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Abstract: This paper addresses a new fractional order infectious disease model with saturated
incidence and time delay. In the new model, the isolated population and the asymptomatic infected
population are considered. The invariant region and positive analysis of the solution of the model are
established. Next, the basic reproduction number is obtained by the next-generation matrix method,
and the sufficient conditions for local asymptotic stability for arbitrary time delays are proposed.
Finally, the correctness of the theoretical results is verified by some numerical simulations.
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1. Introduction

In the transmission of infectious diseases, modeling and analyzing infectious diseases
to study transmission mechanisms and find effective control strategies is a means that
cannot be ignored [1–6]. The smallpox model established by Bernoulli in 1760 is recognized
as the first dynamic model established to study the transmission mechanism of infectious
diseases and prevention and control strategies [7]. A new SIR model for vaccination and
weakened immunity was proposed in [8]. Reference [9] studied a class of SEIR models
of total population changes over time. Reference [10] considered the global properties of
SIR and SEIR epidemic models with multiple parallel infection stages. Reference [11] used
the improved SEIR model to predict the spread of infectious diseases. It is worth pointing
out that most of the mathematical models of infectious diseases are based on ordinary
differential equations.

It has been reported that dynamic systems typically undergo two stages of develop-
ment, from integerorder dynamic systems to fractional-order systems; and in techniques
in the domains of solid mechanics [12], physics [13], finance [14], population growth [15],
physiology [16], and electro-mechanical systems [17], fractional differential equations of
different stages appear frequently. In recent years, more researchers have begun to study
fractional infectious disease models. Reference [18] proposed a class of fractional-order
models of HIV-1 primary infection with immune control and treatment, and studied the
asymptotic stability of the system. Reference [19] considered a SIR infectious disease model
with disproportionate fractional order and studied the stability of Hopf bifurcations. Ref-
erence [20] proposed a fractional HRSV model with non-singular derivative operators.
Reference [21] perturbs the model into fractional time derivatives through Caputo-type
fractional time derivatives. References [22,23] studied a class of stochastic SIRC epidemic
models with time delay, and the consideration of time delay will make the model more
scientific and realistic. References [24,25] considered an epidemiological model with sat-
urated incidence. Reference [26] studied the impact of isolation measures on the spread
of infectious diseases. Reference [27] considered asymptomatic and symptomatic infected
populations in the infectious disease model.

In this paper, a new fractional order infectious disease model with saturated incidence
and time delay is proposed. The model also considers the isolated population and the
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asymptomatic infected population. The conclusions drawn in this paper have important
implications in the study of infectious disease models, not only by enriching the variety
of infectious disease models, but also by inspiring a more in-depth and detailed study
of fractional order theory. First, the positive invariant set for the new model is consid-
ered. Then, the basic reproduction number and the conditions for the unique existence
of the local equilibrium point are given. Next, the local asymptotic stability of disease-
free and local equilibria is investigated. Finally, the results of this paper are verified by
numerical simulations.

The paper is organized as follows: Sections 2 and 3 give the required lemma and
model descriptions. Section 4 investigates the basic properties of the model. Section 5
focuses on the stability of the equilibrium point. Section 6 reports numerical simulations.

2. Preliminaries

Definition 1 ([28]). The Caputo fractional derivative of order β of a function f (x) is expressed as

Dβ
x f (x) =

1
Γ(n− β)

∫ x

x0

f (n)(τ)

(x− τ)β+1−n dτ, (1)

where n− 1 < β < n and n is the positive integer. When 0 < β < 1, one has

Dβ
x f (x) =

1
Γ(1− β)

∫ x

x0

f
′
(τ)

(x− τ)β
dτ. (2)

Lemma 1 ([29]). The following fractional order systems will be considered.{
Dβ

t x(t) = g(t, x(t)),
x(t0) = xt0 ,

(3)

where β ∈ (0, 1] and g(t, x(t)) : R+ × Rn → Rn. If all eigenvalues λi of the Jacobian matrix
∂g(t,x)

∂x evaluated at the equilibrium points satisfy |arg(λi)| >
βπ
2 , then the equilibrium points of

system (1) are locally asymptotically stable.

