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Abstract: The bending of self-similar beams applying the Euler–Bernoulli principle is studied in
this paper. A generalization of the standard Euler–Bernoulli beam equation in the F3

dH
continuum

using local fractional differential operators is obtained. The mapping of a bending problem for a
self-similar beam into the corresponding problem for a fractal continuum is defined. Displacements,
rotations, bending moments and shear forces as functions of fractal parameters of the beam are
estimated, allowing the mechanical response for self-similar beams to be established. An example of
the structural behavior of a cantilever beam with a load at the free end is considered to study the
influence of fractality on the mechanical properties of beams.

Keywords: self-similar beam; Euler–Bernoulli bending principle; fractal continuum; Menger sponge;
Sierpinski carpet

1. Introduction

Beam deflection is one of the most important issues of structural engineering. From the
classical theory of Euler–Bernoulli [1], it follows that the bending uE3 in beams with length
L under load qE3 is given by [2]

d2

dx2
1

[
EI

d2uE3
dx2

1

]
= qE3 for 0 ≤ x1 ≤ L, (1)

where E is the Young’s modulus, I is the second moment area and E denotes the quanti-
ties in the Euler–Bernoulli beam theory. Extensive theoretical [3,4], numerical [5,6] and
experimental studies [7] have been performed to describe such structural phenomena.

It is well-known that the product EI is the bending stiffness [8] related to the geometry
and mechanical properties of a beam, and its complex morphology plays an important
role in the transverse force behavior and displacement. This heterogeneity can possess
self-similar properties and non-integer dimensions [9,10]. The functions defined on such
fractal beams are discontinuous [11], or their derivatives do not exist at some points [12,13].
Therefore, it is impossible to describe the mechanical behavior of such beams using stan-
dard calculus, and it is necessary to develop new paradigms to map physical problems
on nowhere differentiable fractals into appropriate problems within a continuum frame-
work [14].

In order to solve this problem the notions of fractal geometry [15,16], fractional
space [17,18] and fractal continuums [14,19–22] have been used to generalize the con-
cepts of ordinary calculus, which have proved to be convenient to model discontinuous
point and even non-differentiable continuous functions.
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In [23–25], fractional space models were applied to compute the fractional bending
of a Euler–Bernoulli beam, and in [14,26], the fractional continuum and fractal continuum
were used to describe the stress, strain, and kinematics of fractional and fractal continuum
deformations, respectively. Meanwhile, in [22], the concept of an equivalent continuum
solution for the Euler–Bernoulli self-similar beam using ordinary calculus on pre-fractals
was introduced.

An efficient fractional equation that relates the deflection with the load applied to a
beam using the Euler–Bernoulli theory was introduced in refs. [27,28] as:

Dα
x1

{
`α−1

f Dα
x1

[
`2α−2

f Dα
x1

(
`α−1

f Dα
x1

uE3
)]}

EI = qE3 , (2)

where Dα
x1

is Caputo’s fractional differential operator of order α ∈ <+ and ` f ≥ 0 is the
variable length scale [29,30]. When we have that α = 1, Equation (2) reduces to the standard
form given by Equation (1).

Self-similar beams have important potential applications, as it has been persistently
hypothesised that higher degrees of structural hierarchy are responsible for increased
resilience to pressure bearing (for a given mass of construction material). Moreover, it
was shown that fractal-like suture joints can be used to tailor mechanical properties, load
resistance and flaw tolerance [31]. In [32], a potential biomechanical application of Menger
sponge fractal NiTi structures as bone implants was investigated. Another application of
self-similar beams for antennas in telecommunication engineering was presented in [33].

In [34], a mechanical approach for a fractal bar that takes into account the irregularity
of fractal domain was formulated. TheF 3

dH
continuum was defined using the approximation

of non-differentiable functions defined on fractals by differentiable analytic envelopes intro-
duced in the previous work [35]. This formulation was applied to solve the hydrodynamic
and Maxwell equations in fractal continuums [36,37].

On the basis of the above-mentioned approach, we consider the concepts of stresses
and strains within a fractal continuum framework using the fractal continuum F 3

dH
intro-

duced in [14] to obtain a more complete description of the structural behavior of self-similar
beams. We study the transversal displacements in a Menger sponge-like fractal beam with
a cross-section identical to the Sierpinski carpet, which is a self-similar path-connected
fractal [38–40].

