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Abstract: In this paper, the nonlinear system of local fractional partial differential equations is solved
via local fractional Elzaki transform decomposition method. The local fractional Elzaki decomposition
transform method combines a local fractional Elzaki transform and the Adomian decomposition
method. Applications related to the nonlinear system of local fractional partial differential equations
are presented.
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1. Introduction

With the rapid advancement of human knowledge, there is an urgent need to improve
the basic definitions in the various scientific fields. One of these new developments
in differential equations is the use of new concepts with local and non-local fractional
differential calculus. These concepts have been rapidly applied in various branches of
mathematics, physics and engineering [1–13].

Recently, local fractional calculus has been a considerably important topic in both
mathematics and engineering [14–23]. Researchers have been used the Adomian decompo-
sition method (ADM) [24] to solve local fractional differential equations, local fractional
partial differential equations and local fractional integral equations [25–28]. Local fractional
derivative operators with some known transforms, such as the Young–Laplace transform
and the Sumudu transform, are combined with a decomposition method. A few of these
methods are the local fractional Laplace decomposition method [29], the local fractional
Sumudu decomposition method [30,31] and the Yang–Laplace decomposition method [32].
Thus, local fractional differential equations or local fractional partial differential equations
are solved by these methods.

This paper analyzes the non-differentiable solutions to the fractional form of the
coupled nonlinear system of partial differential equations, including the local fractional
derivative (LFD), with the aid of a novel, efficient method. There have been few studies
about the solutions of local fractional partial differential equations in the literature [25–32].
We carried out such study, in order to find an effective method among the existing methods
in the literature for the existing solutions of such equations, and to gain a new perspective
for future studies. The novelty of this paper is to define a local fractional Elzaki trans-
form and give its properties. Additionally, we suggest a local fractional Elzaki transform
decomposition method (LFETDM), which is constructed from the local fractional Elzaki
transform and the Adomian decomposition method. We note that the local fractional Elzaki
transform decomposition method is the same as the Yang–Laplace decomposition method.
The nonlinear system of local fractional partial differential equations is solved by LFETDM.
The originality of this study is to propose a new hybrid method for obtaining the analytical
or numerical solutions of a nonlinear system of local fractional partial differential equations.
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2. Preliminaries

In this section, we give the concepts of local fractional derivatives and integrals and
polynomial functions on Cantor sets.

Definition 1. Let the function f (x) ∈ Cα(a, b) [33,34]. If there are

| f (x)− f (x0)| < εα, 0 < α ≤ 1, (1)

where there is |x− x0| < δ, for ε > 0 and ε ∈ R, then f (x) is local, fractional and continuous.

Definition 2. Let the function f (x) ∈ Cα(a, b). The local fractional integral of f (x) of order α in
the interval [a, b] is defined by [35,36]

a I b
(α) f (x) =

1
Г(1 + α)

∫ b

a
f (t)(dt)α =

1
Г(1 + α)

lim
∆t→0

∑N−1
j=0 f

(
tj
)(

∆tj
)α, (2)

where the partitions of the interval [a, b] are denoted as
(
tj, tj+1

)
,j = 0, . . . , N − 1,t0 = a and

tN = b with ∆tj = tj+1 − tj and ∆t = max
{

∆t0, ∆t1, ∆tj, . . .
}

.

Definition 3. Let the function f (x) ∈ Cα(a, b) [36,37]. The local fractional derivative of f (x) of
order α in the interval [a, b] is defined by

dα f (x0)

dxα
=

∆α( f (x)− f (x0))

(x− x0)
α , (3)

where
∆α( f (x)− f (x0)) ∼= Г(1 + α)[ f (x)− f (x0)]. (4)

The local fractional partial differential operator of order α (0 < α ≤ 1) is given by [36,37]

∂αu(x0, t)
∂tα

=
∆α(u(x0, t)− u(x0, t0))

(t− t0)
α , (5)

where
∆α(u(x0, t)− u(x0, t0)) ∼= Г(1 + α)[u(x0, t)− u(x0, t0)]. (6)

Theorem 1. (Local fractional Laplace transform of local fractional derivative) [38,39].
Let Lα{ f (x)} = f L,α

s (s). Then, we have

Lα{ f α(x)} = sαLα{ f (x)} − f (0). (7)

3. Local Fractional Elzaki Transform

The local fractional Elzaki transform (LFET) is proposed, and some properties of this
transform are analyzed. We use the concepts of polynomial functions on Cantor sets.

If there is a new transform operator LFEα : f (x)→ F(u), so that Equation (8) is valid.

