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Abstract: In this theory, the existence of a mild solution for a neutral partial integrodifferential
nonlocal system with finite delay is presented and proved using the techniques of the Monch–
Krasnosel’skii type of fixed point theorem, a measure of noncompactness and resolvent operator
theory. For this work, we have introduced some sufficient conditions to confirm the existence of the
neutral partial integrodifferential system. An illustration of the derived results is offered at the end
with a filter system corresponding to our existence result.

Keywords: neutral partial integrodifferential equations; mild solutions; resolvent operators; measure
of noncompactness; fixed point theorems; nonlocal conditions

MSC: 34K30; 34K40; 45K05; 47G20; 47H08; 47H10

1. Introduction

We establish the solution of the existence of Equations (1) and (2) with finite delay

d
dv
D(v, zv) = AD(v, zv) +

∫ v

0
H(v− s)D(s, zs)ds

+ φ

(
v, zv,

∫ v

0
h(v, s, zs)ds

)
, for v ∈ I = [0, b], (1)

z0 = ϕ + g(z) = C([−r, 0]; X). (2)

Here, A is a closed linear operator defined on Banach space (X, ‖ · ‖) with domain
D(A). Let [H(v)]v≥0 be the set of all closed linear operators on X with domain D(H) ⊃
D(A) and C([−r, 0]; X) denote the set of all continuous functions defined on [−r, 0] into X.
Throughout this theory, X will be used as Banach space. The function D in R+ × C → X is
defined as follows

D(v, ϕ) = ϕ(0)− F(v, ϕ),
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where the function F is continuous from R+×C into X and the function φ is also continuous
from R+ × C× X into X. Let z ∈ C([−r, 0]; X), ∀v ≥ 0, then the history function zv ∈ C is
defined by

zv(t) = z(v + t) for t ∈ [−r, 0].

Semigroup theory provides a unified and powerful tool for the study of differential
equations on Banach space-covering systems described by ordinary differential equations,
functional differential equations, partial differential equations, and neutral differential
equations, etc. In recent years, among many other applications, semigroup theory has
been widely used in the study of control and stability of systems governed by differential
equations on Banach space. It has been discussed by many authors for A is densely defined.
In [1,2], the authors studied the hypotheses for the existence of resolvent operators for the
abstract integrodifferential equations. Further, in [3–7], the authors discussed the solutions
of the existence of nonlinear neutral partial differential equations using different approaches.
Lizama et al. [8] studied (1) with the nonlocal initial values when φ = 0, and using the
fixed point of Sadovskii’s technique, derived the solution of existence when the nonlocal
condition is compact, and R1(·) is continuous with respect to the norm. Many authors have
proven the existence of the solution for neutral integrodifferential equations with initial
and nonlocal conditions. In [9], the authors proved the solutions of neutral functional
integrodifferential equations with an initial condition in finite delay, and in [4], the authors
proved the existence of the mild solution for a class of neutral partial integrodifferential
equations using resolvent operator theory and measure of noncompactness and proved the
existence using the Monch–Krasnosel’skii type of fixed point theorem with initial conditions.
Motivated by the above two particular articles, we construct a new problem (1) and (2)
using nonlocal conditions with finite delay and apply the Monch–Krasnosel’skii fixed point
technique. The contribution of this article is extended from the neutral integrodifferential
equation, including an integral term in functional and taking nonlocal conditions with
finite delay. As is well-known, the nonlocal problems are more desirable when compared
with Cauchy problems. In considerations with real-life phenomena, generally, the physical
changes of a system depend on both its present and past states. In order to face certain
situations, nonlocal conditions play a vital role. Many problems in the field of ordinary
and partial differential equations can be recast as integral equations. Several existence and
uniqueness results can be derived from the corresponding results of integral equations.
The fixed point method is the most powerful method in proving existence theorems for
integrodifferential equations. This paper consists of Section 2, to provide basic lemmas
and results to use in this article. In Section 3, we provide some results from the new
Monch–Krasnosel’skii type of fixed point theorem. In Section 4, we derive the mild solution
of (1) and (2) and discuss the existence result. Section 5 gives an application to validate our
theory, and Section 6 gives a filter system corresponding to the solution of existence in our
differential system. Finally in Section 7, we provide the conclusion about this article.