Lemma 2 ([30]). There is a continuous function in [t0,+∞) for x(t) and satisfy{
Dα

t x(t) ≤ −λx(t) + µ,
x(t0) = xt0 ,

(4)

where 0 < α ≤ 1, λ, µ ∈ R, and λ 6= 0, t0 ≥ 0 is the initial time. Then

x(t) ≤ (xt0 −
µ

λ
)Eα(−λ(t− t0)

α) +
µ

λ
, (5)

where Eα(∗) is the Mittag–Leffler function defined as

Eα,β(z) =
∞

∑
k=0

zk

Γ(kα + β)
, (6)

where α > 0, β > 0 and z ∈ C. When β = 1, one has Eα,1(z) = Eα(z). Furthermore,
E1,1(z) = ez.

3. Model Description

According to the integer order infectious disease model in the literature [31], divide
the crowd into six categories: S(t), E(t), Q(t), IA(t), IS(t), R(t). They represent susceptible
people, exposed people, isolated people, asymptomatic infected people, symptomatic
infected people, and recovered people. Let N represent the total human population. Based
on the above description we can obtain: N(t) = S(t) + E(t) + Q(t) + IA(t) + IS(t) + R(t).
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When susceptible people are infected with infectious diseases, some infected people
will be detected and isolated by security personnel. The isolated people are already infected
people, but they will lose the ability to spread infectious diseases at the social level. All
infected people are asymptomatic infected people or symptomatic infected people, and will
be treated by different treatment schemes. The specific process is shown in Figure 1,
in which Λ represents the net rate of population increase, µ the natural mortality rate, β the
prevalence of the infectious disease, γ the detection isolation rate, σ the asymptomatic rate
of transmission, θ the symptomatic transmission rate, η the isolated population’s transmis-
sion rate to people who become asymptomatic, v the isolated population’s transmission
rate to people who become symptomatic, δ the unnatural death rate due to the infectious
disease, r1, the period of symptomatic infection, r2 the period of asymptomatic infection.

Figure 1. Description of the spread of disease.

Based on the disease integer-order model in the literature [31], this paper reconstructs
the disease fractional order model, and considers the saturation of the pathogenicity
rate (m is the saturation factor) and the infection incubation period τ, and proposes the
following system. 

cDα
t S(t) = Λ− µS(t)− βS(t)E(t−τ)

1+mS(t) ,
cDα

t E(t) = βS(t)E(t−τ)
1+mS(t) − (γ + µ + η + σ)E(t),

cDα
t Q(t) = γE(t)− (µ + vs. + θ)Q(t),

cDα
t IA(t) = σE(t) + θQ(t)− (µ + r1)IA(t),

cDα
t IS(t) = ηE(t) + vQ(t)− (δ + µ + r2)IS(t),

cDα
t R(t) = r1 IA(t) + r2 IS(t)− µR(t).

(7)

where α ∈ (0, 1] and the initial conditions are as follows:

S(t0) = St0 ≥ 0, E(t) = φ(t) ≥ 0, Q(t0) = Qt0 ≥ 0,
IA(t0) = IAt0

≥ 0, IS(t0) = ISt0
≥ 0, R(t0) = Rt0 ≥ 0,

(8)

where t ∈ (−τ, t0].

4. Basic Properties
4.1. Invariant Region and Boundedness

We explore the dynamic analysis of the model in a feasible area Ω, such that

Ω =

{
(S(t), E(t), Q(t), IA(t), IS(t), R(t)) ∈ R6

+ : 0 ≤ N(t) ≤ Λ
µ

}
. (9)
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Theorem 1. If the initial conditions are non-negative, then Ω is the positive invariant set of the
system (7).

If the theorem holds, then it can be seen from the theorem that the model proposed
in this article performs well in epidemiology. We proceed to prove the correctness of the
theorem below.