LFEα{ f (x)} = LFEα

[
∞

∑
k=0

akxαk

]
=

∞

∑
k=0

Г(1 + αk)akvα(k+2). (8)

As a classical example, we can use

LFEα

[
xα

Г(1 + α)

]
= v3α.
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Definition 4. The local fractional Elzaki transform of f (x) of order α is defined by

LFEα{ f (x)} = Fα(v) =:
vα

Г(1 + α)

∫ ∞

0
Eα

(
−v−αxα

)
f (x)(dx)α, 0 < α ≤ 1. (9)

where the integral converges and vα ∈ Rα.
The inverse local fractional Elzaki transform of f (x) of order α is defined by

LFEα
−1{Fα(v)} = f (x), 0 < α ≤ 1. (10)

Theorem 2. (linearity)
Let LFEα{ f (x)} = Fα(v) and LFEα{g(x)} = Gα(v). Then, we have

LFEα{ f (x) + g(x)} = Fα(v) + Gα(v). (11)

Proof. By using Equation (9), we have

LFEα{ f (x) + g(x)} = vα

Г(1 + α)

∞∫
0

Eα

(
−v−αxα

)
( f + g)(x)(dx)α (12)

=
vα

Г(1 + α)

∫ ∞

0
Eα

(
−v−αxα

)
f (x)(dx)α +

vα

Г(1 + α)

∫ ∞

0
Eα

(
−v−αxα

)
g(x)(dx)α (13)

= Fα(v) + Gα(v). (14)

The proof is completed. �

Theorem 3. (Local fractional Laplace–Elzaki duality).
Let Lα{ f (x)} = f L,α

s (s) and LFEα{ f (x)} = Fα(v). Then, we get

LFEα{ f (x)} = vαLα

{
f
(

1
x

)}
, (15)

Lα{ f (x)} = sαLFEα

{
f
(

1
s

)}
. (16)

Proof. By using the definitions of the local fractional Laplace and Elzaki transforms, then
we directly obtain these results. �

Theorem 4. (Local fractional Elzaki transform of the local fractional derivative).
Let LFEα{ f (x)} = Fα(v). Then, we get

LFEα

{
dα f (x)

dxα

}
=

Fα(v)
vα
− vα f (0). (17)

Proof. By using Equations (7)–(15), the local fractional Elzaki transform of the local frac-
tional derivative of f (x) is obtained as

LFEα{A(x)} = vαLα

{
A
(

1
x

)}
= vα

[
1

vα Lα

{
f
(

1
x

)}
− f (0)

]
= Lα

{
f
(

1
x

)}
− vα f (0)

= Fα(v)
vα − vα f (0),

(18)

where

A(x) =
dα f (x)

dxα
.
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The proof is completed. �

By the direct result of Equation (17), the generalization of Equation (17) is obtained.
Let LFEα{ f (x)} = Fα(v). Then, we get

LFEα

{
dnα f (x)

dxnα

}
=

Fα(v)
vnα

−
[

n−1

∑
k=0

v(2−n+k)α f (kα)(0)

]
. (19)

After substituting n = 2 into Equation (19), we have

LFEα

{
d2α f (x)

dx2α

}
=

Fα(v)
v2α

− f (0)− vα f (α)(0). (20)

4. Local Fractional Elzaki Transform Decomposition Method

Consider the general nonlinear system as a local fractional derivative [33]:{
∂aX
∂τa + ∂aX

∂xa + Nα,1(X, T) + Rα,1(X, T) = ϕ(x, τ),

∂aT
∂τa +

∂aT
∂xa + Nα,2(X, T) + Rα,2(X, T) = ψ(x, τ),

(21)

where ∂α

∂(.)α represents the linear local fractional derivative operator of order α, Rα,1 and
Rα,2 are the linear local fractional operators, Nα,1 and Nα,2 are the nonlinear local fractional
operators and ϕ(x, τ), ψ(x, τ) are two unknown functions.

An analytical solution of this system is obtained by the following steps.
Step 1 If the local fractional Elzaki transform (LFET) is applied to both sides of each

equation in system (21), then it is obtained as
LFEα

[
∂aX
∂τa

]
+ LFEα

[
∂aX
∂xa

]
+ LFEα[Nα,1(X, T)] + LFEα[Rα,1(X, T)] = LFEα[ϕ(x, τ)],

LFEα

[
∂aT
∂τa

]
+ LFEα

[
∂aT
∂xa

]
+ LFEα[Nα,2(X, T)] + LFEα[Rα,2(X, T)] = LFEα[ψ(x, τ)].

(22)

If the differential property of Elzaki transform is applied, then we have
LFEα[X] = v2αX(x, 0) + vα

[LFEα[ϕ(x, τ)]
]
− LFEα

[
∂aX
∂xa + Nα,1(X, T) + Rα,1(X, T)

]
,

LFEα[T] = v2αT(x, 0) + vα
[LFEα[ψ(x, τ)]

]
− LFEα

[
∂aT
∂xa + Nα,2(X, T) + Rα,2(X, T)

]
.

