some problems associated with the averaging and
the homogenization of uniform global attractors for such systems have been investigated
in [10–12].

On the other hand, fractional calculus sourced from the beginning of calculus has
become an important subject discussed by many mathematicians (such as Leibniz, Fourier,
Abel, L’Hopital, Euler, Riemann, and Liouville). Fractional calculus has long been con-
sidered as a purely mathematical tool with no practical applications. In recent decades,
however, it has been discovered that fractional calculus can be used in the most diverse
fields of science, due mainly to the nonlocal character of fractional differentiation. Among
the numerous applications of fractional calculus, it is worth noting some works on stochas-
tic processes motivated by fractional Brownian motion [13] and on physical phenomena
such as electromagnetism [14] and viscoelasticity [15–17]. For more detail, we refer to the
survey [18] and references therein. Therefore, a natural and interesting question is now to
study the relevant dynamical characteristics of the solutions of fractional N–S equations.
Some investigation on the suitability of spatial fractional N–S equations have attracted
the attention of many authors. In [19], the authors mainly discussed 3D N–S equations
with Coriolis forces in homogeneous Besov spaces, where the existence and uniqueness
of global solutions of systems at high rotational speeds were obtained and the asymp-
totic behavior of solutions was analyzed when the rotational speed tended to infinity. The
Cauchy problem for incompressible fractional N–S equations in critical variable-exponential
Fourier–Besov–Morrey spaces was investigated in [20], in which the global well-posedness
of incompressible fractional N–S equations in the frequency space of a variable exponential
was provided. Furthermore, introducing a Besov-type function space represented by a
time-evolving semigroup, [21] mainly established the unique existence of global mild
solutions for small initial data belonging to the semigroup function space under scaled
subcritical and critical conditions. In addition, the authors demonstrated the existence of a
global attractor for the 2D incompressible Boussinesq equation with subcritical dissipation
in [22], which revealed the relationship between the Laplace exponent and the regularity
in velocity and temperature. However, there are few studies on the dynamics of time
fractional N–S equations.

In this paper, we consider the following time-fractional 2D N–S equations{
τ Dα

t u− ν∆u + u1∂x1 u + u2∂x2 u = −∇p + f ε(x, t), ∀x := (x1, x2) ∈ Ω,
∂x1 u1 + ∂x2 u2 = 0, u|∂Ω = 0,

(4)

where the sign τ Dα
t denotes the modified fractional Riemann–Liouville derivative with

respect to t defined in Section 2,

f ε(x, t) =
{

f0(x, t) + ε−ρ f1(x, t/ε), ε > 0,
f0(x, t), ε = 0,

(5)
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represents the external force, ρ ∈ (0, α
2 ) is a fixed parameter with α ∈ (0, 1), and Ω ⊂ R2

is a bounded domain with boundary ∂Ω of class C1, u = (u1(x, t), u2(x, t)) is the velocity
vector field. In fact, we call System (4) the averaged equation when ε = 0. The investigation
of the solutions of fractional N–S equations has received a lot of attention in recent years,
for instance in [23,24].

It is worth pointing out that when f = f (x, t) is a general external force, Zhou and
Peng [25] established the existence and uniqueness of local and global mild solutions, and
the regularity of classical solutions for System (4) in a fractional abstract space. Later, they
continued to consider the existence, uniqueness and Hölder continuity of weak solutions by
using iterative methods in [26]. In addition, Carvalho, Neto and Planas [24] demonstrated
the existence and uniqueness of weak solutions to ND time-fractional N–S equations in RN

under the external force f = ( f1(x, t), · · ·, fN(x, t)). However, to the author’s knowledge,
there is no related result on the averaging process for System (4).

The main contribution of this article is to address the averaging process of 2D time-
fractional N–S equations with a singularly external force. By using a fractional inequality
and the Fadeo–Galerkin method, the well-posedness of these fractional Navier–Stokes
equations is completed. Then, the uniform global attractor family {Aε} of the dynamic
processes generated by the shift semigroups theory is demonstrated. Finally we further
obtain the convergence of the global attractors as the parameter approaches zero and
guarantee the explicit convergence rate of the global attractors.

The content of this paper is mainly divided into the following parts: In Section 2,
some basic symbols, assumptions and lemmas are introduced. In Section 3, the existence
of a uniformly global attractor to System (4) is obtained, and the dynamic process of the
system and the structure of attractors are presented. The uniform global attractor set Aε is
uniformly bounded and the convergence of the uniform global attractors is provided in
Section 4.

2. Preliminary

Throughout the paper, for τ ∈ R+, we set Rτ = [τ,+∞) and assume 0 < ρ < α
2

with α ∈ (0, 1). Some basic concepts from partial differential equations are borrowed,
such as L2(Ω), H1(Ω), H2(Ω), and C∞

0 (Ω), etc. In what follows, the dependence on the
space variable x is omitted for brevity. Let X be a normed space with the norm ‖·‖X , and
distX(B1, B2) := sup

b1∈B1

inf
b2∈B2

‖b1 − b2‖X be the Hausdorff semidistance in X from a set B1 to

a set B2. We define

H := {u ∈ [C∞
0 (Ω)]2|∂x1 u1 + ∂x2 u2 = 0}

[L2(Ω)]2

,

V := {u ∈ [C∞
0 (Ω)]2|∂x1 u1 + ∂x2 u2 = 0}

[H1(Ω)]2

.

Suppose P : [L2(Ω)]2 → H is the Leray–Helmholtz orthogonal projection. Consider
the following positive self-adjoint operator

A := −P∆ : D(A)→ H (6)

with D(A) := [H2(Ω)]2 ∩ V . We also need to define the scale of Hilbert spaces

Hσ := D(A
σ
2 ), ∀σ ∈ R,

equipped with the norm and inner products by

〈u, v〉Hσ := 〈A
σ
2 u, A

σ
2 v〉[L2(Ω)]2 , ‖u‖Hσ := ‖A

σ
2 u‖[L2(Ω)]2 .