2. Results on Measure of Noncompactness

Here, we define some useful definitions and lemmas to use in this analysis. Let
C([0, b]; X) be the set of all continuous functions defined on [0, b] in X with a standard
supreme norm. For Banach spaces Z and W, we denote by L(Z, W) the Banach space
of all bounded linear operators from Z into W. The Banach space X with graph norm is
declared as ‖x‖G = ‖Ax‖X + ‖x‖X and denoted by (Y, ‖ · ‖). For this theory, we need the
following results about the resolvent operator theory, see [1,2]. Consider the following
integrodifferential equation

u′(t1) = Au(t1) +
∫ t1

0
B(t1 − s)u(s)ds, t1 ≥ 0, u(0) = u0 ∈ X. (3)

Assume that
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(P1) A is a closed linear operator and densely defined on Banach space (X, ‖ · ‖) with
graph norm ‖x‖ = ‖Ax‖+ ‖x‖, which is denoted as (Y, ‖·‖).

(P2) [B(t1)]t1≥0 be the set of all linear operators on X and B(t1) is continuous for t1 ≥ 0,
there is a positive real-valued function b such that ‖B(t1)(y)‖X ≤ b(t1)‖y‖G, ∀y ∈ Y,
t1 ≥ 0.

(P3) For any y ∈ Y, then t1 → B(t1)y ∈ W1,1
loc (R

+, X) and | d
dt1

B(t1)y| ≤ b(t1)‖y‖,
∀t1 ∈ R+.

Definition 1. Let R1(t1) ∈ L(X) be a bound linear operator for t1 ≥ 0 and a resolvent operator
for (3); then, it satisfies

(i) R1(0) = I and ‖R1(t1)‖L ≤ Meβt1 , where M, β are constants.
(ii) R1(t1)x is strongly continuous, ∀x ∈ X and t1 ≥ 0.
(iii) R1(t1) ∈ L(X), t1 ≥ 0 and let x ∈ Y such that R1(·)x in both C1(R+, X) and C(R+, X) and

R′1(t1)x = AR1(t1)x +
∫ t1

0
B(t1 − s)R1(s)xds

= R1(t1)Ax +
∫ t1

0
R1(t1 − s)B(S)xds, for t1 ≥ 0.

Theorem 1. Suppose that (P1) to (P3) hold. Then problem (3) admits the resolvent operator if
and only if A generates a C0-semigroup.

Lemma 1. Let S be a bounded subset of X and let φ be a function defined on S called the measure
of noncompactness (MNC), such that

(1) φ(S) = 0 if and only if S is relatively compact.
(2) φ(S) = φ

(
S
)
= φ(co(S)), where co(S) is the convex closed hull of S.

(3) A MNC is called full, if φ(S) = 0 if and only if S is relatively compact.
(4) A MNC is monotone if the sets S1 and S2 of X are S1 ⊂ S2 ⇒ φ(S1) ≤ φ(S2).
(5) A MNC is non-singular if φ(S ∪ {x}) = φ(S) for some S ⊆ X and x ∈ X.

Now we define the Hausdorff measure:
ψ(S) = inf{r > 0; where S has a number of sets that covers S with diameter ≤ r} .
Here, the Hausdorff measure is full, monotone and non-singular.

Lemma 2 ([10]). Let S1 and S2 be bounded subsets of X, then the following properties are satisfied

(i) ψ(S1 + S2) ≤ ψ(S1) + ψ(S2).
(ii) ψ(λS) = |λ|ψ(S) where λ is real number.

(iii) If (Sn)n is a decreasing bounded sequence of X with lim
n→∞

ψ(Sn) = 0, then
∞
∩

n=0
Sn is a compact

set in X.
(iv) The map B : X → X is Lipschitz continuous with a constant k such that ψ(B(S)) ≤ kψ(S)

for some bounded subset S of X.

For this connection, C(I, X) is continuous and functions on I = [0, b] in X and supreme norm
defined by ‖X∞‖ = sup{‖X(t1)‖X ; t1 ∈ I}.