(23)

If the inverse LFET is applied to both sides of each system Equation (23), then it is
obtained as


X = LFEα

−1(v2αX(x, 0)
)
+ LFEα

−1(vα
[(LFEα[ϕ(x, τ)]

)])
− LFEα

−1
(

vα
[(

LFEα

[
∂a X
∂xa + Nα,1(X, T) + Rα,1(X, T)

])])
,

T = LFEα
−1(v2αT(x, 0)

)
+ LFEα

−1(vα
[(LFEα[ψ(x, τ)]

)])
− LFEα

−1
(

vα
[(

LFEα

[
∂aT
∂xa + Nα,2(X, T) + Rα,2(X, T)

])])
.

(24)

Step 2 Applying the Adomian decomposition method [40], we can show the two
unknown functions X and T as infinite series.

X(u, t) =
∞

∑
n=0

Xn(u, t), (25)

T(u, t) =
∞

∑
n=0

Tn(u, t), (26)
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and the nonlinear terms are decomposed as
Nα,1(X, T) =

∞
∑

n=0
An,

Nα,2(X, T) =
∞
∑

n=0
Bn,

(27)

where An and Bn are Adomian polynomials [20].
If Equations (25)–(27) are substituted into Equation (24), then we obtain


∞
∑

n=0
Xn(x, τ) = LF Eα

−1(v2αX(x, 0)
)
+ LF Eα

−1(vα
[(LF Eα [ϕ(x, τ)]

)])
− LF Eα

−1
(

vα

[(
LF Eα

[
∂a

∂xa

(
∞
∑

n=0
Xn(x, τ)

)
+

∞
∑

n=0
An + Rα,1

(
∞
∑

n=0
Xn ,

∞
∑

n=0
Tn

)])])
,

∞
∑

n=0
Tn(x, τ) = LF Eα

−1(v2αT(x, 0)
)
+ LF Eα

−1(vα
[(LF Eα [ψ(x, τ)]

)])
− LF Eα

−1
(

vα

[(
LF Eα

[
− ∂2a

∂x2a

(
∞
∑

n=0
Tn(x, τ)

)
+

∞
∑

n=0
Bn + Rα,2

(
∞
∑

n=0
Xn ,

∞
∑

n=0
Tn

)])])
.

(28)

If both sides of Equation (28) are compared, then we obtain

X0(x, τ) = LFEα
−1
(

v2αX(x, 0)
)
+ LFEα

−1
(

vα
[(

LFEα[ϕ(x, τ)]
)])

, (29)

X1(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂aX0

∂xa + A0 + Rα,1(X0, T0)

])])
, (30)

X2(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂aX1

∂xa + A1 + Rα,1(X1, T1)

])])
, (31)

X3(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂aX2

∂xa + A2 + Rα,1(X2, T2)

])])
, (32)

T0(x, τ) = LFEα
−1
(

v2αT(x, 0)
)
+ LFEα

−1
(

vα
[(

LFEα[ψ(x, τ)]
)])

, (33)

T1(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂aT0

∂xa + B0 + Rα,2(X0, T0)

])])
, (34)

T2(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂aT1

∂xa + B1 + Rα,2(X1, T1)

])])
, (35)

T3(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂aT2

∂xa + B2 + Rα,2(X2, T2)

])])
, (36)

and so on.
Step 3 The analytical solution of (X, T) of the system (21) is obtained as

X(x, τ) = lim
N→∞

N
∑

n=0
Xn(x, τ),

T(x, τ) = lim
N→∞

N
∑

n=0
Tn(x, τ).

(37)

5. Applications

In this section, the proposed method for solving a nonlinear system of LFPDEs
(LFETDM) is applied.

Example 1. Consider the following coupled nonlinear system of local fractional Burger equations [33]:
∂aX
∂τa − ∂2aX

∂x2a − 2XXα
x + (XT)α

x = 0,

∂aT
∂τa − ∂2aT

∂x2a − 2TTα
x + (XT)α

x = 0,
0 < α ≤ 1, (38)
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with the initial conditions

X(x, 0) = sinα(xα), T(x, 0) = sinα(xα). (39)

If we apply the LFET to both sides of each equation of the system Equation (38),
LFEα[X(x, τ)] =

[
v2αsinα(xα)

]
− vα

[(
LFEα

[
− ∂2aX

∂x2a − 2XXα
x + (XT)α

x

])]
,

LFEα[T(x, τ)] =
[
v2αsinα(xα)

]
− vα

[(
LFEα

[
− ∂2aT

∂x2a − 2TTα
x + (XT)α

x

])]
.