In particular, we set

H = H, H1 = V , H2 = D(A), H−1 = H−1(Ω),
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where the norm of H is denoted by ‖ · ‖. In addition, the generalized Poincaré inequality
given by

‖u‖2
Hσ+1 ≥ λ‖u‖2

Hσ , ∀u ∈ Hσ+1, (7)

is needed, where λ > 0 is the first eigenvalue of operator A.
The following basic facts related to Navier–Stokes equations should be provided for

completeness. For more detail, please refer to [2,5,9]. We define the standard bilinear map
B(u, u) := P(u1∂x1 u + u2∂x2 u) and trilinear forms

b(u, v, w) := 〈B(u, v), w〉 (8)

for any (u, v, w) ∈ H1 × H1 × H1. It is easy to verify that for all (x, y, z) ∈ H1 × H1 × H1

b(x, y, y) = 0, (9)

b(x, y, z) = −b(x, z, y), (10)

and
|b(x, y, z)| ≤ C1‖x‖

1
2 ‖x‖

1
2
H1‖y‖H1‖z‖

1
2 ‖z‖

1
2
H1 , (11)

|b(x, y, z)| ≤ C1‖x‖
1
2 ‖x‖

1
2
H1‖y‖

1
2 ‖y‖

1
2
H1‖z‖H1 , (12)

where C1 > 0 is a constant independent of Ω.
The related concepts of fractional derivative to the modified Riemann–Liouville inte-

gral are introduced below; for detail the interested readers can refer to [27–29].

Definition 1. The modified Riemann–Liouville fractional integral of order α is defined on the
interval [0, t) by the expression

0 Iα
t f (t) =

1
Γ(α)

∫ t

0
(t− s)α−1 f (s)ds, α > 0,

where Γ(·) is the Gamma function.

Definition 2. The modified Riemann–Liouville derivative of order α is defined on the interval [0, t)
by the expression

0Dα
t f (t) =

1
Γ(1− α)

d
dt

∫ t

0
(t− s)−α[ f (s)− f (0)]ds, 0 < α < 1. (13)

Remark 1. Compared with the classical Riemann–Liouville derivative and the Caputo derivative,
some advantages of the modified Riemann–Liouville derivative are summarized as follows.

• If f (t) = K = constant, then it is easy to check that 0Dα
t f (t) = 0, which is beneficial in

engineering applications. However, the α derivative of the Riemann–Liouville is Ktα/Γ(1− α).
• From Definition 2, it is easy to see that f only needs to be continuous, but must be differentiable

in the Caputo derivative. That is to say, for the modified Riemann–Liouville derivative, the
requirement for the regularity of the function f is lower.

The modified Riemann–Liouville derivative retains the characteristics of fractional derivative
and has some good properties given in the following.

Proposition 1 (see [27–30]). Let f : R → R be a differentiable function and u, v : R → R be
continuous functions, then it holds that

0Dα
t [ f (u(t)] = f ′u(u)0Dα

t u, (14)

0Dα
t (u(t)v(t)) = v(t)0Dα

t u(t) + u(t)0Dα
t v(t), (15)

0 Iα
t 0Dα

t f (t) = f (t)− f (0), 0Dα
t 0 Iα

t f (t) = f (t). (16)
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Moreover, one has
0 Iα

t f (t) ≤ 0 Iα
t g(t), (17)

if f (t) ≤ g(t), and

0Dα
t (K f (t) + K̂g(t)) = K · 0Dα

t f (t) + K̂ · 0Dα
t g(t), (18)

for arbitrary constants K and K̂.

Now, we present the space L∞
α (Rτ ; Hσ) given in [31] with norm

‖ f ‖2
α,Hσ = sup

t∈Rτ

(t− τ)α‖ f (s)‖2
Hσ , ∀ f ∈ L∞

α (Rτ ; Hσ), (19)

which is a Banach space; for detail see also [32]. In particular, let ‖ · ‖α = ‖ · ‖α,H0 if σ = 0.
Assume the external force f0, f1 ∈ L∞

α (Rτ ; H) and

‖ f0‖2
α = M0, (20)

‖ f1‖2
α = M1. (21)

This together with (5) implies ‖ f ε‖2
α ≤ Mε, where

Mε =

{
M0 +

√
2M1εα−2ρ, ε > 0,

M0, ε = 0.
(22)

Notice that the order of Mε is εα−2ρ as ε→ 0+.
Next, we show several lemmas, which play a crucial role in analyzing the global

attractors of the fractional N–S Equation (4).

Lemma 1 (Young’s inequality with η). For any a, b > 0 and η > 0, it holds that

ab ≤ η
ap

p
+ η

− q
p

bq

q
, (23)

where 1 < p, q < ∞ and 1
p + 1

q = 1.

Proof. Using the general Young inequality (see [33]), one obtains

ab = (ηp)
1
p a · b

(ηp)
1
p
≤ ηpap

p
+

bq

(ηp)
q
p q
≤ η

ap

p
+ η

− q
p

bq

q
.

Lemma 2. Let ψ2 ∈ L∞
α (Rτ). Assume that y : Rτ → R+ satisfies the fractional differential

inequality
τ Dα

t y(t) + ψ1(t)y(t) ≤ ψ2
2(t), ∀t ≥ τ, α ∈ (0, 1), (24)

where the function ψ1 fulfills

β(t− τ)α ≥ 1
Γ(α)

∫ t

τ
(t− s)α−1ψ1(s)ds ≥ β(t− τ)α − r, ∀t ≥ τ, (25)

for some non-negative constants β, r. Then, we have

y(t) ≤ y(τ)e−β(t−τ)α+r + erΓ(1− α)||ψ2||2α,R, ∀t ≥ τ. (26)
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Proof. Multiplying eτ Iα
t ψ1(t) on both sides of inequality (24) and using (14) and (15) in

Proposition 1 lead to

τ Dα
t {eτ Iα

t ψ1(t)y(t)} ≤ eτ Iα
t ψ1(t)ψ2

2(t), (27)

which, together with (16), gives

eτ Iα
t ψ1(t)y(t) ≤ y(τ) +

1
Γ(α)

∫ t

τ
(t− s)α−1eτ Iα

s ψ1(s)ψ2
2(s)ds, ∀t ≥ τ. (28)

From (28), apply (25) to obtain

y(t) ≤ y(τ)e−τ Iα
t ψ1(t) + e−τ Iα

t ψ1(t) 1
Γ(α)

∫ t

τ
(t− s)α−1eτ Iα

s ψ1(s)ψ2
2(s)ds

≤ y(τ)e−β(t−τ)α+r +
er

Γ(α)

∫ t

τ
(t− s)α−1ψ2

2(s)ds

≤ y(τ)e−β(t−τ)α+r +
er

Γ(α)

∫ t

τ
(t− s)α−1(s− τ)(1−α)−1(s− τ)αψ2

2(s)ds. (29)

Since ∫ t

τ
(t− s)α−1(s− τ)(1−α)−1ds =

∫ 1

0
ωα−1(1−ω)1−α−1dω

= B(α, 1− α)

= Γ(α)Γ(1− α), (30)

where B is the Beta function, it follows from (29) that

y(t) ≤ y(τ)e−β(t−τ)α+r + erΓ(1− α)‖ψ2‖2
α,R, (31)

which completes the proof.

