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Abstract: In this paper, the extended double (2+1)-dimensional sine-Gorden equation is studied. First
of all, using the symmetry method, the corresponding vector fields, Lie algebra and infinitesimal
generators are derived. Then, from infinitesimal generators, the symmetry reductions are presented.
In addition, these reduced equations are converted into the corresponding partial differential equa-
tions, which including classical double (1+1)-dimensional sine-Gorden equation. Moreover, based
on the Lie symmetry method again, these reduced equations are investigated. Meanwhile, based on
traveling wave transformation, some explicit solutions of the extended double (2+1)-dimensional
sine-Gorden equation are obtained. Consequently, a conservation law is derived via conservation
law multiplier method. Finally, especially with the help of the fractional complex transform, some
solutions of double time fractional (2+1)-dimensional sine-Gorden equation are also derived. These
results might explain complex nonlinear phenomenon.

Keywords: extended double (2+1)-dimensional sine-Gorden equation; time fractional form; Lie
symmetry; symmetry reductions; explicit solutions; conservation laws

1. Introduction

Recently, Wang, from extended Lax pairs, derived a (2+1)-dimensional sine-Gorden
Equation [1],

uxx − uxy − uxt + uyt = sin u, (1)

they studied the kink wave and anti-kink wave solutions, also derived conservation laws.
Based on the results of ref. [1], this paper focuses on the following extended double (2+1)-
dimensional sine-Gorden equation:

uxx − uxy − uxt + uyt = sin u + a sin 2u, (2)

and time fractional form as follows:

uxx − uxy − (uα
t )x + (uα

t )y = sin u + a sin 2u, (3)

where Dα
t (·) is the modified Riemann–Liouville derivative [2–4], 0 < α ≤ 1, a is a constant.

Some preliminaries of the modified Riemann–Liouville derivative refer to [2–4]. If a = 0,
Equation (2) reduced to Equation (1). Furthermore, it can be seen that if α = 1, Equation (3)
becomes Equation (2). This paper extends our previous work in [1] to study the extended
double (2+1)-dimensional sine-Gorden equation. The sine-Gorden-type equation appears
in many science fields [5,6], such as nonlinear optics, quantum field theory, differential
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geometry, solid state physics and so on. The author [7] derived multiple optical kink wave
solutions of sine-Gordon-type equations. In paper [8], they got some exact solitary wave
solutions for sine-Gordon-type equations using an auxiliary ordinary differential equation
method. In [9], they considered initial value problem for the sine-Gordon equation, this
equation is solved by the inverse-scattering method. The author, in paper [10], using
tanh method and a variable separated ODE method, solved double sine-Gordon equation,
and some exact solutions are derived.

There are many methods to study the nonlinear evolution equations, such as the Lie
symmetry method [11–22], Hamiltonian system [23–26], Hirota’s bilinear direct method [27],
Bäcklund transformation [28,29], inverse scattering transformation [6], Darboux transfor-
mations [30], Lax pairs [31,32] and so on. On the other hand, it is well known that fractional
order differential equations are well suited to characterize materials and processes with
memory and genetic properties, and their description of complex systems has the advan-
tages of simple modeling, clear physical meaning of parameters, and accurate description,
thus becoming one of the important tools for mathematical modeling of complex mechanics
and physical processes [33–36]. With the development of science and technology, most of
the problems in real-life natural phenomena such as optical and thermal systems, rheo-
logical and material and mechanical systems, signal processing and system identification,
control and robotics, and other applications can be described by fractional order differential
equations [37–42]. Therefore, the research on fractional order differential equations has also
received extensive attention from more and more authors, especially the fractional order
differential equations abstracted from practical problems have become a hot research topic
for many mathematicians. As fractional order differential equations appear in more and
more scientific fields, the study of both theoretical analysis and numerical computation of
fractional order differential equations is particularly urgent [37–42]. This is because it can
better explain the complex natural phenomena.

Lie symmetry method provides a powerful and fundamental framework to the inves-
tigation of differential equations, it can link between different differential equations, it also
can construct conservation laws for differential equations. As this equation is obtained
from the extended Lax pair and this equation can be reduced to the classical sine-Gorden
equation, it is necessary to study this equation to provide stronger theoretical support for
solving practical problems. The current paper is divided into the following main sections,
in Section 2, the extended double (2+1)-dimensional sine-Gorden equation is studied
using symmetry method. In Section 3, symmetry reductions and analytical solutions of
the extended double (2+1)-dimensional sine-Gorden equation are presented. A conserva-
tion law is given by Section 4. Explicit solutions of the extended double time fractional
(2+1)-dimensional sine-Gorden equation are obtained in Section 5. The last Section is the
conclusion of this paper.