(40)

By applying the inverse LFET to both sides of each equation in Equation (40), we have
X(x, τ) = sinα(xα)− LFEα

−1
(

vα
[(

LFEα

[
− ∂2aX

∂x2a − 2XXα
x + (XT)α

x

])])
,

T(x, τ) = sinα(xα)− LFEα
−1
(

vα
[(

LFEα

[
− ∂2aT

∂x2a − 2TTα
x + (XT)α

x

])])
.

(41)

If the Adomian decomposition method is applied, then each function of the solution
(X, T) is decomposed as an infinite series

X(x, τ) =
∞
∑

n=0
Xn(x, τ),

T(x, τ) =
∞
∑

n=0
Tn(x, τ),

(42)

and the nonlinear terns can be decomposed as

XX(α)
x =

∞

∑
n=0

An(X), (43)

(XT)(α)x = ∑∞
n=0 Bn(X, T), (44)

and

TT(α)
x =

∞

∑
n=0

Cn(T). (45)

If Equations (42)–(45) are substituted into Equation (41), then we have


∞
∑

n=0
Xn(x, τ) = sinα(xα)− LFEα

−1
(

vα

[(
LFEα

[
− ∂2a

∂x2a

(
∞
∑

n=0
Xn(x, τ)

)
− 2

∞
∑

n=0
An(X) +

∞
∑

n=0
Bn(X, T)

])])
,

∞
∑

n=0
Tn(x, τ) = sinα(xα)− LFEα

−1
(

vα

[(
LFEα

[
− ∂2a

∂x2a

(
∞
∑

n=0
Tn(x, τ)

)
− 2

∞
∑

n=0
Cn(T) +

∞
∑

n=0
Bn(X, T)

])])
.

(46)

By comparing both sides of Equation (46), we obtain

X0(x, τ) = sinα(xα), (47)

X1(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
−∂2aX0

∂x2a − 2A0(X) + B0(X, T)
])])

, (48)

X2(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
−∂2aX1

∂x2a − 2A1(X) + B1(X, T)
])])

, (49)

X3(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
−∂2aX2

∂x2a − 2A2(X) + B2(X, T)
])])

, (50)

T0(x, τ) = sinα(xα), (51)
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T1(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
−∂2aT0

∂x2a − 2C0(T) + B0( X, T)
])])

, (52)

T2(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
−∂2aT1

∂x2a − 2C1(T) + B1( X, T)
])])

, (53)

T3(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
−∂2aT2

∂x2a − 2C2(T) + B2( X, T)
])])

, (54)

and so on.
The first few components of An(X), Bn(X, T) and Cn(T) polynomials [41] are obtained as

A0(X) = X0X0,x
(α), (55)

A1(X) = X0X1,x
(α) + X1X0,x

(α), (56)

A2(X) = X0X2,x
(α) + X2X0,x

(α) + X1X1,x
(α), (57)

B0(X, T) = (X0T0)x
(α), (58)

B1(X, T) = (X0T1 + X1T0)x
(α), (59)

B2(X, T) = (X1T1 + X0T2 + X2T0)x
(α), (60)

C0(X) = T0T0,x
(α), (61)

C1(T) = T0T1,x
(α) + T1T0,x

(α), (62)

C2(T) = T0T2,x
(α) + T2T0,x

(α) + T1T1,x
(α), (63)

and so on.
According to Equations (47)–(54) and Equations (55)–(63), the first terms of LFETDM

of the system Equation (38) are obtained as

X0(x, τ) = sinα(xα), (64)

X1(x, τ) = −sinα(xα)
τα

Г(1 + α)
, (65)

X2(x, τ) = sinα(xα)
τ2α

Г(1 + 2α)
, (66)

X3(x, τ) = −sinα(xα)
τ3α

Г(1 + 3α)
, (67)

and
T0(x, τ) = sinα(xα), (68)

T1(x, τ) = −sinα(xα)
τα

Г(1 + α)
, (69)

T2(x, τ) = sinα(xα)
τ2α

Г(1 + 2α)
, (70)

T3(x, τ) = −sinα(xα)
τ3α

Г(1 + 3α)
, (71)

and so on.
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Thus, the local fractional series solutions of X(x, τ) and T(x, τ) are, respectively,
obtained as 

X(x, τ) =
∞
∑

n=0
Xn(x, τ),

T(x, τ) =
∞
∑

n=0
Tn(x, τ),

(72)

Therefore, the local fractional series solutions of the system Equation (38) can be
written in the form: 

X(x, τ) = sinα(xα) lim
N→∞

N
∑

n=0

(−1)n(τ)nα

Г(1+nα)
,

T(x, τ) = sinα(xα) lim
N→∞

N
∑

n=0

(−1)n(τ)nα

Г(1+nα)
.