3. Attractors for Navier–Stokes Equations
3.1. Well-Posedness for the Fractional Navier–Stokes Equations

According to the definition of operators given in Section 2, Equation (4) can be written
as the following abstract form

τ Dα
t u + νAu + B(u, u) = f ε(t), (32)

where the pressure term p has disappeared due to the application of the Leray–Helmholtz
projection P. Before discussing the attractor of Equation (32), now we complete the well-
posedness of fractional N–S Equation (32). For this, the following Lemma is needed.

Lemma 3. For any fixed ε ∈ [0, 1], let u be the solution of the Cauchy problem in (32) with the
initial value u|t=τ = uτ ∈ H, then it holds that

‖u(t)‖2 ≤ ‖u(τ)‖2e−
λν

αΓ(α) (t−τ)α

+Mε, (33)

‖u(t)‖2 +
ν

Γ(α)

∫ t

τ
(t− s)α−1‖u(s)‖2

H1 ds ≤ ‖u(τ)‖2 +Mε, (34)

whereMε =
Γ(1−α)Mε

λν with the constant Mε > 0 given by (22), for any t ≥ τ. Moreover, we have

‖u(t)‖2
H1 ≤ W(t− τ, ‖u(τ)‖2, Mε), ∀t ≥ τ, (35)

whereW is a positive function.
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Proof. Taking the inner product of Equation (32) with u, we get

〈τ Dα
t u, u〉+ ν〈Au, u〉+ 〈B(u, u), u〉 = 〈 f ε, u〉.

It is easy to check that 〈B(u, u), u〉 = b(u, u, u) = 0 by (9), then using Proposition 1
and the Cauchy–Schwartz inequality gets

1
2 τ Dα

t ‖u‖2 + ν‖u‖2
H1 ≤ ‖ f ε‖‖u‖. (36)

Following Young’s inequality (23) (p = 2, q = 2), the estimate (36) becomes

τ Dα
t ‖u‖2 + 2ν‖u‖2

H1 ≤ η‖u‖2 + 1
η ‖ f ε‖2.

It follows from Poincaré’s inequality (7) that

τ Dα
t ‖u‖2 + 2ν‖u‖2

H1 ≤
η

λ
‖u‖2

H1 +
1
η
‖ f ε‖2. (37)

Since the Young’s parameter η > 0 is arbitrary, we choose η = λν, and from (37) we
obtain

τ Dα
t ‖u‖2 + ν‖u‖2

H1 ≤ (λν)−1‖ f ε‖2. (38)

Applying Poincaré’s inequality (7), one gets from (38)

τ Dα
t ‖u‖2 + λν‖u‖2 ≤ (λν)−1‖ f ε‖2. (39)

Set ψ̄1(t) := λν for any t ≥ τ, then it is easy to calculate

1
Γ(α)

∫ t

τ
(t− s)α−1λνds =

λν

αΓ(α)
(t− τ)α. (40)

In view of f ε ∈ L∞
α (Rτ ; H) and the above equation, then Lemma 2 can be invoked to

produce our desired estimate (33).
Integrating both sides of (38) and using Proposition 1, one can show that

‖u(t)‖2 − ‖u(τ)‖2 +
ν

Γ(α)

∫ t

τ
(t− s)α−1‖u(s)‖2

H1 ds ≤ (λν)−1

Γ(α)

∫ t

τ
(t− s)α−1‖ f ε(s)‖2ds,

which, together with (30) and f ε ∈ L∞
α (Rτ ; H), leads to

‖u(t)‖2 +
ν

Γ(α)

∫ t

τ
(t− s)α−1‖u(s)‖2

H1 ds ≤ ‖u(τ)‖2 +Mε.

whereMε is a constant defined in (33). Hence, the estimate (34) holds.
The estimate (35) shall be proved by taking the inner product of Equation (32) with

Au as follows:

〈τ Dα
t u, Au〉+ ν〈Au, Au〉+ 〈B(u, u), Au〉 = 〈 f ε, Au〉. (41)

Applying Cauchy-Schwartz’s inequality and Young’s inequality (p, q = 2, η = 2
ν )

on (41), one obtains

1
2 τ Dα

t ‖u‖2
H1 + ν‖u‖2

H2 + 〈B(u, u), Au〉 ≤ 1
ν
‖ f ε‖2 +

ν

4
‖u‖2

H2 ,

which yields

τ Dα
t ‖u‖2

H1 +
3ν

2
‖u‖2

H2 ≤
2
ν
‖ f ε‖2 + 2|〈B(u, u), Au〉|. (42)
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Due to the following estimate

‖B(u, u)‖ ≤ (
∫

Ω
|u|2|∇u|2dx)

1
2 ≤ ‖u‖L4‖∇u‖L4 , (43)

then by Ladyzhenskaya’s estimates, one can deduce

‖u‖L4 ≤ Ĉ‖u‖
1
2
H1‖u‖

1
2 , ‖∇u‖L4 ≤ C̃‖u‖

1
2
H2‖u‖

1
2
H1 , (44)

where Ĉ and C̃ are positive constants. Plugging (44) into (43), we get

‖B(u, u)‖ ≤ C2‖u‖
1
2 ‖u‖H1‖u‖

1
2
H2 (45)

for some constant C2 > 0. Thus, applying the Cauchy–Schwartz inequality, it holds that

|〈B(u, u), Au〉| ≤ C2‖u‖
1
2 ‖u‖H1‖u‖

3
2
H2 ,

which, together with Young’s inequality (23) (p = 4
3 , q = 4), shows

|〈B(u, u), Au〉| ≤ 3η

4
‖u‖2

H2 +
C4

2
4η3 ‖u‖

2‖u‖4
H1 . (46)