From ([11], p. 273), let M be a closed convex subset of X and K and S be two nonlinear
mappings from M to X. For some Ω0 ⊆ M and x0 ∈ X, we define

F(K,S , Ω0) = {x = Sx +Ky⇒ x ∈ M, for any y ∈ Ω0}
F(1,x0)(K,S , Ω0) = co({x0} ∪ F(K,S , Ω0))

F(n0,x0)(K,S , Ω0) = co
(
{x0} ∪ F

(
K,S(F(n−1,x0)(K,S , Ω0))

))
, n > 1.

Here, all the sets F(K,S , Ω0) are nonempty, because if S = 0 then F(n0,x0)(K, 0, Ω0) reduces
to F(K, Ω0). In this case, F(K,S , Ω0) is maybe empty. Therefore, it is difficult to find a fixed point
for the sum S +K in Ω0. Therefore, F(K,S , Ω0) must be nonempty.
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Lemma 3 ([11]). Let M be a closed convex nonempty subset of X. Then

(a) S is a strict contradiction of X into itself with constant k in (0, 1).
(b) x = Sx +Ky⇒ x ∈ M for some y ∈ M.

Then

(i) F(n0,x0)(K,S , Ω0) ⊆ M is a nonempty set, for some Ω0 ⊂ M, n ≥ 1.
(ii) F(n0,x0)(K,S , Ω0) = F(n0,x0)

(
(I− S)−1K, Ω0

)
for Ω0 ⊂ M, n ≥ 1.

(iii) Ω1 ⊂ Ω2 ⊂ M implies F(n0,x0)(K,S , Ω1) ⊂ F(n0,x0)(K,S , Ω2) ⊂ M for any n ≥ 1.

Lemma 4 ([12]). Let H : [0, b]→ X be an equicontinuous map and x0 ∈ [0, b], then co(H ∪ {x0})
is also equicontinuous.

Lemma 5 ([10]). Let H be a bounded subset of C([0, b], X) and for some t1 ∈ [0, b] such that
ψ(H(t1)) ≤ ψc(H), where H(t1) = {x(t1); x ∈ H}. Moreover, if H is equicontinuous on [0, b],
it implies that t1 → ψ(H(t1)) is continuous on [0, b], ψc(H) = ψ∞(H), and
ψ∞(H) = sup{ψ(H(t1)); t1 ∈ [0, b]}.

Lemma 6 ([13]). Let H be a bounded subset of X, if there is (un) in H, then

ψ(H) = ψ(un) for n ≥ 1.

Lemma 7 ([14]). Let 0 < ε < 1, h > 0 and denote Cm
n = (n

m) for all 0 ≤ m ≤ n such that

Sn = εn + C1
nεn−1 h1

1!
+ C2

nεn−2 h2

2!
+ .... +

hn

n!
, n ∈ N.

Then lim
n→∞

Sn = 0.

3. Important Results on Fixed Point Theorem

Here, we provide some results based on a new fixed point technique.

Lemma 8. Let S be a contraction map on X → X with constant k in [0, 1), then (I − S)−1 is a
continuous map from X into itself with a lipschitzian constant 1

1−k .

Theorem 2. Let M be a nonempty closed convex subset of X. Let K : M→ X and S : X → X be
two continuous mappings satisfying the following axioms

(i) There exist x0 ∈ M and n0 > 0 such that for all countable subsets C ⊂ M, we have
C = F(n0,x0)(K,S , C), which implies that C is relatively compact.

(ii) The mapping S is a strict contraction.
(iii) x = Sx +Ky, for some y in M⇒ x ∈ M.

Then, K+ S has a fixed point in M.

Corollary 1. Let M be a nonempty closed convex subset of X and φ be a non-singular measure of
noncompactness on X. Let K : M→ X and S : X → X be two continuous mappings. Then

(i) Let Ω ⊆ X be a countable set with φ(Ω) > 0 such that

φ
(

F(n0,x0)(K,S , Ω)
)
< φ(Ω) for some x0 ∈ M, n0 > 0. (4)

(ii) The mapping S is a strict contraction.
(iii) If x = Sx +Ky, for some y in M⇒ x ∈ M. Then K+ S has a fixed point in M.
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Corollary 2 ([15]). Let M be a nonempty closed convex subset of X and φ be a measure of
noncompactness on X. Let K : M → X be a continuous map and let Ω ⊆ M be countable with
φ(Ω) > 0 such that

φ(K(Ω)) < φ(Ω), (5)

then K has a fixed point in M.