(73)

If Equation (73) is rewritten in a closed form, then the non-differentiable solutions of
X(x, τ) and T(x, τ) are obtained as{

X(x, τ) = sinα(xα)Eα(−τα),
T(x, τ) = sinα(xα)Eα(−τα).

(74)

After substituting α = 1 into Equation (74), we obtain{
X(x, τ) = sin(x)e−τ ,
T(x, τ) = sin(x)e−τ .

(75)

Equation (66) can supply the exact solutions of Equation (38). Additionally, the
LFETDM solutions of Equation (38) are same as both solutions obtained in [33] by the
Yang–Laplace decomposition method and in [42] by the natural decomposition method.

The graph of the LFETDM solution for alpha = 1 and the exact solution of the
system (38) is shown in Figure 1.
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Example 2. Consider the following coupled nonlinear system of local fractional KdV equations [39]:
∂aX
∂τa + ∂3aX

∂x3a + 2XXα
x + 2TXα

x = 0,

∂aT
∂τa +

∂3aT
∂x3a + 2TTα

x + 2XTα
x = 0,

0 < α ≤ 1, (76)

with the initial conditions

X(x, 0) = Eα(−xα), T(x, 0) = −Eα(−xα), (77)

If we apply the LFET to both sides of each equation of the system in Equation (76),
LFEα[X(x, τ)] =

[
v2αEα(−xα)

]
− LFEα

−1
(

vα
[(

LFEα

[
∂3aX
∂x3a + 2XXα

x + 2TXα
x

])])
,

LFEα[T(x, τ)] =
[
−v2αEα(−xα)

]
− LFEα

−1
(

vα
[(

LFEα

[
∂3aT
∂x3a + 2TTα

x + 2XTα
x

])])
.

(78)

By applying the inverse LFET to both sides of each equation in Equation (78), then we
have 

X(x, τ) = Eα(−xα)− LFEα
−1
(

vα
[(

LFEα

[
∂3aX
∂x3a + 2XXα

x + 2TXα
x

])])
,

T(x, τ) = −Eα(−xα)− LFEα
−1
(

vα
[(

LFEα

[
∂3aT
∂x3a + 2TTα

x + 2XTα
x

])])
.

(79)

If the Adomian decomposition method is applied, then each function of the solution
(X, T) is decomposed as an infinite series:

X(x, τ) =
∞
∑

n=0
Xn(x, τ),

T(x, τ) =
∞
∑

n=0
Tn(x, τ),

(80)

and the nonlinear terms can be decomposed as

XXα
x =

∞

∑
n=0

An(X), (81)
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TXα
x =

∞

∑
n=0

Bn(X, T), (82)

TTα
x =

∞

∑
n=0

Cn(T), (83)

and

XTα
x =

∞

∑
n=0

Dn(X, T). (84)

If Equations (80)–(84) are substituted in Equation (79), then we have


∞
∑

n=0
Xn(x, τ) = Eα(−xα)− LFEα

−1
(

vα

[(
LFEα

[
∂3a

∂x3a

(
∞
∑

n=0
Xn(x, τ)

)
+ 2

∞
∑

n=0
An(X) + 2

∞
∑

n=0
Bn(X, T)

])])
,

∞
∑

n=0
Tn(x, τ) = −Eα(−xα)− LFEα

−1
(

vα

[(
LFEα

[
∂3a

∂x3a

(
∞
∑

n=0
Tn(x, τ)

)
+ 2

∞
∑

n=0
Cn(T) + 2

∞
∑

n=0
Dn(X, T)

])])
.

(85)

By comparing both sides of Equation (85), we obtain

X0(x, τ) = Eα(−xα), (86)

X1(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂3aX0

∂x3a + 2A0(X) + 2B0(X, T)
])])

, (87)

X2(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂3aX1

∂x3a + 2A1(X) + 2B1(X, T)
])])

, (88)

X3(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂3aX2

∂x3a + 2A2(X) + 2B2(X, T)
])])

, (89)

T0(x, τ) = −Eα(−xα), (90)

T1(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂3aT0

∂x3a + 2C0(T) + 2D0(X, T)
])])

, (91)

T2(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂3aT1

∂x3a + 2C1(T) + 2D1(X, T)
])])

, (92)

T3(x, τ) = −LFEα
−1
(

vα

[(
LFEα

[
∂3aT2

∂x3a + 2C2(T) + 2D2(X, T)
])])

, (93)

and so on.
The first few components of An(X), Bn(X, T), Cn(T) and Dn(X, T) polynomials [39]

are obtained as
A0(X) = X0X0,x

(α), (94)

A1(X) = X0X1,x
(α) + X1X0,x

(α), (95)

A2(X) = X0X2,x
(α) + X2X0,x

(α) + X1X1,x
(α), (96)

B0(X, T) = T0X0,x
(α), (97)

B1(X, T) = T0X1,x
(α) + T1X0,x

(α), (98)