Let the Young’s parameter η = ν
3 and substitute (46) into the estimate (42), after

which (42) becomes

τ Dα
t ‖u‖2

H1 + ν‖u‖2
H2 ≤

2
ν
‖ f ε‖2 + C3‖u‖2‖u‖4

H1 ,

with C3 =
27C4

2
2ν3 > 0. Thanks to Poincaré’s inequality (7), we also obtain

τ Dα
t ‖u‖2

H1 + λν‖u‖2
H1 − C3‖u‖2‖u‖4

H1 ≤
2
ν
‖ f ε‖2,

which means that

τ Dα
t ‖u‖2

H1 + (λν− C3‖u‖2‖u‖2
H1)‖u‖2

H1 ≤
2
ν
‖ f ε‖2. (47)

In a similar fashion as (39), we set ψ̂1(t) := λν− C3‖u(t)‖2‖u(t)‖2
H1 . To simplify the

process, we take u(τ) = 0 in the estimate (33). Using (33), one can deduce

τ Iα
t ψ̂1(t) =

1
Γ(α)

∫ t

τ
(t− s)α−1(λν− C3‖u(s)‖2‖u(s)‖2

H1)ds

=
1

Γ(α)

∫ t

τ
(t− s)α−1λνds− C3

Γ(α)

∫ t

τ
(t− s)α−1‖u(s)‖2‖u(s)‖2

H1 ds

≥ λν

αΓ(α)
(t− τ)α − C3Mε

Γ(α)

∫ t

τ
(t− s)α−1‖u(s)‖2

H1 ds. (48)

Using the estimate (34), it follows from (48) that

τ Iα
t ψ̂1(t) ≥

λν

αΓ(α)
(t− τ)α − r1, (49)

where r1 = C3Mε
ν [‖u(τ)‖2 +Mε] for the constantMε given by (33). Therefore, we apply

Lemma 2 on (47) to obtain

‖u(t)‖2
H1 ≤ W(t− τ, ‖u(τ)‖2,Mε) := ‖u(τ)‖2

H1 e−N̂ (t) +N , (50)
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where

N̂ (t) := λν
αΓ(α) (t− τ)α − C3Mε

ν [‖u(τ)‖2 +Mε],

N := 2λMεe
C3Mε

ν [‖u(τ)‖2+Mε ].

The proof is thus complete.

Next, the well-posedness of the problem (32) is proved by exploiting the Faedo–
Galerkin method, given as follows.

Theorem 1. For uτ ∈ H and f ε ∈ L∞
α ([τ, T); H), there exists a unique solution u of (32) such

that for all T > τ
u ∈ C([τ, T); H) ∩ L2([τ, T); H1).

Proof. We use the Fadeo–Galerkin method also adopted in [2,5] to establish the existence
of a solution u ∈ C([τ, T); H) ∩ L2([τ, T); H1) of (32). Now, the approximation procedure
satisfying (32) is provided by

um(t) =
m

∑
j=1

cim(t)wj, (51)

where the functions wj(j = 1, · · ·, m) representing the eigenvalues of the operator A are
given by (6). Then, we substitute um into Equation (32) and take an inner product with wj,
to obtain {

〈τ Dα
t um, wj〉+ ν〈Aum, wj〉+ 〈B(um, um), wj〉 = 〈 f ε, wj〉,

um(τ) = Pmu(τ),
(52)

where Pm : H → ∆m is a projector with ∆m := Span{w1, · · · , wm}. It is worth noting that
Equation (52) is also equivalent to

τ Dα
t um + νAum + PmB(um, um) = Pm f ε, (53)

and an ODE equation driven by cim(t) in (52) is known to have a local solution in the interval
[τ, Tmax). According to Lemma 3, a priori estimate (34) implies

∫ T
τ (T− s)α−1‖um(s)‖2

H1 ds ≤
∞. Since

∫ T
0 ‖um(s)‖2

H1 ds ≤ CT
∫ T

τ (T− s)α−1‖um(s)‖H1 ds with the constant CT depending
only on T, the a priori estimates (33) and (34) in Lemma 3 give Tmax = +∞ and

um is bounded in C([τ, T); H) ∩ L2([τ, T); H1). (54)

On the basis of um ∈ L2([τ, T); H1), it is easy to know that B(um, um) and PmB(um, um)
are bounded in L2([τ, T); H−1); this shows from (53)

τ Dα
t um is bounded in L2([τ, T); H−1). (55)

In light of (54) and the weak compactness, there exists u ∈ C([τ, T); H)∩ L2([τ, T); H1)
and a subsequence still denoted by itself, such that

um → u in L2([τ, T); H1) weakly,

τ Dα
t um → τ Dα

t u in L2([τ, T); H−1) weakly,

which, together with the classical compactness embedding theorem (H1 ⊂ H), yields

um → u in L2([τ, T); H) strongly.

Hence, passing to the limit as m → ∞ for (52) and (53), we find that u satisfies
Equation (32) and u ∈ C([τ, T); H) ∩ L2([τ, T); H1).
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In what follows, the uniqueness of the solution can be proved. For this, let u and u1 be
two solutions to (32) and w(t) = u− u1. Then, replacing u by u1 and subtracting (32), then
taking an inner product with w, we get

〈τ Dα
t w, w〉+ ν〈∇w,∇w〉+ 〈B(u, u), w〉 − 〈B(u1, u1), w〉 = 0. (56)

With the help of (8), (9), and Proposition 1, it holds that

1
2 τ Dα

t ‖w‖2 + ν‖w‖2
H1 + b(w, u, w) = 0. (57)

It follows by applying Young’s inequality (23) and inequality (11) that

τ Dα
t ‖w‖2 + 2ν‖w‖2

H1 ≤ 2|b(w, u, w)|
≤ 2C1‖w‖‖w‖H1‖u‖H1

≤ 2ν‖w‖2
H1 +

C1

8ν
‖w‖2‖u‖2

H1 , (58)

where Young’s parameter η = 2ν is taken. Thus, it is easy to see that

τ Dα
t ‖w(t)‖2 ≤ C5‖w(t)‖2‖u(t)‖2

H1 , (59)

where C5 = C1
8ν > 0 is a constant. Utilizing the method of (27) in Lemma 2, one has

‖w(t)‖2 ≤ ‖w(τ)‖2e−C5τ Iα
t ‖u(t)‖2

H1 , (60)

which, with w(τ) = 0, implies ‖w(t)‖ = 0 for any t ≥ τ. Therefore, the uniqueness of the
solution of (32) follows from (60).