4. Results on Existence

Here, to establish the result on the existence of (1) and (2), we need the following
results and lemmas.

Theorem 3. The continuous function F from [0, ∞) to L(X) and for some compact set K ⊂ X,
then

sup
y∈K
‖F(v)y− F(v0)y‖ → 0 as v→ v0.

The operator V defined on L1([0, b]; X) in C([0, b]; X) satisfies,

(S1) For some d > 0, we have

‖V f1(v)−V f2(v)‖X ≤ d
∫ v

0
‖ f1(s)− f2(s)‖Xds, for all f1, f2 ∈ L1([0, b]; X), v ∈ [0, b].

(S2) The compact set K ⊂ X and ( fn)n≥1 ⊂ L1([0, b]; X) implies ( fn(v))n≥1 ⊂ K for all
v ∈ [0, b] we have

fn → f0 ⇒ V fn → V f0.

Theorem 4 ([16]). Suppose the operator V satisfies (S1) and (S2) and ( fn)n≥1 ⊂ L1([0, b]; X) is
integrable and bounded,

‖ fn(v)‖ ≤ ω(v), ∀v ∈ [0, b], n ≥ 1, for some ω ∈ L1(0, b).

Assume that for all v ∈ [0, b] and for some q ∈ L1(0, b) such that

ψ
(
( fn(v))n≥1

)
≤ q(v).

Then

ψ
(
(V fn(v))n≥1

)
≤ 2d

∫ v

0
q(s)ds for all v ∈ [0, b], d ∈ S1.

Definition 2. The continuous function z : [−r, ∞)→ X is called a mild solution of Equations (1)
and (2) if the following integral equation is satisfied,

z(v) = F(v, zv) + R1(v)
[
D
(

0, ϕ(0) + g(z)(0)
)]

+
∫ v

0
R1(v− s)φ

(
s, zs,

∫ s

0
h(s, τ, zτ)dτ

)
ds. (6)

To establish this result, we need the below hypotheses:

(H1)The mapping φ : [0, b]×C×X satisfied Caratheodary conditions, i.e., φ(v, ·, ·) is continuous
for all v ∈ I and φ(·, x, y) is measurable, for each (x, y) ∈ C× X.

(H2)There is mφ ∈ C([0, b],R+) and the mapping Ωφ from R+ into R+

then ‖φ(v, x, y)‖ ≤ mφ(v)Ωφ(‖x‖C + ‖y‖), ∀v ∈ I and (x, y) ∈ C× X.
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(H3)The mapping h : R+ × R+ × C → X is continuous and mh : [0, b] → [0, ∞) for some
continuous function mh we have

‖h(v, s, x)‖ ≤ mh(s)Ωh(‖x‖C), ∀x ∈ C, 0 ≤ s ≤ v ≤ b,

where Ωh : R+ → R+ is the increasing function.
(H4)There exists the functions p1, p2 ∈ L1([0, b];R+) such that

ψ(φ(v, Ω1, Ω2)) ≤ p1(v)ψ(Ω1) + p2(v)ψ(Ω2) for some bounded subsets Ω1, Ω2 ⊂ X.

(H5)There is a constant k ∈ [0, 1) for any x1, x2 ∈ C we have

‖F(v, x1)− F(v, x2)‖X ≤ k‖x1 − x2‖ for v ≥ 0.

(H6)For k1 > 0 and there is αk1 ∈ L1([0, b];R) then

sup
‖x‖C≤k1

‖F(v, x)‖ ≤ αk1(v) and lim inf
k1→∞

∫ b

0

αk1

k1
= σ < ∞, ∀v ∈ I.

(H7) σ + Ma lim inf
v→∞

Ω(r)
r
∫ b

0 mφ(s)ds < 1.

