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Abstract: The theme of this study is to present the impacts and importance of the fractional order
derivatives of the susceptible, infected and quarantine (SIQ) model based on the coronavirus with
the lockdown effects. The purpose of these investigations is to achieve more accuracy with the use
of fractional derivatives in the SIQ model. The integer, nonlinear mathematical SIQ system with
the lockdown effects is also provided in this study. The lockdown effects are categorized into the
dynamics of the susceptible, infective and quarantine, generally known as SIQ mathematical system.
The fractional order SIQ mathematical system has never been presented before, nor solved by using
the strength of the stochastic solvers. The stochastic solvers based on the Levenberg-Marquardt
backpropagation scheme (LMBS) along with the neural networks (NNs), i.e., LMBS-NNs have been
implemented to solve the fractional order SIQ mathematical system. Three cases using different
values of the fractional order have been provided to solve the fractional order SIQ mathematical
model. The data to present the numerical solutions of the fractional order SIQ mathematical model
is selected as 80% for training and 10% for both testing and validation. For the correctness of the
LMBS-NNs, the obtained numerical results have been compared with the reference solutions through
the Adams–Bashforth–Moulton based numerical solver. In order to authenticate the competence,
consistency, validity, capability and exactness of the LMB-NNs, the numerical performances using
the state transitions (STs), regression, correlation, mean square error (MSE) and error histograms
(EHs) are also provided.

Keywords: SIQ mathematical model; fractional order; coronavirus; Levenberg-Marquardt backprop-
agation scheme; neural networks; Adams–Bashforth–Moulton

1. Introduction

There are a number of dangerous and transmitted diseases like dengue, HIV and
Ebola [1–3]. The coronavirus is a transmitted disease and has played a significant role
in human lives for the last two years. It badly affected the economies, industries, sports,
social activities, education sectors and each part of life [4,5]. The coronavirus disease
spread quickly, and a number of casualties happened in a short time. The basic role of
the coronavirus spreading is due to travel or transportations of individuals from defective
countries to different areas [6,7]. The vaccination process was started as a hope to control
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this series viral disease. It is stated in the literature that the individual’s migration has
a vital role in the spreading of the infection. It has also been noted that immigration is
not only an issue of the infections, but the other reasons may also affect the spread of the
virus [8].

A number of the approaches have been used to solve the mathematical form of the
coronavirus along with different features. Rhodes et al. [9] proposed the mathematical
ODEs for the communal distresses due to coronavirus. Benvenuto et al. [10] implemented
the ARIMA system for the coronavirus. Mustafa et al. [11] presented a mathematical
system to forecast and analyze the coronavirus transmission. Sivakumar [12] analyzed
the predictive control for the coronavirus in India. Nesteruk [13] assessed the dynam-
ics of the coronavirus pandemic in Ukraine using the double data sets. Thompson [14]
studied the epidemiologic system with the use of significant apparatus using the coron-
avirus interferences. Libotte [15] presented an administration plan for the coronavirus
vaccine. Sadiq et al. [16] investigated the impacts of nanomaterial to handle the coron-
avirus disease. Gumel et al. [17] discovered a mathematical system for the coronavirus
disease. Ortenzi et al. [18] presented a transdisciplinary discipline study of coronavirus in
Italy. Sánchez et al. [19] designed a susceptible, infected, treatment and recovered (SITR)
mathematical model using the sense of corona virus. In other studies, Sabir et al. [20] pro-
vided the stochastic performances of the SITR model-based coronavirus. Moore et al. [21]
designed a mathematical coronavirus system to investigate a vaccination impact and a
non-pharmaceutical intervention. Umar [22] studied theoretical performances to treat
coronavirus. Anirudh [23] provided the transmission dynamics prediction based on the
coronavirus. Chen et al. [24] provided the social distance effects using the mathematical
form of the dynamics of coronavirus. Zhang et al. [25] expressed the coronavirus dynam-
ics using the stochastic perturbation behavior. Soumia et al. [26] described the possible
inhibitors of coronavirus.