3.2. Dynamical Processes and Attractors

Compared with integer order differential systems, fractional differential systems have
more uncertain long-time behavior due to the fact that the α-order fractional semigroup
introduced in [34] does not preserve the properties of classical semigroup theory. In order
to determine the dynamic characteristics of a fractional N–S system, we apply the shift
semigroups theory, which is used to investigate the attractors of nonautonomous systems
in [35] and nonlinear evolution equations in [36]. For this, we now introduce the shift
semigroup of fractional order systems. Consider the following fractional evolution equation

τ Dα
t u = F(t, u), u ∈ H, t ∈ Rτ , (61)

where it is assumed that a unique solution u(t) = u(t; t0, u0) with initial value u(t0; t0, u0) =
u0 at time t0 exists for all u0 ∈ H and t, t0 ∈ Rτ . It is easy to see that the counterpart of
the semigroup property is shown by u(t + s; t0, u0) = u(t + s; s, u(s; t0, u0)). Let uτ(t) :=
u(τ + t), then it is easy to find uτ(t) satisfies fractional differential Equation (61). Setting
u(t; u0, F) for the solution of (61) with initial value u0 at t0 = 0, let F be a set of functions
f : R+ → H such that fτ := f (τ + ·) ∈ F for all τ ∈ R+, and consider the group of shift
operators θτ : F → F by θτ f := fτ for each τ ∈ R+. Finally, let Y = H ×F and for each
t ≥ τ define Ut : Y 7→ Y by Ut(u0, F) := (u(t; u0, F), θtF). Then, the family of mappings
Ut, t ∈ Rτ is a continuous-time semigroup on the state space Y. The asymptotic behavior
of this semigroups is outlined in the following, which can be interpreted into the fractional
N–S system. For this, it is easy to observe that the first component of the semigroup identity
Ut+s(u0, F) = Ut ◦Us(u0, F) can be represented by

u(t + s; u0, F) = u(t; u(s; u0, F), θsF). (62)
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Definition 3. A compact subset B of H is called an absorbing set for a semigroup Ut, t ∈ Rτ on H
if, for every bounded subset D of H, there exists a tD ∈ Rτ such that Ut(D) ⊆ B for all t ≥ tD
in Rτ .

Let u be the solution of (32) corresponding to initial data uτ . If external forces f0, f1
belong to L∞

α (Rτ ; H), a dynamical process {Ut; t ≥ τ, τ ∈ R+} on H by the representation
u(t) = Ut(uτ , f ε) is generated under the conditions (20) and (21). Inequality (33) reveals
that the process {Ut} has a uniform attractive set

Bε = {u ∈ H | ‖u‖ ≤ Mε}

with respect to τ, which is bounded in H for any fixed ε ∈ [0, 1]. Let B ⊂ H be a bounded
set of initial data, therefore, there exists a time T̂ depending on B, ε such that Ut(B) ⊆
B↑, ∀� ∈ R+, for any t ≥ τ + T̂. From inequality (35), we obtain that

B̂ε =
⋃

τ∈R+

Ut(Bε)

is a uniformly attractive set. Since the embedding H1 → H is compact and B̂ε is a bounded
set on H1, it is easy to see that B̂ε is compact in H. Since the process {Ut} is uniformly
compact in H, the uniform global attractor is provided by

Aε :=
⋂

τ≥0
[
⋃
t≥τ

Ut(B̂)
H
],

where B̂ is an arbitrary uniformly attractive set driven by the process {Ut}. For similar
discussions on the uniform global attractor, please refer to the literature [9,37]. If B̂ = Bε, it
can be verified that

‖Aε‖ ≤ Mε, ∀ε ∈ [0, 1], (63)

whereMε is the constant in (33). The hull of φ in L∞
α (R+; H) can be defined by

F (φ) := {φ(t + τ)|τ ∈ R+}L∞
α (R+ ;H)

.

Then, it is easy to get ‖φ̂‖α ≤ ‖φ‖α for every φ̂ ∈ F (φ). Note f0, f1 ∈ L∞
α (R+; H), then

the external force f ε ∈ L∞
α (R+; H). Furthermore, if f̂ ε ∈ F ( f ε) for any ε > 0 , it follows

that
f̂ ε(t) = f̂0(t) + ε−ρ f̂1(

t
ε
),

for some f̂0 ∈ F ( f0) and f̂1 ∈ F ( f1). Therefore, to show the structure of the global attractor
set Aε, the family of equations

Dα
t û(t) + νAû(t) + B(û(t), û(t)) = f̂ ε(t), f̂ ε(t) ∈ F ( f ε(t)) (64)

is considered. A process {Ut(uτ , f̂ ε)} on H generated by Equation (64) for every external
force f̂ ε ∈ H( f ε) has similar properties as {Ut}matching Equation (32) with an external
force, which yields that the map (uτ , f̂ ε)→ Ut(uτ , f̂ ε) is (H ×H( f ε), H)-continuous.

Remark 2. Since attractors are completely determined by the limit points of the system, they are
strictly invariant in the sense of identity, which is different from absorption sets or attraction sets.
The attractors based on shift semigroups include many examples, such as equilibrium points, limit
cycles, and geometrically more complex singular attractors.
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4. Uniform Boundedness and Convergence of Attractors
4.1. Stokes Evolution Equation with Oscillating External Force

The objective of this section is to show the uniform boundedness of the attractor of
Equation (32). For this, we present a property of the fractional Stokes evolution equation
with the initial time τ ∈ [0,+∞) and external force g in this subsection. Consider the
following fractional evolution equation.

Proposition 2. Let g ∈ L∞
α ([τ, T); H), then the solution v of the problem

τ Dα
t v(t) + νAv(t) = g(t/ε), v|t=τ = 0, (65)

with ε ∈ (0, 1], satisfies

‖v(t)‖2 +
ν

Γ(α)

∫ t

τ
(t− s)α−1‖v(s)‖2

H1 ds ≤ εαΓ(1− α)

λν
‖g‖2

α, ∀ t ≥ τ, (66)

with the constant λ provided by (7).