Proof. After adding the population components, the total population is as follows.

cDα
t N(t) = cDα

t S(t) + cDα
t E(t) + cDα

t Q(t) + cDα
t IA(t) + cDα

t IS(t) + cDα
t R(t). (10)

Bringing system (7) into the above equation and from (9), we can get

cDα
t N(t) + µN(t) ≤ Λ, (11)

After a Laplace transformation, we can get

N(s) ≤ N(0)
sα−1

sα + µ
+

Λ
s(sα + µ)

, (12)

Next, we consider using the inverse Laplace transform. We can calculate

N(t) ≤ (N(0)− Λ
µ
)Eα,1(−µtα) +

Λ
µ

. (13)

Therefore, when the initial conditions in Ω are non-negative, the solution of the
model is still in Ω, so the area Ω is positive invariant and attracts all the solutions in
R6
+. Furthermore, because for ∀t > 0, satisfying the Mittag–Leffler function is bounded,

and lim
t→∞

Eα,1(−µtα) = 0, the conclusion is drawn from the above: Ω is the positive invariant

region of the system (7), and the solution of the system is bounded.

4.2. Solution Nonnegativity

Theorem 2. If the initial conditions are non-negative, the solution of system (7) is nonnegative for
all ∀t > t0.

Proof. In order to prove the non-negativity of the solution, we adopt the method of proof
by contradiction. The specific proof process is divided into the following three parts.

Part 1. Prove that S(t) > 0, for ∀t > t0.
Suppose there is t∗, which can satisfy S(t∗) = 0, and S(t) < 0 for ∀t ∈ (t∗, t∗ + ξ],

where ξ is a positive number infinitely close to t∗.
From the assumptions, we can get cDα

t S(t∗) = Λ > 0; then we can get cDα
t S(t) > 0

for ∀t ∈ (t∗, t∗ + ξ]. Let cDα
t S(t) > cS(t), where c > 0. Then we can get S(t) >

S(t∗)Eα,1(c(t− t∗)α), for ∀t ∈ (t∗, t∗ + ξ] by calculation. Furthermore, because of S(t∗) = 0,
we get S(t) > 0 for ∀t ∈ (t∗, t∗ + ξ], which contradicts the assumptions, so S(t) > 0,
for ∀t > t0.

Part 2. Prove that E(t) ≥ 0, for ∀t > t0.
Similarly, suppose there is t∗, which can satisfy E(t∗) = 0, and E(t) < 0 for

∀t ∈ (t∗, t∗ + ξ]. As the sign of cDα
t E(t) is uncertain, we will discuss it separately:

Case 1. If cDα
t E(t) ≥ 0 for ∀t ∈ (t∗, t∗ + ξ], then E(t) > E(t∗)Eα,1(c(t− t∗)α), which

contradicts the assumptions.
Case 2. If cDα

t E(t) ≤ 0 for ∀t ∈ (t∗, t∗ + ξ], at this time, we need to discuss the positive
and negative situation of E(t− τ).

1. If E(t− τ) ≥ 0, then

cDα
t E(t) =

βSE(t− τ)

1 + mS
− (γ + µ + η + σ)E ≥ −(γ + µ + η + σ)E ≥ 0, (14)
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there is a contradiction here.
2. If E(t− τ) ≤ 0, we can get E(t− τ) ≥ E(t); then

cDα
t E(t) = βSE(t−τ)

1+mS − (γ + µ + η + σ)E(t)
≥ βSE

1+mS − (γ + µ + η + σ)E
≥ βSE

1+mS ≥
β
m E;

(15)

after calculations, we can get E(t) ≥ E(t∗)Eα,1(
β
m (t− t∗)α), for ∀t ∈ (t∗, t∗ + ξ]. At this

time there is a contradiction. Thus, E(t) ≥ 0, for ∀t > t0.
Part 3. Combining part 1 and the part 2 of the proof process, we can get Q(t) ≥ 0,

IA(t) ≥ 0, IS(t) ≥ 0, R(t) ≥ 0, for ∀t > t0.
In summary, the solution of the system is proved to be non-negative.

4.3. Disease-Free Equilibrium (DFE)

The equilibrium point (S∗, E∗, Q∗, IA∗, IS∗, R∗) of system (7) can be obtained by solving
the following equations. 

Λ− µS∗ − βS∗E∗
1+mS∗ = 0,

βS∗E∗
1+mS∗ − (γ + µ + η + σ)E∗ = 0,
γE∗ − (µ + vs. + θ)Q∗ = 0,
σE∗ + θQ∗ − (µ + r1)IA∗ = 0,
ηE∗ + vQ∗ − (δ + µ + r2)IS∗ = 0,
r1 IA∗ + r2 IS∗ − µR∗ = 0.