Now we define the following operators as follows:

(Sz)(v) = R1(v)
[
D
(

0, ϕ(0) + g(z)(0)
)]

+ F(v, zv)

(Kz)(v) =
∫ v

0
R1(v− s)φ

(
s, zs,

∫ s

0
h(s, τ, zτ)dτ

)
ds.

Then z is a mild solution of (1) and (2) if and only if z is a fixed point of K+ S .
Clearly, the linear operator K is continuous on C([0, b]; X) into itself.

Lemma 9. The linear operator S is a strict contradiction.

Proof. Let x, y ∈ C([0, b]; X) and v ∈ [0, b], we have

‖(Sx)(v)− (Sy)(v)‖ ≤ ‖F(v, xv)− F(v, yv)‖ ≤ k‖xv − yv‖ = k‖x− y‖.

Then ‖Sx− Sy‖ ≤ k‖x− y‖. This implies that S is a contraction.

Lemma 10. There is r > 0, such that z = Sz + Kw, w ∈ Br implies that z ∈ Br. Where
Br = {z ∈ C([0, b]; X) : ‖z‖∞ ≤ r}.

Proof. We prove this by the contradiction method.
Suppose r > 0 and z ∈ C([0, b]; X) and w ∈ Br, then z = Sz +Kw and z /∈ Br. Then

for any v ∈ [0, b], we have

‖(Sz)(v) + (Kw)(v)‖ = ‖F(v, zv) + R1(v)[D(0, ϕ(0) + g(z)(0))]‖

+ ‖
∫ v

0
R1(v− s)φ

(
s, zs,

∫ s

0
h(s, τ, zτ)dτ

)
ds‖

≤ ‖F(v, zv)‖+ Ma‖D(0, ϕ(0) + g(z)(0))‖

+ Ma

∫ b

0
mφ(s)Ω

[
‖zs‖+

∫ s

0
mh(τ)Ωh(‖zτ‖)dτ

]
ds

r < ‖z‖∞ ≤ Ma‖D(0, ϕ(0) + g(z)(0))‖+ αr(v) + Ma

∫ b

0
mφ(s)Ω(r)ds.
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Dividing r on both sides, we have

1 ≤ Ma

r
‖D(0, ϕ(0) + g(z)(0))‖+ αr(v)

r
+

Ma

r
Ω(r)

∫ b

0
mφ(s)ds.

This implies that,

1 ≤ σ + Ma lim inf
r→∞

Ω(r)
r

∫ b

0
mφ(s)ds,

which contradicts (H7), hence z ∈ Br0 .

Lemma 11. Let M be a bounded subset of C([0, b], X) with ψ∞(M) > 0, there is an integer n,
such that ψ∞

(
F(n,0)(K,S , M)

)
< ψ∞(M).

Proof. For M ⊆ C([0, b], X) is bounded and ψ∞ > 0, we have

F(1,0)(K,S , M)(v) =
{

z(v), z ∈ F(1,0)(K,S , M)
}

⊆
{

z(v)− Sz(v), z ∈ F(1,0)(K,S , M)
}

+
{
Sz(v), z ∈ F(1,0)(K,S , M)

}
.

By using properties of Hausdorff measure of noncompactness

ψ
(

F(1,0)(K,S , M)(v)
)
≤ ψ(K(M)(v)) + kψ

(
F(1,0)(K,S , M)(v)

)
ψ
(

F(1,0)(K,S , M)(v)
)
≤ 1

1− k
ψ(K(M)(v)). (7)

Let ‖z‖ = sup
−r<v<0

z(v) and
∫ v

0 h(v, τ, zτ)dτ ∈ M be integrable. There is a function

C(v) ∈ L1([0, b];R), then bringing Theorem 4, we have

ψ(K(M)(v)) ≤ ψ(Kz(v)) ≤ ψ

(∫ v

0
R1(v− s)φ

(
s, zs,

∫ s

0
h(s, τ, zτ)dτ

)
ds
)

ψ(K(M)(v)) ≤ 2Ma

∫ v

0
C(s)ψ(z(s))ds ≤ 2Maψ∞(M)

∫ v

0
C(s)ds.

Taking into account the density of C([0, b];R) in L1([0, b];R). For any δ < 1−k
2Ma

, there

is a function η ∈ C([0, b];R) with
∫ b

0 |C(s)− η(s)|ds < δ. Equivalently

ψ(K(M)(v)) ≤ 2Maψ∞(M)

[∫ v

0
|C(s)− η(s)|ds +

∫ v

0
|η(s)|ds

]
≤ 2Maψ∞(M)[δ + τv],

where τ = sup
0≤s≤b

|η(s)|. Hence, ψ(K(M)(v)) ≤ (2Maδ + 2Maτ(v))ψ∞(M).