Proof. Since the proof process is similar to that of Lemma 3, we only show the differences.
In a same fashion as (38), we have

τ Dα
t ‖v(t)‖2 + ν‖v(t)‖2

H1 ≤ (λν)−1‖g(t/ε)‖2. (67)

By performing the fractional integration of (67), we have

‖v(t)‖2 +
ν

Γ(α)

∫ t

τ
(t− s)α−1‖v(s)‖2

H1 ds ≤ 1
λνΓ(α)

∫ t

τ
(t− s)α−1‖g(s/ε)‖2ds, ∀t ≥ τ. (68)

Due to

1
Γ(α)

∫ t

τ
(t− s)α−1‖g( s

ε
)‖2ds

s=εµ
=

1
Γ(α)

ε
∫ t

ε

τ
ε

(t− εµ)α−1‖g(µ)‖2dµ

=
εα

Γ(α)

∫ t
ε

τ
ε

(
t
ε
− µ)α−1‖g(µ)‖2dµ

≤ εαΓ(1− α)‖g‖2
α, (69)

our desired estimate (66) follows easily, which completes the proof.

4.2. Uniform Boundedness of Attractors

According to the well-posedness of the system, an a priori estimation of a solution in
Lemma 3 represents the uniform boundedness of attractors of Equation (32). In order to
estimate the range of attractors accurately, this section adopts another idea to establish the
uniform boundedness of attractors according to Lemma 2 and Proposition 2.

The main results of this subsection are summarized below.

Theorem 2. Let f0, f1 ∈ L∞
α (Rτ ; H), then the attractor set Aε of Equation (32) is uniformly

bounded in H for any ε ∈ [0, 1], such that sup
ε∈[0,1]

‖Aε‖ < ∞.

Proof. Suppose that u(t) = Ut(uτ , f ε) is the solution of Equation (32) with initial value uτ .
For ε > 0, first consider the problem

τ Dα
t v(t) + νAv(t) = ε−ρ f1(

t
ε
), v|t=τ = 0. (70)
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From Proposition 2, we have

‖v(t)‖2 +
ν

Γ(α)

∫ t

τ
(t− s)α−1‖v(s)‖2

H1 ds ≤ Γ(1− α)εα−2ρ‖ f1‖2
α

λν
, ∀t ≥ τ. (71)

Set w(t) = u− v, then it satisfies the following equation

τ Dα
t w + νAw + B(w + v, w + v) = f0, w|t=τ = uτ . (72)

Taking the inner product with w on both sides of Equation (72), and from (8), one
can show

〈τ Dα
t w, w〉+ ν‖w‖2

H1 + b(w + v, w + v, w) = 〈 f0, w〉, (73)

where

b(w + v, w + v, w)

= b(w, w + v, w) + b(v, w + v, w)

= b(w, w, w) + b(w, v, w) + b(v, w, w) + b(v, v, w). (74)

It is easy to verify b(w + v, w, w) = 0 by Equation (9). Thus, one can find from
Equation (74) that

b(w + v, w + v, w) = b(w, v, w) + b(v, v, w). (75)

By taking equalities (11), (12) and Young’s inequality (p, q = 2, η = ν
4 ) into account,

we can deduce

|b(w, v, w)| ≤ C1‖w‖‖w‖H1‖v‖H1 ≤
ν

8
‖w‖2

H1 +
2C1

2

ν
‖w‖2‖v‖2

H1 , (76)

and

|b(v, v, w)| ≤ C1‖v‖‖v‖H1‖w‖H1 ≤
ν

8
‖w‖2

H1 +
2C1

2

ν
‖v‖2‖v‖2

H1 . (77)

Consequently, substituting (76) and (77) into (75) reveals

|b(w + v, w + v, w)| ≤ ν

4
‖w‖2

H1 +
2C1

2

ν
‖w‖2‖v‖2

H1 +
2C1

2

ν
‖v‖2‖v‖2

H1 . (78)

Moreover, it can be derived from the Cauchy–Schwartz inequality and Young’s in-
equality (23) that

〈 f0, w〉 ≤ λν

4
‖w‖2 +

1
λν
‖ f0‖2. (79)

Collecting (78) and (79) with Proposition 1, it follows from (73) that

1
2 τ Dα

t ‖w‖2 +
3ν

4
‖w‖2

H1 ≤ 〈 f0, w〉+ |b(w + v, w + v, w)|

≤ λν

4
‖w‖2 +

1
λν
‖ f0‖2 +

2C2
1

ν
‖w‖2‖v‖2

H1 +
2C2

1
ν
‖v‖2‖v‖2

H1 .

Owing to (21) and (71), we have

‖v‖2 ≤ M1Γ(1− α)

λν
. (80)

Thus, based on (80) and Poincaré’ inequality (7) (‖w‖2
H1 ≥ λ‖w‖2), the above estimate

becomes

τ Dα
t ‖w‖2 + λν‖w‖2 ≤

4C2
1

ν
‖w‖2‖v‖2

H1 +
4C2

1 M1Γ(1− α)

λν2 ‖v‖2
H1 +

2
λν
‖ f0‖2,
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which gives

τ Dα
t ‖w‖2 + (λν−

4C2
1

ν
‖v‖2

H1)‖w‖2 ≤
4C2

1 M1Γ(1− α)

ν2 ‖v‖2
H1 +

2
λν
‖ f0‖2.