(16)

In Equation (16), let E∗ = 0, Q∗ = 0, IA∗ = 0, IS∗ = 0, R∗ = 0 to get the disease-free
equilibrium point (DFE), denoted by E0; that is,

E0 = (
Λ
µ

, 0, 0, 0, 0, 0). (17)

We use R0 to represent the expected value of the infection rate per time unit, that
is, the basic reproduction number. Next, we use the next-generation matrix method to
findR0.

cDα
t X = F(x)−V(x), (18)

where

F(x) =


βSE

1+mS
0
0
0

, V(x) =


(γ + µ + η + σ)E
−γE + (µ + vs. + θ)Q
−σE− θQ + (µ + r1)IA
−ηE− vQ + (δ + µ + r2)IS

.

The Jacobian matrix at E0 is denoted by F, V, which is

F =


βΛ

µ+mΛ 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

, V =


γ + µ + η + σ 0 0 0

−γ µ + vs. + θ 0 0
−σ −θ µ + r1 0
−η −v 0 δ + µ + r2

.

Then we can get the basic reproduction number

R0 = ρ(FV−1) =
βΛ

A(µ + mΛ)
. (19)

where A = γ + µ + η + σ.
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4.4. Existence of Endemic Equilibrium Point

In this section, we focus on studying the existence of local equilibrium points.
Let the local balance point be E∗ = (S∗, E∗, Q∗, IA∗, IS∗, R∗). Then we can acquire the
following theorem.

Theorem 3. WhenR0 > 1 and β−mA > 0, the system (7) has its own unique balance point:

E∗ = (
A

β−mA
, a(R0 − 1), b(R0 − 1), c(R0 − 1), d(R0 − 1),

cr1 + dr2

µ
(R0 − 1)),

where
a = µ+mΛ

β−mA , b = γ(µ+mΛ)
(µ+vs.+θ)(β−mA)

,

c = (θγ+σ(µ+vs.+θ))(µ+mΛ)
(µ+r1)(µ+vs.+θ)(β−mA)

, d = (vγ+η(µ+vs.+θ))(µ+mΛ)
(δ+µ+r2)(µ+vs.+θ)(β−mA)

.

Proof. First, solve the second equation in (16) to obtain

S∗ =
A

β−mA
. (20)

By substituting Equation (20) into the first equation in (16), we can get

E∗ =
µ + mΛ
β−mA

(R0 − 1) = a(R0 − 1). (21)

By combining and substituting Equations (20) and (21) into the third equation in (16),
it is easy to get

Q∗ =
γ(µ + mΛ)

(µ + vs. + θ)(β−mA)
(R0 − 1) = b(R0 − 1). (22)

Then, by substituting Formulas (21) and (22) into the fourth and fifth equations in (16),
we can calculate

IA∗ =
(θγ + σ(µ + vs. + θ))(µ + mΛ)

(µ + r1)(µ + vs. + θ)(β−mA)
(R0 − 1) = c(R0 − 1). (23)

IS∗ =
(vγ + η(µ + vs. + θ))(µ + mΛ)

(δ + µ + r2)(µ + vs. + θ)(β−mA)
(R0 − 1) = d(R0 − 1). (24)

Finally, the relationship between the last equation in (16) and the first two equations
can be obtained.

R∗ =
cr1 + dr2

µ
(R0 − 1). (25)

In summary, whenR0 > 1 and β−mA > 0, every element of E∗ is positive and unique,
so it is a unique balance point of system (7).

5. Stability Analysis

Before studying the stability, we first derive the linearized system of the system (7) at
the equilibrium point as follows:

cDα
t S(t) = −(µ + βE∗

(1+mS∗)
2 )S(t)−

βS∗
1+mS∗ E(t− τ),

cDα
t E(t) = βE∗

(1+mS∗)
2 S(t) + βS∗

1+mS∗ E(t− τ)− (γ + µ + η + σ)E(t),
cDα

t Q(t) = γE(t)− (µ + vs. + θ)Q(t),
cDα

t IA(t) = σE(t) + θQ(t)− (µ + r1)IA(t),
cDα

t IS(t) = ηE(t) + vQ(t)− (δ + µ + r2)IS(t),
cDα

t R(t) = r1 IA(t) + r2 IS(t)− µR(t).