In this study, the fractional order derivatives of susceptible, infected and quarantine
(SIQ) model based on the coronavirus with the lockdown effects are presented using the
stochastic numerical performances of the Levenberg–Marquardt backpropagation scheme
(LMBS) along with the neural networks (NNs), i.e., LMBS-NNs.

The design of the fractional order SIQ model is presented in Section 2. The details of
the stochastic applications are provided in Section 3. The LMBS-NNs structure is explained
in Section 4. The simulations of the fractional order SIQ model are provided in Section 5.
Finally, the conclusion is drawn in the Section 6.

2. Mathematical Design of the Fractional Order SIQ System

In this section, the lockdown impacts as protective measures have been provided in
the SIQ model. The lockdown effects are categorized into the dynamics of the susceptible,
infective and quarantine classes-based system of differential equations. The mathematical
form of the SIQ model is provided as [27]:

dS(x)
dx = a − βS(x)I(x)

α+η I(x) − µS(x) + (1 − θ)m, S0 = c1,
dI(x)

dx = mθ − (α1 + δ1 + µ + σ)I(x) + β(1−k)S(x)I(x)
η I(x)+α

, I0 = c2,
dQ(x)

dx = σI(x) + βkS(x)I(x)
η I(x)+α

− (α2 + µ + δ2)Q(x), Q0 = c3.

(1)

The necessary and exhaustive detail of the SIQ mathematical model together with the
description of each parameter is given in Table 1. Moreover, the selection of the appropriate
values given in the system (1) provided in [27] along with the theoretical details of optimal
control, global and local stabilities.
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Table 1. Description of each comprehensive detail of each specification of the SIQ mathematical
model.

Parameters Details

a Recruitment rate
α Half saturation constant
η Positive value
m Migrants number
β Transmission infection rate
µ Natural death rate
δ1 Recovery of infective population
k Contact tracing rate
θ Infected migrants’ rate
σ 0.59 per day
α2 Disease associated quarantine’s population death rate
α1 Disease related infective population’s death rate
δ2 Quarantined population recovered rate

c1, c2 and c3 Contents: Initial conditions (ICs)

In the current study, the numerical investigations of the fractional order derivatives
of SIQ model based on the coronavirus with the lockdown effects (1) have been provided
by using the artificial intelligence (AI) with the design of LMBS-NNs. The design of the
fractional order derivatives of SIQ model is formulated for the in-depth analysis of the
super slow evolution as well as superfast transitions by replacing the ordinary integer
order derivation in set of Equation (1) by fractional orders. The modified system (1) is given
as follows:

d(υ)S(x)
dx(υ)

= a − βS(x)I(x)
α+η I(x) − µS(x) + (1 − θ)m, S0 = c1,

d(υ) I(x)
dx(υ)

= mθ − (α1 + δ1 + µ + σ)I(x) + β(1−k)S(x)I(x)
η I(x)+α

, I0 = c2,
d(υ)Q(x)

dx(υ)
= σI(x) + βkS(x)I(x)

η I(x)+α
− (α2 + µ + δ2)Q(x), Q0 = c3.

(2)

where υ shows the FO derivative in the above system.

3. Novel Topographies and Outline of the Stochastic Solvers

The numerical stochastic operators through the LMBS-NNs are provided to solve the
fractional order derivatives of SIQ model based on the coronavirus with the lockdown
effects. The local and global operator performances through the stochastic computing
solvers have been exploited to solve the numerous nonlinear, complex, stiff and singular
systems [28].

The aim of this study is to perform the numerical representations of the fractional
order derivatives of SIQ model based on the coronavirus with the lockdown effects using
the stochastic procedures of the LMBS-NNs. It is observed that the time-fractional order
derivatives have a number of applications to define the system conditions. The derivative
order form represents the remembrance, but the memory function represents the derivative
of fractional order. These fractional derivatives indicate the real-world applications [29,30].
Some novel features of the LMBS-NNs for the mathematical fractional order system using
the SIQ model are presented as:

• A novel design of the fractional order SIQ model based on the coronavirus with the
lockdown effects is presented;

• The stochastic measures have not been applied before to solve the fractional order SIQ
model based on the coronavirus with the lockdown effects;