2. Symmetry Analysis of the Extended Double (2+1)-Dimensional Sine-Gorden
Equation (2)

Given the following vector fields [11–20]

V = ξ3(x, y, t, u)
∂

∂t
+ ξ1(x, y, t, u)

∂

∂x
+ ξ2(x, y, t, u)

∂

∂y
+ η(x, y, t, u)

∂

∂u
, (4)

where {
t∗ = t + εξ3(x, y, t, u) + O(ε2), x∗ = x + εξ1(x, y, t, u) + O(ε2),
y∗ = y + εξ2(x, y, t, u) + O(ε2), u∗ = u + εη(x, y, t, u) + O(ε2).

(5)

Consider the connection of vector field (4) and symmetry of the extended double (2+1)-
dimensional sine-Gorden equation, V needs to satisfy Lie’s symmetry condition

pr(2)V(∆1)|∆1=0 = 0, (6)

where ∆1 = uxx − uxy − uxt + uyt − sin u− a sin 2u.
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Given the second prolongation

pr(2)V =

V + ηx(x, y, t, u) ∂
∂ux

+ ηy(x, y, t, u) ∂
∂uy

+ ηt(x, y, t, u) ∂
∂ut

+ ηxt(x, y, t, u) ∂
∂uxt

+ηxy(x, y, t, u) ∂
∂uxy

+ ηxt(x, y, t, u) ∂
∂uxt

+ ηyt(x, y, t, u) ∂
∂uyt

,
(7)

pr(2)V to the (2), the following infinitesimal criterion reads as

ηxx − ηxy − ηxt + ηyt − η cos u− 2a cos 2uη = 0, (8)

where

ηt = Dt(η)− uxDt(ξ
1)− uyDt(ξ

2)− utDt(ξ
3),

ηx = Dx(η)− uxDx(ξ
1)− uyDx(ξ

2)− utDx(ξ
3),

ηy = Dy(η)− uxDy(ξ
1)− uyDy(ξ

2)− utDy(ξ
3),

ηxx = Dx(η
x)− uxtDx(ξ

3)− uxxDx(ξ
1)− uxyDx(ξ

2),

ηyy = Dy(η
y)− uytDy(ξ

3)− uxyDy(ξ
1)− uyyDy(ξ

2),

(9)

and so on and here Di is the following total derivative operator

Di =
∂

∂xi + ui
∂

∂u
+ uij

∂

∂uj
+ · · · i = 1, 2, 3, (10)

and (x1, x2, x3) = (t, x, y).
After calculation, the following results are derived:

η = 0, ξ3 = (x + y)F2(x + t + y) + F3(x + t + y),

ξ1 = (−x− 2y)F2(x + t + y) + F4(x + t + y),

ξ2 = F1(x + t + y) + yF2(x + t + y),

(11)

where Fi(i = 1, 2, 3, 4) are arbitrary functions of x + t + y. Therefore, from Equation (4),
the following infinitesimal generators are obtained:

V = V1 + V2 + V3 + V4, (12)

where

V1 = F4(x + t + y)
∂

∂x
,

V2 = F1(x + t + y)
∂

∂y
,

V3 = F3(x + t + y)
∂

∂t
,

V4 = (x + y)F2(x + t + y)
∂

∂t
+ (−x− 2y)F2(x + t + y)

∂

∂x
+ yF2(x + t + y)

∂

∂y
.

(13)

It is clear that if the appropriate functions for F1, F2, F3, and F4 are selected, an infinite
number of symmetries are presented. Obviously, there are basic infinitesimal generators
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V1 =
∂

∂x
,

V2 =
∂

∂y
,

V3 =
∂

∂t
,

V4 = (x + y)
∂

∂t
+ (−x− 2y)

∂

∂x
+ y

∂

∂y
.

(14)

Their Lie algebra and commutative relations are given by

[V1, V1] = 0, [V2, V2] = 0, [V3, V3] = 0, [V4, V4] = 0,

[V1, V2] = −[V2, V1] = 0, [V1, V3] = −[V3, V1] = 0,

[V2, V3] = −[V3, V2] = 0, [V1, V4] = −[V4, V1] = V3 −V1,

[V2, V4] = −[V4, V2] = V3 − 2V1 + V2,

[V3, V4] = −[V4, V3] = 0.