In the fractal geometry framework F dH
3 , the fractal features of a beam are charac-

terized by the set of fractal dimension numbers, such as Hausdorff dH, chemical d` and
cross-section dI dimensions, as well as co-dimension ζ (other dimensional numbers of
fractal objects can be found in [41,42] and references therein). In what follows, we apply
the F 3

dH
continuum to model a discontinuous Menger sponge-like fractal beam within

the mechanics of the elastic fractal continuum F 3
dH

[14,34–37] that uses local fractional
differential operators.

In this work, a new formulation for the bending of a fractal beam applying the Euler—
Bernoulli principle is defined. The formulation obtained allows us to calculate the exact
values of the spatial distribution of the beam response along its length.

Our paper is outlined as follows. In Section 2, we present the fractal aspects required.
In Section 3 we develop the main formulation of this work. In Section 4 some engineering
implications are discussed, and the conclusions and outlook are presented in Section 5.

2. Fractal Aspects

The main aim of the section is to summarize and define the basic concepts used in
this work.

2.1. Fractal Domain F dH
3

Fractals provide an accurate modelling of irregular objects that have complex struc-
tures with statistical scale invariance in a range of length scales ξ0 < L < ξC, where ξ0
and ξC are the lower and upper cutoffs, respectively [43]. A fractal is characterized by
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the non-integer Hausdorff dimension dH, which exceeds or is equal to the topological
dimension dt, and at the same time is less than the dimension n of the Euclidean space <n

where it lies [44], so we have that dt ≤ dH < n. Hence, the properties of the fractal domain
F dH

3 ⊂ <3 are described by non-differentiable and discontinuous functions in <3 [10].
The Hausdorff dimension dH can be obtained as the number of boxes ε needed to

cover the fractal linear size L with the scaling law NL/ε ∼ (L/ε)dH [45]. The value of dH
is constant within the bounded range of length scales ξ0 ≤ ε < L ≤ ξC. Meanwhile, the
fractal mass M scales with respect to the linear size L ∈ (ξ0, ξC) as in [46]:

M = ρ0ξ3
0

(
L
ξ0

)dH
, (3)

where ρ0 is the mass density. On the one hand, the fractal topology is characterized by the
chemical dimension d`, which is defined by the scaling law NL/ε`

∼ (L/ε`)
d` [47], where

d` is the number of d`-dimensional boxes of size ε` needed to cover the fractal according to
the scale invariance principle, and ε` is measured with respect to the geodesic metric over
the fractal, so we have 2 ≤ d` ≤ 3 for fractals with dt ≤ dH < 3. Moreover, the integer part
of the chemical dimension bd`c defines the number of orthogonal fractional coordinates
in the fractal domain [14]. The fractal dimension of a cross-section dI is given by the
intersection between the fractal and a Cartesian plane in <3 [35,36], and it characterizes the
scale dependence of the fractal area of the cross-section AF with respect to the linear size
L as:

AF = ξ2
0

(
L
ξ0

)dI
. (4)

The fractal distance on xi(L) is defined as:

xi(L) = ξ0

(
L
ξ0

)ζi

, (5)

where

ζi = dH − dI (6)

is the co-dimension of the cross-section [34]. Hence, we can rewrite Equation (3) as:

M = ρ0xi(L)AF = ρ0ξ3
0

(
L
ξ0

)dH
. (7)

Figure 1 shows a Menger sponge with a Sierpinski carpet-type cross-section after the fourth
iteration. The Hausdorff dimension of the pre-fractals used to generate the Menger sponge
is defined by (see [48] and references therein):

dH =
log((L/ξ0)

n − βn)

log(L/ξ0)
, (8)

where L/ξ0 is the size of boxes covering the fractal mass, β is the number of deleted boxes
of the fractal mass and n = 1, 2, 3, defines the Hausdorff dimension for the Cantor middle-µ
set, Sierpinski carpet and Menger sponge, respectively. Here, 0 < µ < 1 is the length of
open interval which is eliminated in the kth iteration of the corresponding Cantor middle-µ
set [49].
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Figure 1. Fourth iteration of classical Menger sponge with dH = log 20/ log 3. Its cross-section is the
Sierpinski carpet with dH = log 8/ log 3, and the length of the fractal beam is ξ

1−ζ
0 Lζ .