B2(X, T) = T0X2,x
(α) + T1X1,x

(α) + T2X0,x
(α), (99)

C0(X) = T0T0,x
(α), (100)

C1(T) = T0T1,x
(α) + T1T0,x

(α), (101)

C2(T) = T0T2,x
(α) + T2T0,x

(α) + T1T1,x
(α), (102)
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D0(X, T) = X0T0,x
(α), (103)

D1(X, T) = X0T1,x
(α) + X1T0,x

(α), (104)

D2(X, T) = X0T2,x
(α) + X1T1,x

(α) + X2T0,x
(α), (105)

and so on.
According to Equations (86)–(93) and Equations (94)–(105), the first terms of LFETDM

of the system in Equation (76) are obtained as

X0(x, τ) = Eα(−xα), (106)

X1(x, τ) = Eα(−xα)
τα

Г(1 + α)
, (107)

X2(x, τ) = Eα(−xα)
τ2α

Г(1 + 2α)
, (108)

X3(x, τ) = Eα(−xα)
τ3α

Г(1 + 3α)
, (109)

and
T0(x, τ) = −Eα(−xα), (110)

T1(x, τ) = −Eα(−xα)
τα

Г(1 + α)
, (111)

T2(x, τ) = −Eα(−xα)
τ2α

Г(1 + 2α)
, (112)

T3(x, τ) = −Eα(−xα)
τ3α

Г(1 + 3α)
, (113)

and so on.
Thus, the local fractional series solutions of X(x, τ) and T(x, τ) are, respectively,

obtained as 
X(x, τ) =

∞
∑

n=0
Xn(x, τ),

T(x, τ) =
∞
∑

n=0
Tn(x, τ),

(114)

Therefore, the local fractional series solutions of the system in Equation (76) can be
written in the form 

X(x, τ) = Eα(−xα) lim
N→∞

N
∑

n=0

τnα

Г(1+nα)
,

T(x, τ) = −Eα(−xα) lim
N→∞

N
∑

n=0

τnα

Г(1+nα)
.

(115)

If Equation (115) is rewritten in a closed form, then the non-differentiable solutions of
X(x, τ) and T(x, τ) are obtained as{

X(x, τ) = Eα(−xα)Eα(τα),
T(x, τ) = −Eα(−xα)Eα(τα).

(116)

By substituting α = 1 into Equation (116), we obtain{
X(x, τ) = e−x+τ ,

T(x, τ) = −e−x+τ .
(117)

Equation (117) provides the exact solutions of Equation (76). Additionally, the LFETDM
solutions of Equation (76) are the same as the solutions obtained in [42] by the LFRDTM.
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Example 3. Consider the following coupled nonlinear system of local fractional partial differential
equations [33]. For 0 < α ≤ 1,

Xτ
(α) + Tx

(α)Zν
(α) − Tν

(α)Zx
(α) = −X,

Tτ
(α) + Xx

(α)Zν
(α) + Xν

(α)Zx
(α) = T,

Zτ
(α) + Xx

(α)Tν
(α) + Xν

(α)Tx
(α) = Z,

(118)

with the initial conditions

X(x, ν, 0) = Eα(xα + να), T(x, ν, 0) = Eα(xα − να), Z(x, ν, 0) = Eα(−xα + να). (119)

If we apply the LFET to both sides of each equation of the system in Equation (118),

LFEα[X(x, ν, τ)] =
[
v2αEα(xα + να)

]
− vα

[(
LFEα

[
Tx

(α)Zν
(α) − Tν

(α)Zx
(α) + X

])]
,

LFEα[T(x, ν, τ)] =
[
v2αEα(xα − να)

]
− vα

[(
LFEα

[
Xx

(α)Zν
(α) + Xν

(α)Zx
(α) − T

])]
,

LFEα[Z(x, ν, τ)] =
[
v2αEα(−xα + να)

]
− vα

[(
LFEα

[
Xx

(α)Tν
(α) + Xν

(α)Tx
(α) − Z

])]
.

(120)

By applying the inverse LFET on both sides of each equation of Equation (120),
we have

X(x, ν, τ) = Eα(xα + να)− LFEα
−1
(

vα
[(

LFEα

[
Tx

(α)Zν
(α) − Tν

(α)Zx
(α) + X

])])
,

T(x, ν, τ) = Eα(xα − να)− LFEα
−1
(

vα
[(

LFEα

[
Xx

(α)Zν
(α) + Xν

(α)Zx
(α) − T

])])
,

Z(x, ν, τ) = Eα(−xα + να)− LFEα
−1
(

vα
[(

LFEα

[
Xx

(α)Tν
(α) + Xν

(α)Tx
(α) − Z

])])
.