(15)

Based on the Lie group method, if u = f (x, y, t) is a solution of the extended double
(2+1)-dimensional sine-Gorden equation, so are

u1 = f (x− ε, y, t),

u2 = f (x, y− ε, y),

u3 = f (x, y, t− ε),

(16)

and so on. In next section, some analytical solutions will be investigated.

3. Symmetry Reductions and Analytical Solutions of the Extended Double
(2+1)-Dimensional Sine-Gorden Equation (2)
3.1. Symmetry Reductions
3.1.1. V1

For generator V1, the invariant function is u = f (τ, η), where τ = t, η = y are
invariants; therefore, the following partial differential equation (PDEs) are derived:

uτη = sin u + a sin 2u. (17)

It needs to be emphasized that this equation is just famous double (1+1)-dimensional
sine-Gorden equation.

3.1.2. V2

For vector V2, the invariant function is u = f (ξ, τ) and invariants are τ = t, ξ = x.
Thus, they generate following PDE

−uτξ = sin u + a sin 2u. (18)

3.1.3. V3

Considering V3, the invariant function and invariants are u = f (ξ, η) and ξ = x, η = y,
respectively. For this case, following PDE is presented

uξξ − uξη = sin u + a sin 2u. (19)



Fractal Fract. 2022, 6, 166 5 of 13

3.1.4. Traveling Wave Transformation

Given u = f (ξ) and ξ = x + ky− ct, one can get the following PDE

(1− kc− k + c)uξξ = sin u + a sin 2u. (20)

From the above analysis, it is found that (17)–(19) are PDEs and (20) is ordinary
differential equation(ODE). Of course, (17)–(19) also can reduced to ODE via traveling
wave transformation. Now, as (17)–(19) still are PDEs, these equations are studied again
using again Lie symmetry method.

3.2. Symmetry Analysis of Reduced Equations

Base on the previous steps, we consider (17)–(19) using the Lie symmetry method again.

3.2.1. Lie Symmetry of Equations (17) and (18)

For these PDEs, one can obtain the infinitesimal generators as follows:

V1 =
∂

∂x
,

V2 =
∂

∂t
,

V3 = x
∂

∂x
− t

∂

∂t
.

(21)

3.2.2. Lie Symmetry of Equation (19)

For this PDE, the following infinitesimal generators are derived

V1 =
∂

∂x
,

V2 =
∂

∂t
,

V3 = (−2t− x)
∂

∂x
− t

∂

∂t
.

(22)

Of course, these equations can continue to be handled in the same way and with the
same steps as before. For the sake of simplicity, they are not listed in detail.

3.3. Analytical Solutions of the Extended Double (2+1)-Dimensional Sine-Gorden Equation (2)

In previous section, a ODE is derived via traveling wave transformation. Now, one
can study this ODE (20).

For the extended double sine-Gordon equation, using the traveling wave transforma-
tion ξ = x + ky− ct

uxx − uxy − uxt + uyt = sin u + a sin 2u, (23)

that can be converted to the following ODE

(1− kc− k + c)uξξ = sin u + a sin 2u, (24)

or equivalently form

u′′ =
1

1− kc− k + c
sin(u) +

a
1− kc− k + c

sin(2u). (25)
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From the above analysis, it can be seen that in order to guarantee the existence of solutions,
it is required that k is not equal to 1. Assuming that u(ξ) satisfies the following ODE:

u′ = a0 +
n

∑
j=1

(
aj cos u + bj sin u

)
, (26)

where aj(j = 0, 1, 2, · · · ) and bj(j = 1, 2, · · · ) are constants need to be fixed, also the positive
integer n can be fixed via the leading-order analysis method. In this way, one can get n = 1,
thus we have

u′ = a0 + a1 cos u + b1 sin u, (27)

where a1 and b1 are constants that will be determined. Differentiating (27) with respect to
ξ gives

u′′(ξ) = −a1 sin uu′ + b1 cos uu′

= −a1 sin u(a0 + a1 cos u + b1 sin u) + b1 cos u(a0 + a1 cos u + b1 sin u).
(28)

Comparing (28) with (25) it can be found that b1 has to equal to zero. Therefore, one
can obtain

−a0a1 =
1

1− kc− k + c
,−

a2
1

2
=

a
1− kc− k + c

, (29)

that is to say,

a0 =

√
1

2a(kc + k− c− 1)
, a1 =

√
2a

kc + k− c− 1
. (30)