(26)
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Take the Laplace transform on both sides of (26) to get

sαL[S(s)]− sα−1S(0) = −(µ + βE∗
(1+mS∗)

2 )L[S(s)]− βS∗
1+mS∗ e−sτ(L[E(s)] +

∫ 0
−τ e−stφ(t)dt),

sαL[E(s)]− sα−1E(0) = βE∗
(1+mS∗)

2 L[S(s)] + βS∗
1+mS∗ e−sτ(L[E(s)] +

∫ 0
−τ e−stφ(t)dt)

−(γ + µ + η + σ)L[E(s)],
sαL[Q(s)]− sα−1Q(0) = γL[E(s)]− (µ + vs. + θ)L[Q(s)],
sαL[IA(s)]− sα−1 IA(0) = σL[E(s)] + θL[Q(s)]− (µ + r1)L[IA(s)]
sαL[IS(s)]− sα−1 IS(0) = ηL[E(s)] + vL[Q(s)]− (δ + µ + r2)L[IS(s)],
sαL[R(s)]− sα−1R(0) = r1L[IA(s)] + r2L[IS(s)]− µL[R(s)].

(27)

The following form can replace the system (27):

∆(s) · (L[S(s)], L[E(s)], L[Q(s)], L[IA(s)], L[IS(s)], L[R(s)])T

= (b1(s), b2(s), b3(s), b4(s), b5(s), b6(s))T

where

∆(s) =


sα + µ + βE∗

(1+mS∗)
2

βS∗
1+mS∗ e−sτ · · · 0

− βE∗
(1+mS∗)

2 sα − βS∗
1+mS∗ e−sτ + A · · · 0

...
...

. . .
...

0 0 · · · sα + µ


b1(s) = sα−1S(0)− βS∗

1+mS∗ e−sτ
∫ 0
−τ e−stφ(t)dt,

b2(s) = sα−1E(0) + βS∗
1+mS∗ e−sτ

∫ 0
−τ e−stφ(t)dt,

b3(s) = sα−1Q(0), b4(s) = sα−1 IA(0),
b5(s) = sα−1 IS(0), b6(s) = sα−1R(0).

As ∆(s) is the characteristic matrix of the system (27), the eigenvalue distribution of
det(∆(s)) can be used to study the stable nature of the system.

5.1. Local Stability of DFE

Theorem 4. WhenR0 < 1, the DFE of the system (7) is locally asymptotically stable for any τ.

Proof. Put E0 into ∆(s). One can get the characteristic equation det(∆0(s)) of the system
at E0, and make det(∆0(s)) = 0 easy to calculate. Substituting λ = sα into the equation
provides the following equation:

(λ− βΛ
µ + mΛ

e−sτ + A)(λ + µ + vs. + θ)(λ + µ + r1)(λ + δ + µ + r2)(λ + µ)2 = 0. (28)

In Equation (28), except for the first factor, it is obvious that

λ2 = −(µ + vs. + θ) < 0, λ3 = −(µ + r) < 0, λ4 = −(δ + µ + r2) < 0, λ5 = λ6 = −µ < 0.

1. When τ = 0, λ1 = βΛ
µ+mΛ − A = A(R0 − 1) forR0 < 1.

2. When τ 6= 0, let λ = (iω)α, put in the first factor of the Equation (28) to get

ωα(cos
απ

2
+ i sin

απ

2
)− βΛ

µ + mΛ
(cos ωτ − i sin ωτ) + A = 0 (29)

Separating the real and imaginary parts of Equation (29) provides{
ωα cos απ

2 + A = βΛ
µ+mΛ cos ωτ,

−ωα sin απ
2 = βΛ

µ+mΛ sin ωτ.
(30)
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After summing the squares of the two sides, it can be simplified to get

ω2α + 2Aωα cos
απ

2
+ A(A +

βΛ
µ + mΛ

)(1−R0) = 0. (31)

It can be seen that whenR0 < 1, Equation (31) has no positive roots—that is,
∣∣∣arg(ωα

1,2)
∣∣∣ >

απ
2 . By combining the above discussion, we can get |arg(λi)| > απ

2 for i = 1, 2, 3, 4, 5, 6. Ac-
cording to the Lemma 1, we can complete the proof of the Theorem 4.