(121)

By applying the Adomian decomposition method (ADM), each function of the solution
(X, T, Z) is decomposed as an infinite series

X(x, ν, τ) =
∞
∑

n=0
Xn(x, ν, τ),

T(x, ν, τ) =
∞
∑

n=0
Tn(x, ν, τ),

Z(x, ν, τ) =
∞
∑

n=0
Zn(x, ν, τ),

(122)

and the nonlinear terns can be decomposed as

Tx
(α)Zν

(α) =
∞

∑
n=0

An(T, Z), Tν
(α)Zx

(α) =
∞

∑
n=0

An
′(T, Z), (123)

Xx
(α)Zν

(α) =
∞

∑
n=0

Bn(X, Z), Xν
(α)Zx

(α) =
∞

∑
n=0

Bn
′(X, Z), (124)

Xx
(α)Tν

(α) =
∞

∑
n=0

Cn(X, T), Xν
(α)Tx

(α) =
∞

∑
n=0

Cn
′(X, T). (125)

If Equations (122)–(125) are substituted into Equation (121), then we have
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

∞
∑

n=0
Xn(x, ν, τ) = Eα(xα + να)− LFEα

−1
(

vα

[(
LFEα

[
∞
∑

n=0
An(T, Z)−

∞
∑

n=0
An
′(T, Z) +

∞
∑

n=0
Xn(x, ν, τ)

])])
,

∞
∑

n=0
Tn(x, ν, τ) = Eα(xα − να)− LFEα

−1
(

vα

[(
LFEα

[
∞
∑

n=0
Bn(X, Z) +

∞
∑

n=0
Bn
′(X, Z)−

∞
∑

n=0
Tn(x, ν, τ)

])])
,

∞
∑

n=0
Zn(x, ν, τ) = Eα(−xα + να)− LFEα

−1
(

vα

[(
LFEα

[
∞
∑

n=0
Cn(X, T) +

∞
∑

n=0
Cn
′(X, T)−

∞
∑

n=0
Zn(x, ν, τ)

])])
.

(126)

By comparing both sides of Equation (126), we obtain

X0(x, ν, τ) = Eα(xα + να), (127)

X1(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
A0(T, Z)− A0

′(T, Z) + X0(x, ν, τ)
])])

, (128)

X2(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
A1(T, Z)− A1

′(T, Z) + X1(x, ν, τ)
])])

, (129)

X3(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
A2(T, Z)− A2

′(T, Z) + X2(x, ν, τ)
])])

, (130)

T0(x, ν, τ) = Eα(xα − να), (131)

T1(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
B0(X, Z)− B0

′(X, Z) + T0(x, ν, τ)
])])

, (132)

T2(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
B1(X, Z)− B1

′(X, Z) + T1(x, ν, τ)
])])

, (133)

T3(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
B2(X, Z)− B2

′(X, Z) + T2(x, ν, τ)
])])

, (134)

Z0(x, ν, τ) = Eα(−xα + να), (135)

Z1(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
C0(X, T)− C0

′(X, T) + Z0(x, ν, τ)
])])

, (136)

Z2(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
C1(X, T)− C1

′(X, T) + Z1(x, ν, τ)
])])

, (137)

Z3(x, ν, τ) = −LFEα
−1
(

vα
[(

LFEα

[
C2(X, T)− C2

′(X, T) + Z2(x, ν, τ)
])])

, (138)

and so on.
The first few components of An(T, Z), Bn(X, Z) and Cn(X, T) polynomials [41] are

obtained as
A0(T, Z) = T0x

(α)Z0ν
(α), (139)

A1(T, Z) = T1x
(α)Z0ν

(α) + T0x
(α)Z1ν

(α), (140)

A2(T, Z) = T0x
(α)Z2ν

(α) + T2x
(α)Z0ν

(α) + T1x
(α)Z1ν

(α), (141)

B0(X, Z) = X0x
(α)Z0ν

(α), (142)

B1(X, Z) = X1x
(α)Z0ν

(α) + X0x
(α)Z1ν

(α), (143)

B2(X, Z) = X0x
(α)Z2ν

(α) + X2x
(α)Z0ν

(α) + X1x
(α)Z1ν

(α), (144)

C0(X, T) = X0x
(α)T0ν

(α), (145)

C1(X, T) = X1x
(α)T0ν

(α) + X0x
(α)T1ν

(α), (146)

C2(X, T) = X0x
(α)T2ν

(α) + X2x
(α)T0ν

(α) + X1x
(α)T1ν

(α), (147)

and so on.
Additionally, the polynomials An

′, Bn
′ and Cn

′ are similarly computed.
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According to Equations (127)–(138) and Equations (139)–(147), the first terms of the
local fractional Elzaki transform decomposition method of the system Equation (118) are
obtained as

X0(x, v, τ) = Eα(xα + να), (148)