• The numerical investigations through the stochastic paradigms are successfully pre-
sented using the fractional order SIQ mathematical model;

• AI with the design of LMBS-NNs is presented to solve the nonlinear fractional order
SIQ mathematical model;
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• Three different fractional order variations based on the SIQ model have been numeri-
cally solved to authenticate the reliability of the proposed scheme;

• The brilliance of the stochastic computing solver based LMBS-NNs is provided using
the comparison of the obtained and reference (Adams–Bashforth–Moulton) solutions;

• The accuracy of the scheme is observed through the absolute error (AE) performances
that is achieved in good order to solve the fractional order SIQ mathematical model;

• The regression, STs, MSE and EHs and correlation performances approve the depend-
ability and constancy of the designed LMBS-NNs to solve the fractional order SIQ
mathematical model.

4. Proposed Procedures: LMBS-NNs

The proposed LMBS-NNs structure for solving the fractional order SIQ mathematical
model is explained in this section. The methodology is designed in two parts. First, the
essential performances of the LMB-NNs operator are provided. Next, the execution method
via LMBS-NNs is implemented to solve the fractional order SIQ mathematical model. The
proposed LMBS-NN are executed with analysis on the similar pattern as given in reported
studies [31,32].

Figure 1 presents the multi-layer optimization procedures using the numerical stochas-
tic LMBS-NNs, while the single layer neuron structure is plotted in Figure 2. The LMBS-
NNs procedures are provided using ‘nftool’ command in Matlab with the selection of data
as 80% for training and 10% for both testing and authorization.
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5. Results through the Designed Method

This section shows the numerical performances of three different fractional order
variations to solve the nonlinear SIQ mathematical system using the proposed LMBS-NNs.
The mathematical representation of each variation is presented in the below cases as:

Case 1: Consider a fractional order coronavirus based SIQ mathematical model by taking
the appropriate values υ = 0.5, a = 2.6, β = 2.1, α = 5, σ = 0.59, η = 1, α1 = 1.78, δ1 = 0.4,
µ = 5.2, α2 = 1.78, δ2 = 0.4, θ = 0.9, k = 0.1, m = 14, c1 = 1.32, c2 = 2.29 and c3 = 3.5 is
provided as: 

d(0.5)S(x)
dx(0.5) = 4 − 5.2S(x)− 2.1S(x)I(x)

5+I(x) , S0 = 1.32,
d(0.5) I(x)

dx(0.5) = 12.6 − 7.97I(x) + 1.89I(x)S(x)
I(x)+5 , I0 = 2.29,

d(0.5)Q(x)
dx(0.5) = 0.59I(x) + 0.21S(x)I(x)

5+I(x) − 7.38Q(x), Q0 = 3.5.

(3)

Case 2: Consider a fractional order coronavirus based SIQ mathematical model by taking
the appropriate values υ = 0.7, a = 2.6, β = 2.1, α = 5, σ = 0.59, η = 1, α1 = 1.78, δ1 = 0.4,
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µ = 5.2, α2 = 1.78, δ2 = 0.4, θ = 0.9, k = 0.1, m = 14, c1 = 1.32, c2 = 2.29 and c3 = 3.5 is
provided as: 

d(0.7)S(x)
dx(0.7) = 4 − 5.2S(x)− 2.1S(x)I(x)

5+I(x) , S0 = 1.32,
d(0.7) I(x)

dx(0.7) = 12.6 − 7.97I(x) + 1.89I(x)S(x)
I(x)+5 , I0 = 2.29,

d(0.7)Q(x)
dx(0.7) = 0.59I(x) + 0.21S(x)I(x)

5+I(x) − 7.38Q(x), Q0 = 3.5.