Remark 1. We consider the method of constructing an appropriate Lyapunov function:
V(t) = Y1E(t) + Y2Q(t). The coefficients(Y1, Y2) are to be determined. The Caputo-fractional
derivative of V(t), along system (7) when τ = 0, is

cDα
t V(t) = Y1

cDα
t E(t) + Y2

cDα
t Q(t)

= Y1
βSE

1+mS −Y1 AE + Y2γE−Y2(µ + vs. + θ)Q
≤ (Y1

βΛ
µ+mΛ −Y1 A + Y2γ)E−Y2(µ + vs. + θ)Q

= Y1 A( βΛY1+Y2γ(µ+mΛ)
Y1 A(µ+mΛ)

− 1)E−Y2(µ + vs. + θ)Q.

(32)

Let Y1 = µ
µ+mΛ , Y2 = mβΛ2

γ(µ+mΛ)2 . By substituting them into the above formula, we can get

cDα
t V(t) ≤ AµE

µ + mΛ
(R0 − 1)− mβΛ2(µ + vs. + θ)

γ(µ + mΛ)2 Q. (33)

Obviously get cDα
t V(t) ≤ 0 for R0 < 1. The equals sign is true if and only if

E(t) = 0, Q(t) = 0. Thus, (E, Q)→ (0, 0) as t→ ∞. By substituting E(t) = 0, Q(t) = 0 into
the system, we can get S→ Λ

µ and Q, IA, IS → 0 as t→ ∞. Therefore, from the Lyapunov stability
theorem of fractional order, we can know that when t→ ∞, the system tends to the point E0 in the
feasible region, so DFE of the system (7) is global progressive stability when τ = 0.

5.2. Local Stability Analysis of the Endemic Equilibrium

In this section, we study the local asymptotic stability of the local equilibrium point
of system (7). Put E∗ into ∆(s). Then, we can get the characteristic equation det(∆∗(s)) of
the system at E∗, and make det(∆∗(s)) = 0 easy to calculate. By substituting a1 = βE∗

(1+mS∗)
2

and λ = sα into the equation, can get the following equation.

det(∆∗(s)) = [(λ + µ + a1)(λ− Ae−sτ + A) + Ae−sτa1](λ + µ + vs. + θ)
(λ + µ + r1)(λ + δ + µ + r2)(λ + µ) = 0

(34)

From the previous proof, we can get the characteristic roots of Equation (34) except for
the first factor, and λi < 0 for i = 3, 4, 5, 6.

1. When τ = 0, the first factor in Equation (34) is changed to

λ2 + λ(µ + a1) + Aa1 = 0. (35)

As µ + a1 > 0, Aa1 > 0, it can be seen that the one-dimensional quadratic equation
above has no positive roots.

2. When τ 6= 0, let λ = (iω)α. Put in the first factor of Equation (34) and separate the
real part and the imaginary part to obtain the following equation:{

ω2α cos απ + d2ωα cos απ
2 + d4 = d1ωα cos( απ

2 −ωτ) + d3 cos ωτ,
ω2α sin απ + d2ωα sin απ

2 = −d1ωα sin( απ
2 −ωτ)− d3 sin ωτ.

(36)

where d1 = A, d2 = A + µ + a1, d3 = −µA, d4 = (µ + a1)A.
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After summing the squares of the two sides, it can be simplified to

ω4α + (2d2 cos
απ

2
)ω3α + (d2

2 + 2d4 cos απ − d2
1)ω

2α + 2(d2d4 − d1d3)ω
α + (d2

4 − d2
3) = 0. (37)

According to the judgment method of the unary quartic equation, it can be concluded
that when d2

2 + 2d4 cos απ − d2
1 > 0, d2d4 − d1d3 > 0, d2

4 − d2
3 > 0, the equation has no

positive roots. Furthermore, after di(i = 1, 2, 3, 4) is brought in, the above conditions can
be met. Therefore, all the characteristic roots of the characteristic equation det(∆∗(s)) = 0
satisfy |arg(λi)| > απ

2 , i = 1, 2, 3, 4, 5, 6, and we can get the following theorem.