2.2. Fractal Continuum Domain F 3
dH

The fractal continuum is defined in [34,35] as a three-dimensional object F 3
dH
⊂

<3 filled with continuous matter. F 3
dH

is equipped with its particular fractional norm,
metric, measure and rules for integro-differential calculus, and its properties are defined
as differentiable analytic envelopes of non-analytic functions describing the properties
of the fractal material under study [14]. The topological dimension of F 3

dH
is given by

dt = 3 > dH. In order to map a path-connected fractal with bd`c < 3 (for example,
the Menger sponge for which d` = dH ≈ 2.72 and bd`c = 2) in F 3

dH
, at first two mutually

orthogonal fractal coordinates (χi, AFi ) associated with the infinitesimal volume element
in the fractal continuum are defined (for details, see [34,36]). Three orthogonal fractal
coordinates (χ1, χ2, χ3) correspond to the decomposition of (7) in χi ∈ F 3

dH
[14] so that:

χ1 = ξ0(x1/ξ0)
ζ1 ,

χ2 = ξ0(x2/ξ0)
ζ2 ,

χ3 = ξ0(x3/ξ0)
ζ3 ,

(9)

where xi are the Cartesian coordinates in<3, and ζi is the fractal dimension of the coordinate
χi, such that dχi = dH − dIi = ζi. Therefore, we have xi 7→ χi = ξ0(xi/ξ0)

ζi . For a
geometrical interpretation, see Figure 5 in [14], which presents the mapping F dH

3 7→ F 3
dH

.

2.3. Elastic Fractal Continuum

The fractal continuum elasticity in small-strain regimes was proposed by Balankin
in [34]. We consider the problem of static deformation under the assumption that ma-
terial is linearly elastic and small fractional deformation holds, so it is governed by the
following equations:

divH σij + bi = 0,

εij = 1
2

(
∇Hj υi +∇Hi υj

)
= 1

2
1
c1

(
∂υi
∂xj

+
∂υj
∂xi

)
,

σij = Cijklεkl ,
ui = ûi,
σijnj = t̂i,

(10)
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where σij is the Cauchy stress tensor and bi is the body force; εij is the infinitesimal strain
tensor; Cijkl is the stiffness tensor; nj is the outward unit normal vector; t is the Cauchy
traction vector; x is a material variable, u is the displacement and Ωu and Ωσ are parts of
boundary F 3

dH
where the displacements and the tractions are applied, respectively. We

have c1 = ζ1(x1/ξ0)
ζ1−1 [34–36], and υi ∈ F 3

dH
is defined by [14] as:

υ1 = ζ1(x1/ξ0)
ζ1−1u1,

υ2 = ζ2(x2/ξ0)
ζ2−1u2,

υ3 = ζ3(x3/ξ0)
ζ3−1u3;

(11)

therefore, we have that ui 7→ υi = ζi(xi/ξ0)
ζi−1ui.

In Equation (10), the notation ∇Hi denotes the Hausdorff derivative introduced by
Chen in [50] and modified in [34,35]:

∇Hi f = lim
χi→χ′i

f (χ′i)− f (χi)

χ′i − χi
= lim

xi→x′i

f (x′i)− f (xi)

∆
(

x′i , xi
) =

∂

∂χi
f (χi) =

1
ζi

(
xi
ξ0

)1−ζi ∂

∂xi
f , (12)

where ∂/∂xi denotes the conventional partial derivative, the exponent ζi = dH − dI is the
co-dimension of cross-section, and:

divH f = χ1
∂ f1

∂x1
+ χ2

∂ f2

∂x2
+ χ3

∂ f3

∂x3
, (13)

where f is a continuous differentiable function of xj ∈ <3. It is a straightforward matter
to see that the standard solution of (11) is a special case of the fractal generalization when
ζi = dH − dI = 1.

3. Differential Equations of the Euler–Bernoulli Beam in the F 3
dH

Continuum

The main goal of this section is to introduce a new model of fractal bending by applying
the Euler–Bernoulli beam theory to the fractal continuum F 3

dH
.