It can be seen that Equation (27) is separable, hence one can have

1
a0 + a1 cos(u)

du = dξ, (31)

where by integrating both sides, the following solutions [8] are derived

u1,2 =



2 arctan

±√ a1 + a0

a1 − a0
tan

√
a2

1 − a2
0

2
(ξ + ξ0)


2 arctan

±√ a1 + a0

a1 − a0
cot

√
a2

1 − a2
0

2
(ξ + ξ0)


for a2

0 > a2
1 , (32)

u3,4 =



2 arctan

±√ a1 + a0

a1 − a0
tanh

√
a2

1 − a2
0

2
(ξ + ξ0)


2 arctan

±√ a1 + a0

a1 − a0
coth

√
a2

1 − a2
0

2
(ξ + ξ0)


for a2

0 < a2
1 , (33)

u5 = 2 arctan a0(ξ + ξ0) for a1 = a0,

u6 = −2 arccot a0(ξ + ξ0) for a1 = −a0,
(34)

where ξ0 is the constant of integration. These solutions are solitary wave solutions, they
have obvious physical implications, that is to say, the wave form does not change with
time in the propagation process, and outside the zone of interaction (the collision zone),
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the solitary wave retains its shape and velocity. Therefore, in turn, it can be derived that
the following analytical solutions

u1,2 =



2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

tan

√
4a2 − 1

8a(kc + k− c− 1)
(x + ky− ct + ξ0)

]

2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

cot

√
4a2 − 1

8a(kc + k− c− 1)
(x + ky− ct + ξ0)

]

(35)

for a2
0 > a2

1,

u3,4 =



2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

tanh

√
4a2 − 1

8a(kc + k− c− 1)
(x + ky− ct + ξ0)

]

2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

coth

√
4a2 − 1

8a(kc + k− c− 1)
(x + ky− ct + ξ0)

]

(36)

for a2
0 < a2

1,

u5 = 2 arctan

√
1

2a(kc + k− c− 1)
(x + ky− ct + ξ0) for a1 = a0,

u6 = −2 arccot

√
1

2a(kc + k− c− 1)
(x + ky− ct + ξ0) for a1 = −a0.

(37)

4. Conservation Laws of Equation (2)

A conservation law express the following form:

DtT + DxX + DyY = 0. (38)

By using conservation law multiplier method [13], let

R[u] , uxx − uxy − uxt + uyt − sin u− a sin 2u = 0. (39)

Therefore, one can get

DiΦi[u] , D1Φ1[u] + D2Φ2[u] + D3Φ3[u] = 0, (40)
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the total derivative operators satisfy solutions of Equation (39). Solving Λ[u]R[u] ≡ DiΦi[u],
for every u in Equation (39), one should get a multiplier Λ[u] = Λ(x, y, t, u).

Theorem 1 ([13]). Consider the divergence expression DiΦi[u], one can have

Eu

(
DiΦi[u]

)
≡ 0, (41)

where Eu is the Euler operator given by

Eu =
∂

∂u
− Di

∂

∂u
+ · · ·+ (−1)sDi1 · · ·Dis

θ

∂ui1 · · · is
+ · · · (42)

Theorem 2 ([13]). A divergence expression for Equation (39) can be derived by a conservation law
multiplier Λ(x, y, t, u) if and only if

Eu(Λ(x, y, t, u)R[u]) ≡ 0, (43)

holds for every u in Equation (39).

Theorem 3. Consider second order multiplier {Λ} = {x, t, y, ux, uxx}, and arbitrary constant a,
Equation (39) has a local conservation law

T =

(
−1

2
u2

x +
1
2

uxuy

)
,

X =

(
1
2

uuty −
1
2

uuxy +
1
2

u2
x −

1
2

uxuy + a(cos u)2 + cos u− a− 1
)

,

Y =

(
−1

2
uutx +

1
2

uuxx

)
,

(44)

in other words,

Dt

(
−1

2
u2

x +
1
2

uxuy

)
+ Dy

(
−1

2
uutx +

1
2

uuxx

)
+ Dx

(
1
2

uuty −
1
2

uuxy +
1
2

u2
x −

1
2

uxuy + a(cos u)2 + cos u− a− 1
)
= 0.

(45)

Proof. Consider Equation (43), one gets

Λt = Λx = Λy = Λu = Λuxx = 0, uxΛux = Λ.

Solving these equations, one can obtain

Λ = c1ux,

where c1 is arbitrary constant. Thus, it shows that Theorem 3 holds.