X1(x, v, τ) = −Eα(xα + να)
τα

Г(1 + α)
, (149)

X2(x, v, τ) = Eα(xα + να)
τ2α

Г(1 + 2α)
, (150)

X3(x, v, τ) = −Eα(xα + να)
τ3α

Г(1 + 3α)
, (151)

T0(x, v, τ) = Eα(xα − να), (152)

T1(x, v, τ) = Eα(xα − να)
τα

Г(1 + α)
, (153)

T2(x, v, τ) = Eα(xα − να)
τ2α

Г(1 + 2α)
, (154)

T3(x, v, τ) = Eα(xα − να)
τ3α

Г(1 + 3α)
, (155)

and
Z0(x, v, τ) = Eα(−xα + να), (156)

Z1(x, v, τ) = Eα(−xα + να)
τα

Г(1 + α)
, (157)

Z2(x, v, τ) = Eα(−xα + να)
τ2α

Г(1 + 2α)
, (158)

Z3(x, v, τ) = Eα(−xα + να)
τ3α

Г(1 + 3α)
, (159)

and so on.
Thus, the local fractional series solutions of X(x, ν, τ), T(x, ν, τ) and Z(x, ν, τ) are,

respectively, obtained as 
X(x, ν, τ) =

∞
∑

n=0
Xn(x, ν, τ),

T(x, ν, τ) =
∞
∑

n=0
Tn(x, ν, τ),

Z(x, ν, τ) =
∞
∑

n=0
Zn(x, ν, τ),

(160)

Therefore, the local fractional series solutions of the system Equation (118) can be
written in the form 

X(x, v, τ) = Eα(xα + να) lim
N→∞

N
∑

n=0

(−1)nτnα

Г(1+nα)
,

T(x, v, τ) = Eα(xα − να) lim
N→∞

N
∑

n=0

τnα

Г(1+nα)
,

Z(x, v, τ) = Eα(−xα + να) lim
N→∞

N
∑

n=0

τnα

Г(1+nα)
.

(161)
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If Equation (161) is rewritten in a closed form, then the non-differentiable solutions of
X(x, v, τ), T(x, v, τ) and Z(x, v, τ) are obtained as

X(x, v, τ) = Eα(xα + να)Eα(−τα),
T(x, v, τ) = Eα(xα − να)Eα(τα),

Z(x, v, τ) = Eα(−xα + να)Eα(τα).
(162)

Additionally, Equation (163) is obtained from Equation (162) as [32]
X(x, v, τ) = Eα(xα + να − τα),
T(x, v, τ) = Eα(xα − να + τα),

Z(x, v, τ) = Eα(−xα + να + τα).
(163)

By substituting α = 1 into Equation (163), it is obtained as
X(x, v, τ) = ex+v−τ ,
T(x, v, τ) = ex−v+τ ,

Z(x, v, τ) = e−x+v+τ .
(164)

The solutions in Equation (164) are the exact solutions of Equation (118). Additionally,
the LFETDM solutions in Equation (163) are the same as the solution obtained in [32] by the
Yang–Laplace decomposition method and in [41] by the natural decomposition method.

6. Discussion

It has observed from the solutions of a coupled nonlinear system of local fractional
Burger equations that LFETDM, LFRDTM, the Yang–Laplace decomposition method and
the natural decomposition method give the same results. Additionally, Figures 1 and 2
show the results obtained by using LFETDM for Example 1. Besides, it has been observed
that the solutions decrease as the alpha values move away from 1. Additionally, we saw
from the solutions of a coupled nonlinear system of local fractional partial differential
equations that LFETDM, the Yang–Laplace decomposition method, LFRDTM and the
natural decomposition method give the same results. It is seen that the overall structure
of the curve obtained from Maple software differs for different values of fractional order
αlpha for Example 1.

7. Conclusions

The nonlinear systems of local fractional partial differential equations have been solved
by the local fractional Elzaki transform decomposition method (LFETDM). Additionally,
Figures 1 and 2 show the results obtained by using LFETDM for Example 1. It has been
seen that the solutions decrease as the alpha values move away from 1. Additionally, it
has observed from the non-differentiable solutions of a coupled nonlinear system of local
fractional partial differential equations that LFETDM, the Yang–Laplace decomposition
method, LFRDTM and the natural decomposition method give the same results. In addition,
it was seen that the overall structure of the graph obtained from Maple software differed for
different values of fractional order αlpha. It has been shown that LFETDM is an effective
algorithm. Additionally, it was shown that this algorithm provides the solution in a series
form which converges quickly and successfully to the exact solution. Thus, it is concluded
that LFETDM is reliable, effective and powerful in obtaining the analytical solutions for
different classes of linear and nonlinear local fractionals of ordinary and partial differential
equations.
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