Theorem 5. When the endemic equilibrium point E∗ exists, that is, R0 > 1 and β−mΛ > 0,
the endemic equilibrium point of the system (7) is locally asymptotically stable for any τ.

6. Numerical Simulations

In order to illustrate the correctness of the conclusions of the text, the initial conditions
for the state variables were: S(0) = 10, E(0) = 4, Q(0) = 0, IA(0) = 4, IS(0) = 2, R(0) = 0,
and we used two sets of data to conduct numerical simulations, as shown in the follow-
ing table.

The first set of baseline values in Table 1 was provided by the literature [31]. It can be
obtained thatR0 = 0.2849 < 1 at this time. The simulation results are shown in Figure 2.
We set the order of the system to α = 0.98, and selected τ = 0, τ = 2, τ = 4. It can be seen
from Figure 2 that the disease-free equilibrium point E0 is locally asymptotically stable.
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Figure 2. Local asymptotic stability of the disease-free equilibrium point when τ is different.

Table 1. System parameter values used in the simulation.

Parameters Λ µ β m σ γ

1 0.02537 0.0106 0.0805 0.12 0.0668 2.0138 × 10−4

2 0.5 0.018 0.3 0.12 0.25 0.8

Parameters η θ v δ r1 r2

1 0.4478 0.0101 3.2084 × 10−4 1.6728 × 10−5 5.7341 × 10−5 1.6728 × 10−5

2 0.2 0.08 0.2 0.018 0.05 0.05
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In order to satisfy the situation ofR0 > 1, we selected the second set of data in Table 1
to obtainR0 = 1.5166 at this time and the endemic equilibrium point E∗ = (8.8768, 0.2726,
0.7317, 1.8629, 2.3356, 11.6626). The results of the simulation are shown in Figure 3. It can
be seen in Figure 3 that the endemic equilibrium point E∗ is locally asymptotically stable.
We set the order of the system to 0.98, and selected τ = 0, τ = 1, τ = 2.
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Figure 3. Local asymptotic stability of the endemic equilibrium point when τ is different.

The biological significance of the parameter m is the epidemic control measures
imposed on the susceptible population S. γ is the isolation rate (the efficiency of detecting
infected individuals); i.e., the greater the control input, the greater the values of m and γ,
and the better the epidemic control—the faster convergence to zero for asymptomatic and
symptomatic infected individuals. See Figures 4 and 5.
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Figure 4. The effect of parameter m on the system.
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Figure 5. The effect of parameter γ on the system.

When m = 0 and no time lag is considered (τ = 0), the model is essentially the same
as the integer order model in the literature [31] except for the fractional order derivatives;
and as obtained through Figure 4, increasing the value of m results in faster convergence, in-
dicating that the epidemic ends earlier with increased control of the susceptible population.
In addition, when m increases, the formula forR0 shows that the value of R0 is inversely
proportional to m. The larger m is, the smallerR0 is, which theoretically illustrates the role
of the control measure m, which can adjust the size of m makingR0 > 1 change toR0 < 1.

7. Conclusions

In this paper, a fractional infectious disease model with saturated incidence and
time delay was proposed. After obtaining the invariant region of the model and the
non-negativity of the model solution, we found that that if the initial conditions are non-
negative, then Ω is the positive invariant set of the system. The basic replication number
R0 is obtained by the next-generation matrix method. The disease-free equilibrium point
E0 can be calculated, and the endemic equilibrium point E∗ exists and is unique When
R0 > 1 and β−mA > 0. We also found that whenR0 < 1, the DFE of the system is locally
asymptotically stable for any τ, and when the endemic equilibrium point E∗ exists, then it
is locally asymptotically stable for any τ. Based on the influences of the coefficients m and γ
on the system, it can be seen that human technological interventions can play a significant
role in controlling the spread of infectious diseases—for example, vaccination, isolation
measures, etc.
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