Set ψ̄1(t) = λν− 4C2
1

ν ‖v(t)‖2
H1 , ψ̄2

2(t) =
4C2

1 M1Γ(1−α)

λν2 ‖v(t)‖2
H1 +

2
λν‖ f0(t)‖2. For t ≥ τ,

it is easy to calculate from (71) that

τ Iα
t ψ̄1(t) =

λν

Γ(α)

∫ t

τ
(t− s)α−1ds−

4C2
1

νΓ(α)

∫ t

τ
(t− s)α−1‖v(s)‖2

H1 ds

≥ λν

αΓ(α)
(t− τ)α − M1Γ(1− α)εα−2ρ

λν2

≥ β(t− τ)α − r2, (81)

with β = λν
αΓ(α) , r2 =

4C2
1 Γ(1−α)M1

λν3 . Similar to (31), it then follows from (81) that

‖w(t)‖2 ≤ ‖w(τ)‖e−β(t−τ)α+r2 +
er2

Γ(α)

∫ t

τ
(t− s)α−1ψ̄2

2(s)ds

≤ er2

Γ(α)

∫ t

τ
(t− s)α−1[

4C2
1 M1Γ(1− α)

λν2 ‖v(t)‖2
H1 +

2
λν
‖ f0(t)‖2]ds

+‖w(τ)‖e−β(t−τ)α+r2 , (82)

which, together with (18) and (71), leads to

‖w(t)‖2 ≤ M1 +M2 + ‖w(τ)‖e−β(t−τ)α+r2 , t ≥ τ, (83)

where M1 =
4er2 C2

1 M2
1Γ2(1−α)

λ2v4 , M2 = 2er2 M0Γ(1−α)
λν with the constants β, r2 given by (81).

Since u(t) = w(t) + v(t), then using (71) gives

‖u(t)‖2 ≤ ‖w(t)‖2 + ‖v(t)‖2 ≤M3, t ≥ τ

whereM3 =M1 +M2 + ‖w(τ)‖e−β(t−τ)α+r2 + M1Γ(1−α)
λν . Therefore, let M̂ = min{M1 +

M2 +
M1Γ(1−α)

ν ,Mε}, for any ε ∈ [0, 1], the process {Ut} has an attractor set

B∗ = {u ∈ H | ‖u‖2 ≤ M̂}. (84)

which yields the attractor set Aε ⊂ B∗, which completes the proof of Theorem 2.

4.3. Convergence of the Attractors

Let uε and u0 be two solutions of Equation (32) with the same initial data corresponding
to the cases of parameter ε > 0 and ε = 0, respectively. In addition, let uε(t) := S f ε(t, τ)uτ

with uτ ∈ B∗, where B∗ is defined in (84). Since uτ ∈ B∗ and ε = 0, inequality (34) leads to

‖u0(t)‖2 +
ν

Γ(α)

∫ t

τ
(t− s)α−1‖u0(s)‖2

H1 ds ≤ Γ(1− α)M0

λν
, (85)

where M0 is a constant defined by (20). The aim of this subsection is to establish the
convergence of the attractors. For this, we first investigate the estimation of the deviation
between uε and u0.

Lemma 4. For any ε ∈ (0, 1] and all initial data uτ ∈ B∗, the deviation w(t) = uε(t)− u0(t)
with w(τ) = 0 satisfies

‖w(t)‖ ≤ Dε
α
2−ρ, t ≥ τ, (86)
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for some positive constant D independent of ε.

Proof. Bring uε(t) and u0(t) into Equation (32), respectively, and then take the difference
to obtain

τ Dα
t w + νAw + B(uε, uε)− B(u0, u0) = ε−ρ f1(t/ε), w|t=τ = 0.

Let q(t) := w(t) − v(t) for any t ≥ τ where v is the solution of (70), it is easy to
verify that

τ Dα
t q + νAq + B(uε, uε)− B(u0, u0) = 0, q|t=τ = 0. (87)

Taking the inner product of Equation (87) with q, according to Proposition 1, one
obtains

1
2 τ Dα

t ‖q‖2 + ν‖q‖2
H1 ≤ 〈B(uε, uε)− B(u0, u0), q〉. (88)

Recalling w = uε − u0, it is easy to see uε = q + u0 − v. It holds that

B(uε, uε)− B(u0, u0)

= B(u0 + q + v, u0 + q + v)− B(u0, u0)

= B(u0, q + v) + B(q + v, u0) + B(q + v, q + v). (89)

Therefore, we get from (8) and (9) that

|〈B(uε, uε)− B(u0, u0), q〉| (90)

= |〈B(u0, q + v) + B(q + v, u0) + B(q + v, q + v), q〉|
= |b(u0, q + v, q) + b(q + v, u0, q) + b(q + v, q + v, q)|
= |b(u0, v, q) + b(q, u0, q) + b(v, u0, q) + b(q, v, q) + b(v, v, q)|.

By utilizing (11) and Young’s inequality (p, q = 2, η = ν
2 ), one can get

|b(q, u0, q)| ≤ ν

4
‖q‖2

H1 +
C2

1
ν
‖q‖2‖u0‖2

H1 , (91)

|b(q, v, q)| ≤ ν

4
‖q‖2

H1 +
C2

1
ν
‖q‖2‖v‖2

H1 , (92)

|b(v, v, q)| ≤ ν

4
‖q‖2

H1 +
C2

1
ν
‖v‖2‖v‖2

H1 , (93)

Similarly, by the meaning of (12), one gives

|b(u0, v, q)|+ |b(v, u0, q)| ≤ ν

4
‖q‖2

H1 +
2C2

1
ν
‖u0‖‖u0‖H1‖v‖‖v‖H1 , (94)

In view of the estimates (91)–(94), it follows from Equation (90) that

|〈B(uε, uε)− B(u0, u0), q〉|

≤ ν‖q‖2
H1 +

C2
1

ν
‖q‖2(‖u0‖2

H1 + ‖v‖2
H1) +

C2
1

ν
‖v‖2‖v‖2

H1 +
2C2

1
ν
‖u0‖‖u0‖H1‖v‖‖v‖H1

≤ ν‖q‖2
H1 +F1‖q‖2 +F2, (95)

with

F1(t) =
C2

1
ν
(‖u0(t)‖2

H1 + ‖v(t)‖2
H1),

F2(t) =
C2

1
ν
‖v(t)‖2‖v(t)‖2

H1 +
2C2

1
ν
‖u0(t)‖‖u0(t)‖H1‖v(t)‖‖v(t)‖H1 .
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Since v(t) satisfies (71) and u0(t) satisfies (85), we substitute (95) into (88), to obtain
1
2 τ Dα

t ‖q(t)‖2 ≤ F1(t)‖q(t)‖2 +F2(t). Invoking ‖q(τ)‖ = 0 and similar to (27) in Lemma 2,
one has

‖q(t)‖2 ≤ ‖q(τ)‖e2τ Iα
t F1(t) + e2τ Iα

t F1(t) 2
Γ(α)

∫ t

τ
(t− s)α−1F2(s)ds. (96)