(4)

Case 3: Consider a fractional order coronavirus based SIQ mathematical model by taking
the appropriate values υ = 0.9, a = 2.6, β = 2.1, α = 5, σ = 0.59, η = 1, α1 = 1.78, δ1 = 0.4,
µ = 5.2, α2 = 1.78, δ2 = 0.4, θ = 0.9, k = 0.1, m = 14, c1 = 1.32, c2 = 2.29 and c3 = 3.5 is
provided as: 

d(0.9)S(x)
dx(0.9) = 4 − 5.2S(x)− 2.1S(x)I(x)

5+I(x) , S0 = 1.32,
d(0.9) I(x)

dx(0.9) = 12.6 − 7.97I(x) + 1.89I(x)S(x)
I(x)+5 , I0 = 2.29,

d(0.9)Q(x)
dx(0.9) = 0.59I(x) + 0.21S(x)I(x)

5+I(x) − 7.38Q(x), Q0 = 3.5.

(5)

The numerical presentations through the simulations of coronavirus based SIQ mathe-
matical model is presented by using the stochastic LMBS-NNs procedures with 8 numbers
of neurons along with the selection of data as 80% for training and 10% for both testing
and authorization. The hidden, output and input neuron’s structure is given in Figure 3.

Figure 3. Proposed LMBS-NNs for the fractional order coronavirus based SIQ model.

The graphical representations are plotted in Figures 4–6 to solve the fractional order
coronavirus based SIQ mathematical model by using the LMBS-NNs procedures. In
order to check the best performances and STs, the graphical illustrations are provided
in Figures 4 and 5. The MSE and STs values for training, best curves and authentication
are derived in Figure 4 to solve the fractional order coronavirus based SIQ mathematical
model. The obtained values of MSE based on the best performances of the fractional
order coronavirus based SIQ mathematical model have been calculated at epochs 294,
1000 and 155 that are calculated as 1.2309 × 10−8, 5.17679 × 10−9 and 1.9259 × 10−7,
respectively. The gradient measures are also plotted in Figure 4 to solve the fractional
order coronavirus based SIQ mathematical model using the LMBS-NNs. These gradient
performances have been calculated as 5.1656 × 10−6, 1.9123 × 10−6 and 2.0104 × 10−5

for case 1, 2 and 3. These graphical representations indicate the convergence of proposed
LMBS-NNs to solve the fractional order coronavirus based SIQ mathematical model using
the LMBS-NNs. Figures 5–8 represents the values of the fitting curves to solve each case
of fractional order coronavirus based SIQ mathematical model. These plots represent the
comparative performances of the reference and obtained results. The error plots from
the substantiation, testing and training to solve each case of fractional order coronavirus
based SIQ mathematical model are provided in Figure 5 (a to c) while, the EHs are plotted
in Figure 5d–f. The EHs are calculated as 2.38 × 10−4, 7.10 × 10−5 and 4.29 × 10−4 for
case 1, 2 and 3, respectively. The regression measures are provided in Figure 6a–c based
on the fractional order coronavirus based SIQ mathematical model. The correlation is
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provided to validate the regression performance in Figure 6. It is clear in understanding
that the correlation plots are calculated as 1 for the fractional order coronavirus based SIQ
mathematical model. The training, testing and authentication representations denote the
correctness of the stochastic LMBS-NNs procedure to solve the fractional order coronavirus
based SIQ mathematical model. The convergence through MSE using the complexity,
training, authentication, iterations, testing and backpropagation is provided in Table 2
Figure to solve the fractional order coronavirus based SIQ mathematical model. The brief
description of the parameters tabulated is provided as follows; the validation performance
means that the value of fitness, i.e., MSE, for the data samples used for the validation,
i.e., 10% of total samples, validation checks being the controlling paper for the networks
to stop further learning of the weights, Mu being the adaptive Levenberg–Marquardt
parameter for convergence controlling coefficient of the algorithm, gradient being the first
order optimality parameter, performance means fitness on MSE and time in seconds being
the time complexity of adaption of the networks.

Figure 4. STs and MSE performances to solve the fractional order coronavirus based SIQ mathematical
model. (a) Case 1 analysis on MSE. (b) Case 2: analysis on MSE. (c) Case 3: analysis on MSE. (d) Case I:
algorithm parameter. (e) Case 2: algorithm parameter. (f) Case 3: algorithm parameter.
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Figure 5. Valuations of the results and EHs for the STs to solve the fractional order coronavirus based
SIQ mathematical model. (a) Case 1: Result assessments. (b) Case 2: Result assessments. (c) Case 3:
Result assessments. (d) Case I: EH. (e) Case 2: EHs. (f) Case 3: EHs.