3.1. Euler–Bernoulli Beam Equation in Fractal Continuum F 3
dH

The governing equations of the Euler–Bernoulli bending principle of mechanics in
the fractal continuum are obtained under the similar assumptions as in the standard or
Euclidean case (for details, see [51]). Hence, the displacement field of the Euler=-Bernoulli
beam in the fractal space framework is given as:

υE1 (χ1, χ3) = −χ3
dυE3
dχ1

,
υE2 (χ1, χ3) = 0,
υE3 (χ1, χ3) = υE3 (χ1),

(14)

where υE3 is the transverse deflection of the point (χ1, 0) of a point at the mid-plane, where
χ3 = 0 (see Figure 2).

Using Equations (9) and (11) in Equation (14), the following equation for the fractal
continuum beam is obtained (see Figure 3):

υE1 (χ1, χ3) = −ζ3ξ
ζ1
0

(
x3
ξ0

)2ζ3−1 duE3
dx

ζ1
1

,

υE2 (χ1, χ3) = 0,

υE3 (χ1, χ3) = ζ3

(
x3
ξ0

)ζ3−1
uE3 (ξ

1−ζ1
0 xζ1

1 ) = ζ3

(
x3
ξ0

)ζ3−1
uE3
(

xζ1
1

)
;

(15)

therefore, when ζi = 1, the displacement field can be obtained in the standard calculus manner.
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Undeformed beam

Deformed beam

χ1

χ3, υ3

χ3

−dυ3
dχ1

−dυ3
dχ1

= −ϕ11

90◦

υ1

−χ3
dυ3
dχ1

Figure 2. Strains, displacements and rotations of Euler–Bernoulli beam.

Figure 3. Mapping of the cantilever fractal beam with a load at the free end into the beam made of
fractal continuum x 7→ χ = ξ

1−ζ
0 xζ , (a) fractal beam F2.72

3 ⊂ <3 and (b) fractal continuum beam
F3

2.72 ⊂ <3.

Equation (15) implies that the straight lines normal to the mid-plane before deforma-
tion remain straight and normal to the mid-plane after deformation, as shown in Figure 2.
Therefore, both transverse shear and transverse normal strains are neglected. It is well-
known that the virtual strain energy δU of a beam is given as:

δU =
∫ L

0

∫
A

σ11δε11dAdχ1, (16)

where δ is the variational symbol, A is the cross-sectional area of the uniform beam, L is
the length of the beam, σ11 is the axial stress, and ε11 is the normal strain. Note that the
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strain energy associated with the shearing strain is zero in the Euler–Bernoulli beam theory.
Using the linear strain-displacement relation (see Equation (14)), we have that:

ε11 =
∂υE1
∂χ1

= −χ3
d2υE3
dχ2

1
(17)

and as the bending moment is:

ME11 =
∫

A
χ3σ11dA, (18)

from Equation (16), we obtain that:

δU = −
∫ L

0
ME11

d2δυE3
dχ2

1
dχ1. (19)

Assuming that the transverse load qE3 acts at the centroidal axis of the beam and that
there are no other applied loads, the virtual potential energy of the load q3 is given by:

δV =
∫ L

0
qδυE3 dχ1. (20)

The principle of virtual displacements states that if a body is in equilibrium, then the
total virtual work done, δW = δU + δV, is zero [51]. Thus, we have:

δW = −
∫ L

0

(
ME11

d2δυE3
dχ2

1
+ qδυE3

)
dχ1 = 0. (21)

Integrating by parts twice the first term in Equation (21), we get:

∫ L

0

(
−d2ME11

dχ2
1
− q

)
δυE3 dχ1 +

[
ME11

dδυE3
dχ1

− dME11
dχ1

δυE
3

]L

0

= 0. (22)

Since δυ3 is arbitrary for 0 < χ1 < L, the following equilibrium equation holds:

−d2ME11
dχ2

1
= qE3 for 0 < χ1 < L, (23)

and as the shear force is qE3 = −dQE11/dχ1 [52], equilibrium Equation (23) can be rewritten
in the following form:

−dME11
dχ1

+ QE11 = 0. (24)

Hooke’s law implies that:

σ11 = Eε11 = −Eχ3
d2υE3
dχ2

1
; (25)

therefore, from Equation (18), it follows that:

ME11 =

[
−E

∫
A

χ2
3dA

]
d2υE3
dx2

1
= −EI

d2υE3
dχ2

1
, (26)
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where I =
∫

A χ2
3dA is the second moment of area around the χ2-axis. The substitution

of Equation (26) into Equation (23) yields the following fractal Euler–Benoulli bending
beam equation:

d2

dχ2
1

[
EI

d2υE3
dχ2

1

]
= qE3 for 0 < χ1 < L, (27)

and the mapping of the Euler–Bernoulli bending equation for fractal beams into the fractal
continuum F 3

dH
yields

ζ3

(
x3

ξ0

)ζ3−1
ξ

4ζ1−4
0

d2

dx2ζ1
1

[
EI

d2uE3
dx2ζ1

1

]
= qE3 . (28)

It is worth noting that when ζi = 1, Equation (28) coincides with Equation (1).

3.2. F 3
dH

Continuum for Rotation φE , Bending Moment ME and Shear Force QE of
Self-Similar Beams

The complete static response of a self-similar beam is given by the displacement,
rotation, bending moment and shear force governed by the external loads and the boundary
conditions [8] and can be described by the following equations [8,52]:

φE11 =
dυE3
dχ1

,

ME11 = EI dφ11
dχ1

= EI d2υE3
dχ2

1
,

QE11 =
dME11
dχ1

= EI d3υE3
dχ3

1
,

qE3 =
dQE11
dχ1

= EI d4υE3
dχ4

1
.

(29)

Using Equations (9) and (11), we can map Equation (29) into the fractal continuum, so
we have:

φE11 = ζ3

(
x3
ξ0

)ζ3−1
ξ

ζ1−1
0

du3

dx
ζ1
1

,

ME11 = ζ3

(
x3
ξ0

)ζ3−1
ξ

2ζ1−2
0 EI d2uE3

dx
2ζ1
1

,

QE11 = ζ3

(
x3
ξ0

)ζ3−1
ξ

3ζ1−3
0 EI d3uE3

dx
3ζ1
1

,

qE3 = ζ3

(
x3
ξ0

)ζ3−1
ξ

4ζ1−4
0 EI d4uE3

dx
4ζ1
1

.

(30)

4. Bending on a Cantilever Fractal Beam

In this section, we apply the proposed model for a self-similar beam with classical
boundary conditions in order to show the fractal influence in bending beam problems.

4.1. Structural Behavior

We consider a cantilever fractal beam with a load at the free end, as sketched in
Figure 3. The beam is a fourth iteration Menger sponge part, and each cube that integrates
it is generated at the second iteration, where all the pre-fractals have the same Hausdorff
dimension, nonetheless with different length scales of self-similarity, as shown in Figure 1.
The fractal parameters of the beam are presented in Table 1, where µ denotes the amount
of mass removed in the Cantor set used to generate the Menger sponge (recall that the
Sierpinski carpet and the Menger sponge are two- and three-dimensional versions of the
Cantor set); in particular, when µ = 0, the Menger sponge has dH = 3, and the beam is a
Euclidean solid beam. The beam was considered with the data from [27], i.e.,: L = 2.7 m,
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h = b = 0.3 m, E = 30× 109 N/m2, and q = 100 N. The values of dimensions dH and dI
are calculated using Equation (8), the values of ζi follow from Equation (6), ξ0 is the lower
cutoff for any fractal with 0 < µ < 1 and the parameter I depends on the cross-section area
described by Equation (4).

Table 1. Fractal parameters of the cantilever fractal beam.

Parameter µ = 0 µ = 1/9 µ = 3/9 µ = 1/3

dH 3 2.98 2.86 2.72
dI 2 1.99 1.94 1.89
ζi 1 0.98 0.91 0.83
ξ0 0 2.7/34 2.7/34 2.7/34

ξ
1−ζ
0 Lζ 2.70 2.58 1.87 1.30

I 675× 10−6 674.897× 10−6 666.667× 10−6 599.177× 10−6

By applying the boundary conditions υ3(χ1 = 0) = 0, φ2(χ1 = 0) = 0, M2(χ1 = L) = 0
and q3(χ1 = L) = q in Equation (27), the transverse displacement of the self-similar beam
FdH

3 in fractal coordinates is:

υE3 =
qE3 χ2

1
6EI

(3L− χ1). (31)

The equation obtained by mapping Equation (31) into the fractal continuum F 3
dH

is:

υE3 =
qE3 ξ

2−2ζ1
0 x2ζ1

1
6EI

(
3ξ

1−ζ1
0 Lζ1 − ξ

1−ζ1
0 xζ1

1

)
. (32)

Four deflections of a cantilever self-similar beam with the values of ζ = 0.98, ζ = 0.91
and ζ = 0.83 are plotted in Figure 4.