In view of the estimates (71) and (85), we can find

τ Iα
t F1(t) =

1
Γ(α)

∫ t

τ
(t− s)α−1[

C2
1

ν
‖u0(s)‖2

H1 + ‖v(s)‖2
H1 ]ds

=
C2

1
νΓ(α)

∫ t

τ
(t− s)α−1‖u0(s)‖2

H1 ds +
1

Γ(α)

∫ t

τ
(t− s)α−1‖v(s)‖2

H1 ds

≤ K. (97)

where K =
C2

1 Γ(1−α)M0
ν3 + M1Γ(1−α)

λν2 . In addition, we also get

τ Iα
t F2(t) =

1
Γ(α)

∫ t

τ
(t− s)α−1[

C2
1

ν
‖v(s)‖2‖v(s)‖2

H1

+
2C2

1
ν
‖u0(s)‖‖u0(s)‖H1‖v(s)‖‖v(s)‖H1 ]ds

≤
2C2

1
νΓ(α)

∫ t

τ
(t− s)α−1‖u0(s)‖‖u0(s)‖H1‖v(s)‖‖v(s)‖H1 ds

+
C2

1
νΓ(α)

∫ t

τ
(t− s)α−1‖v(s)‖2‖v(s)‖2

H1 ds

≤
2C2

1Γ(1− α)M0
1
2 M1

1
2 ε

α
2−ρ

λν2Γ(α)

∫ t

τ
(t− s)α−1‖u0(s)‖H1‖v(s)‖H1 ds

+
C2

1 M1Γ(1− α)εα−2ρ

λν2

∫ t

τ
(t− s)α−1‖v(s)‖2

H1 . (98)

Combining this with (71), (85) and the Cauchy–Schwartz inequality (98) yield

τ Iα
t F2(t) ≤ [

1
Γ(α)

∫ t

τ
(t− s)α−1‖u0(s)‖2

H1 ds]
1
2 [

1
Γ(α)

∫ t

τ
(t− s)α−1‖v(s)‖2

H1 ds]
1
2

·
2C2

1Γ(1− α)M0
1
2 M1

1
2 ε

α
2−ρ

λν2 +
C2

1 M2
1Γ2(1− α)ε2(α−2ρ)

λ2ν4

≤
2C2

1Γ2(1− α)M0M1εα−2ρ

λ2ν4 +
C2

1Γ2(1− α)M2
1ε2(α−2ρ)

λ2ν4

≤ Lεα−2ρ, (99)

where L = (2M0M1 ++M2
1)

C2
1 Γ2(1−α)

λ2ν4 . Invoking (97) and (99) into (96) with q(τ) = 0, the
results show that

‖q(t)‖2 ≤ D2
1εα−2ρ, (100)

where D2
1 = 2Le2K, L, and K are constants given in (97) and (99). Hence, our result

(86) can be concluded by using w(t) = q(t) + v(t) and a priori estimate (71), which ends
the proof.

To get the convergence of the uniform global attractors, it suffices to show that a
generalized form of Lemma 4 is needed, which can be applied to the whole family of
equations (64) under the external forces f̂ ε ∈ H( f ε). To this end, for ε ∈ [0, 1], set ûε(t) =
Ut(ûτ , f̂ ε) satisfying Equation (64) with external force f̂ ε = f̂0 + ε−ρ f̂1(t/ε) ∈ H( f ε) and
ûτ ∈ B∗. For ε > 0, let

ŵ(t) = ûε(t)− û0(t).
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Similar to the proof of Lemma 4, we can derive the following result.

Lemma 5. For any ε ∈ (0, 1], let ŵ(t) = ûε(t)− û0(t) with ŵ(τ) = 0. Then, it holds that

‖ŵ(t)‖ ≤ Dε
α
2−ρ, ∀t ≥ τ, (101)

where D is the same as in Lemma 4.

Now we state our main results of this section.

Theorem 3. Let f0, f1 ∈ L∞
α (Rτ ; H), then the uniform global attractor set Aε → A0 as ε→ 0+

in the following sense
lim

ε→0+
{distH(Aε,A0)} = 0. (102)

Proof. Let L > 0 and uε ∈ Aε for ε > 0, then there exists a bounded trajectory ûε(t) of
Equation (64) with ûε(2L) = uε for any L ≥ τ. For every L ≥ τ, we know ûε(L) ∈ Aε ⊂ B∗
and uε = U2L(ûε(L), f ε). In light of Lemma 5, using τ = L and t = 2L, one presents

‖uε −U2L(ûε(L), f̂0)‖ ≤ Dε
α
2−ρ,

which means that
distH(uε, U2L(ûε(L), f̂0)) ≤ Dε

α
2−ρ. (103)

Since the set A0 attracts Ut(B∗, f̂0) uniformly with f̂0 ∈ H( f 0), for any σ > 0, there
exists a constant T = T(σ) ≥ L depending on σ such that

distH(UT+L(ûε(L), f̂0),A0) ≤ σ. (104)

Letting T = L, from (103) and (104) it is easy to check that

distH(uε,A0) ≤ Dε
α
2−ρ + σ.

According to the fact that uε ∈ Aε and σ > 0 are arbitrary, the conclusion (102) follows
easily as ε→ 0+.

Remark 3. By taking the proof process of Theorem 3 into account, for any ε ∈ (0, 1] it is easy to
see the estimate

‖uε −Ut(ûε(L), f̂0)‖ ≤ Dε
α
2−ρ. (105)

For t = T, the inequality (105) together with (104) reveals that

distH(Aε,A0) ≤ Dε
α
2−ρ + σ, ∀σ > 0,

which, with the arbitrariness of σ, implies the Hölder continuity property of Aε at ε = 0, that is,

distH(Aε,A0) ≤ Dε
α
2−ρ.

5. Conclusions

In this paper, we investigated the averaging process of 2D time-fractional N–S equa-
tions with a singularly external force. By using a new fractional inequality (Lemma 2), the
uniform boundedness of the global attractors for this fractional Navier–Stokes equations
was demonstrated. Then, we further developed the convergence of global attractors as
the parameter approached zero and guaranteed the explicit convergence rate of global
attractors. The research on the averaging process of space-fractional N–S equations with a
singularly external force is still an open problem which will be the focus of our future work.
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