5. Analytical Solutions of the Extended Double Time Fractional (2+1)-Dimensional
Sine-Gorden Equation (3)

For the extended double time fractional (2+1)-dimensional sine-Gorden Equation (3),
using the fractional complex transform [3,4] ξ = x + ky− c tα

Γ(1+α)
, and u(x, y, t) = u(ξ),

substitute them into Equation (3),

uxx − uxy − (uα
t )x + (uα

t )y = sin u + a sin 2u, (46)
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should be converted to the following ODE as follows

(1− kc− k + c)uξξ = sin u + a sin 2u. (47)

If we assume ξ = k1x + k2y− c tα

Γ(1+α)
, this requirement k1 is not equal to k2. Without loss

in generality, we assume k1 = 1. It can be found that k also cannot be equal to 1 in order to
guarantee the existence of the solution. This means that after fractional complex transform,
it also becomes the same ordinary differential equation as Equation (24). If α is equal to 1, it
is the classical traveling wave transform. In this way, using the results obtained above, one
can directly obtain solutions of the fractional order differential equation as described below

u1,2 =



2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

tan

√
4a2 − 1

8a(kc + k− c− 1)

(
x + ky− c

tα

Γ(1 + α)
+ ξ0

)]

2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

cot

√
4a2 − 1

8a(kc + k− c− 1)

(
x + ky− c

tα

Γ(1 + α)
+ ξ0

)]

(48)

for a2
0 > a2

1,

u3,4 =



2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

tanh

√
4a2 − 1

8a(kc + k− c− 1)

(
x + ky− c

tα

Γ(1 + α)
+ ξ0

)]

2 arctan

±
√√√√√√
√

2a
kc+k−c−1 +

√
1

2a(kc+k−c−1)√
2a

kc+k−c−1 −
√

1
2a(kc+k−c−1)

coth

√
4a2 − 1

8a(kc + k− c− 1)

(
x + ky− c

tα

Γ(1 + α)
+ ξ0

)]

(49)

for a2
0 < a2

1,

u5 = 2 arctan

√
1

2a(kc + k− c− 1)

(
x + ky− c

tα

Γ(1 + α)
+ ξ0

)
for a1 = a0,

u6 = −2 arccot

√
1

2a(kc + k− c− 1)

(
x + ky− c

tα

Γ(1 + α)
+ ξ0

)
for a1 = −a0.

(50)

The above analysis shows that if α = 1, these solutions are transformed into Equations (35)–(37).
Take the following solution u5 = 2 arctan

√
1

2a(kc+k−c−1)

(
x + ky− c tα

Γ(1+α)
+ ξ0

)
as an

example to describe how the solution changes with different α. Let k = c = 2, a = 1
6 , ξ0 = 0,
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one can get u5 = 2 arctan
(

x + 2y− 2 tα

Γ(1+α)

)
. Figures 1–4 depict the solution u5 for

different α at y = 0.

Figure 1. α = 1.

Figure 2. α = 0.8.

Figure 3. α = 0.5.
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Figure 4. α = 0.3.

The following Figure 5 shown the solution with different α at y = 0, t = 2. As can be
seen in Figure 5, the location of the solution changes as α changes. The larger the value
of α, the more forward the solution is located, and conversely, the smaller the value of α,
the more backward the solution is located.

Figure 5. Plots of solutions with different α at y = 0, t = 2.

6. Conclusions

In this paper, the extended double (2+1)-dimensional sine-Gorden equation and its
time fractional form are studied. It is clear that this paper generalizes the results in the
literature [1]. This equation not only has extra terms a sin 2u, but also has the time fractional
order form of this equation. More importantly, some explicit solutions are obtained.

The extended double (2+1)-dimensional sine-Gorden equation is reduced to a double
(1+1)-dimensional sine-Gorden equation by the group method. In addition, it can be found
that this equation has basic symmetries. By these basic symmetries, symmetry reductions
are obtained. Furthermore, some exact solutions of the extended double (2+1)-dimensional
sine-Gorden equation are obtained using traveling wave transform. After that, a conser-
vation law of this equation is obtained based on the conservation law multiplier method.
Meanwhile, using the fractional complex transform, some new explicit solutions of the
extended double time fractional (2+1)-dimensional sine-Gorden equation also presented.

Consequently, the extended double (2+1)-dimensional sine-Gorden equation is an
interesting new equation in nonlinear mathematical physics fields, it should be noted that
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there are still many issues worth investigating, such as non-local symmetry, non-local
conservation laws and many more explicit solutions.
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