0 0.5 1 1.5 2 2.5

0

1

2

3

·10−5

x1, [m]

u
E 3
,
[m

]

ζ = 1.00

ζ = 0.98

ζ = 0.91

ζ = 0.83

Figure 4. Lateral displacement on a cantilever beam with a variable length scale for a homogeneous
beam (ζ = 1) and fractal beams with: ζ = 0.98, ζ = 0.91 and ζ = 0.83. The length of the beam is
ξ

1−ζ
0 Lζ .

Therefore, the slope and the bending moment of beam are determined by substitut-
ing Equation (32) into Equation (29), whose behaviors are sketched in Figures 5 and 6,
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respectively. Note that the shear forces are constant for both the Euclidean and the fractal
geometries: (a) ζ1 = 1, Q11 = −1, (b) ζ1 = 0.98, Q11 = −1.15, (c) ζ1 = 0.91, Q11 = −3.09
and (d) ζ1 = 0.83, Q11 = −9.56.

0 0.5 1 1.5 2 2.5

0

0.5

1

1.5

·10−5

x1, [m]

φ
E 1
1
,
[d
eg
re
es
]

ζ = 1.00

ζ = 0.98

ζ = 0.91

ζ = 0.83

Figure 5. Slope distribution for a homogeneous beam (ζ = 1) and fractal beams with: ζ = 0.98,
ζ = 0.91 and ζ = 0.83.

0 0.5 1 1.5 2 2.5

0

100

200

x1, [m]

M
E 1
1
,
[N

m
]

ζ = 1.00

ζ = 0.98

ζ = 0.91

ζ = 0.83

Figure 6. Bending moment for the Euclidean beam (ζ = 1) and fractal beams with: ζ = 0.98, ζ = 0.91
and ζ = 0.83.

4.2. Discussion of Results Obtained

First of all, in Figure 4, the transversal displacement is a function of the co-dimension
(ζ1), as the length scale of beam is defined as ξ

1−ζ1
0 Lζ1 , where the Hausdorff dimensions of

the beam and cross-section play a fundamental role (see Equation (6)). It was found that
deflection is shorter for self-similar beams in comparison with Euclidean beams.
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Additionally, it was found that the biggest slope corresponds to the Euclidean beam
in comparison with the self-similar beams, and the difference between the classical and
fractal-continuum solutions increases as the value of ζ1 decreases (see Figure 5).

The bending stiffness EI is affected by the fractal geometry of the beam (see Figure 6).
For all cases analysed, the fractal bending stiffness is greater than the Euclidean bending
stiffness with the following adjusted trend:

EI ≈ 1× 107ln(ζ1) + 2× 107. (33)

Furthermore, the introduced model has an exact analytical solution, and the classical
solution is a particular case of the formulation proposed.

5. Conclusions

A generalized formulation of the Euler–Bernoulli bending beam from a fractal medium
into a fractal continuum was developed. Displacement, rotation, bending moment and
shear force of fractal beams were established by applying the kinematics of fractal contin-
uum deformations. The static bending behaviour of cantilever fractal beams was found
using the F 3

dH
continuum. The following effects of the fractal parameters on the mechanical

properties of self-similar beams were obtained:

i Parameters ζ, ξ0, ξ
1−ζ
0 Lζ , AF and dI control the stiffness of the fractal beam;

ii The bending stiffness EI is influenced by the fractal geometry of the beam, specifically,
by the cross-section area along its length, so that it increases as its co-dimension
decreases according to Equation (33);

iii The scale effect depends on boundary conditions, fractal mass of the pre-fractals and
the length scales of similarity;

iv The fractal continuum model allows the exact solutions to be obtained, subject to the
values of order ζi;

v The solution to the classical model is obtained when ζi = 1;
vi The model can be applied to other tri-dimensional fractals such as Cantor tartan [53,54],

Cantor cubes [55] and Vicsek fractals [56];
vii The model can be extended to describe the structural dynamic behavior of fractal

beams, such as free vibration and modal analysis.
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