Table 2. LMBS-NNs procedure to solve the fractional order coronavirus based SIQ mathematical
model.

Case
MSE

Gradient Performance Epoch Mu Time
Training Testing Validation

1 2.01 × 10−8 4.14 × 10−6 1.23 × 10−8 5.17 × 10−6 1.98 × 10−8 300 1 × 10−8 06
2 2.37 × 10−9 1.64 × 10−7 5.17 × 10−9 1.91 × 10−6 2.38 × 10−9 1000 1 × 10−8 06
3 1.45 × 10−7 5.21 × 10−6 1.92 × 10−7 2.01 × 10−5 1.37 × 10−7 161 1 × 10−7 03
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Figure 6. Regression plots STs to solve the fractional order coronavirus based SIQ mathematical
model. (a) Regression plots: Case 1. (b) Regression plots: Case 2. (c) Regression plots: Case 3.
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The plots of the result comparisons and AE values are provided in Figures 7 and 8.
The numerical representations are provided to solve the fractional order coronavirus based
SIQ mathematical model using the stochastic LMBS-NNs. The reference and obtained
numerical performances are plotted in Figure 7 through the overlapping of the results. The
result overlapping authenticates the exactness of the LMBS-NNs to solve the fractional
order coronavirus based SIQ mathematical model. The AE values to solve the SIQ model
are performed in Figure 8. The AE for the susceptible individuals S(x) calculated as 10−4 to
10−7, 10−4 to 10−6 and 10−4 to 10−5 for case 1 to 3. The AE for the infected individuals I(x)
calculated as 10−4 to 10−6, 10−4 to 10−7 and 10−4 to 10−6 for case 1 to 3. Similarly, the AE
for the quarantine individuals Q(x) calculated as 10−4 to 10−6, 10−4 to 10−5 and 10−3 to
10−5 for case 1 to 3. These AE values represent the exactness of the proposed LMBS-NNs to
solve the fractional order coronavirus based SIQ mathematical model.

Figure 7. Results based on the fractional order coronavirus based SIQ mathematical model. (a) Results
for S(x). (b) Results for I(x). (c) Results for Q(x).
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Figure 8. AE based on the fractional order coronavirus based SIQ mathematical model. (a) AE for
S(x). (b) AE for I(x). (c) AE for Q(x).

6. Concluding Remarks

In this work, the numerical presentations of the coronavirus based SIQ mathematical
model are presented. The aim of this study is to provide the fractional order study using the
dynamics of coronavirus based SIQ mathematical model to get more accurate performances
of the system. The integer nonlinear mathematical SIQ system with the lockdown effects
was also provided in this study. The fractional order coronavirus based SIQ mathematical
model is classified into three dynamics, susceptible, infective and quarantine, generally
known as the SIQ mathematical system. The numerical performances of the fractional order
coronavirus based SIQ mathematical model have never been presented nor solved by using
the stochastic Levenberg-Marquardt backpropagation neural networks. Three cases using
different values of the fractional order have been provided to solve the fractional order SIQ
mathematical model. The data to present the numerical solutions of the fractional order
SIQ mathematical model were selected as 80% for training and 10% for both testing and
authorization. Eight numbers of neurons were used to present the numerical performances
of the fractional order SIQ mathematical system. The numerical results of the fractional
order SIQ mathematical system have been compared with the Adams–Bashforth–Moulton
solver. To reduce the MSE, the obtained numerical results have been performed by using the
LMBS-NNs. The reliability and competence of LMBS-NNs and the numerical performances
have been illustrated using the STs, regression, correlation, EHs and MSE. The correctness
of the LMBS-NNs based on the fractional order SIQ mathematical model is observed via
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the matching of reference and obtained results. The performance of the scheme is verified
based on the consistency and dependability of the proposed LMBS-NNs.

In future work, the LMBS-NNs can be implemented to present the numerical mea-
sures of the lonngren-wave, fluid mechanics systems, bioinformatics studies as well as
information security models.
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