Using Equation (10), we have

ψ
(

F(1,0)(K,S , M)(v)
)
≤ (α + βv)ψ∞(M), (8)

where α = 2Maδ
1−k and β = 2Maτ

1−k .
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Furthermore,

F(2,0)(K,S , M)(v) ⊆
{
Kw(v), w ∈ co

(
F(1,0)(K,S , M) ∪ {0}

)}
+

{
Sz(v), z ∈ F(2,0)(K,S , M)

}
.

This implies that

ψ
(

F(2,0)(K,S , M)(v)
)
≤ ψ

(
K(co

(
F(1,0)(K,S , M) ∪ {0}

)
)(v)

)
+ kψ

(
F(2,0)(K,S , M)(v)

)
.

ψ
(

F(2,0)(K,S , M)(v)
)
≤ 1

1− k
ψ
(
K(co

(
F(1,0)(K,S , M) ∪ {0}

)
)(v)

)
. (9)

Using Lemma 6, there is sup
−r<v<0

ω(v),
∫ v

0 h(v, τ, zτ)dτ ∈ X and

ω(v) ⊆ co
(

F(1,0)(K,S , M) ∪ {0}
)

, which implies that

ψ
(
K(co

(
F(1,0)(K,S , M) ∪ {0}

)
)(v)

)
≤ ψ

(∫ v

0
R1(v− s)φ

(
s, ωs,

∫ s

0
h(s, τ, zτ)dτ

))
≤ 2Ma

∫ v

0
C(s)ψ

(
co
(

F(1,0)(K,S , M) ∪ {0}
)
(s)
)

ds

≤ 2Ma

∫ b

0
C(s)ψ

(
F(1,0)(K,S , M)(s)

)
ds. (10)

Using (8) and (10) in (9), we have

ψ
(

F(2,0)(K,S , M)(v)
)
≤ 2(Ma)

1− k

∫ v

0
[|C(s)− η(s)|+ |η(s)|](α + βs)ψ∞(M)ds

≤ 2Ma

1− k

[
(α + βv)

∫ v

0
|C(s)− η(s)|ds + τ(αv + β

v2

2
)

]
ψ∞(M)

≤
[

α2 + 2αβv +
(βv)2

2

]
ψ∞(M).

Thus

ψ
(

F(2,0)(K,S , M)(v)
)
≤
[

α2 + 2αβv +
(βv)2

2

]
ψ∞(M).

Using induction,

ψ
(

F(n,0)(K,S , M)(v)
)
≤
[

αn + C1
nα(n−1)(βv) + C2

nα(n−2) (βv)2

2!
+ ... +

(βv)n

n!

]
ψ∞(M).

Accordingly,

ψ∞

(
F(n,0)(K,S , M)

)
≤
[

αn + C1
nα(n−1)(βb) + C2

nα(n−2) (βb)2

2!
+ ... +

(βb)n

n!

]
ψ∞(M).

Since 0 < α < 1 and βb > 0, then from Lemma 7 there is n0 ∈ N, and we have

Sn0 =

[
αn0 + C1

n0
αn0−1(βb) + C2

n0
αn0−2 (βb)2

2!
+ .... +

(βb)n0

n0!

]
< 1,
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then

ψ∞

(
F(n0,0)(K,S , M)

)
< ψ∞(M).

Lemma 12. Let M be a bounded subset of C([0, b], X). If K(M) is equicontinuous, then F(n,0)

(K,S , M) is also equicontinuous for n > 0.

Proof. Let z ∈ F(K,S , M) and v ∈ M, which implies z = Sz +Kw.
For v, v1 ∈ [0, b] such that

‖z(v)− z(v1)‖X ≤ ‖Sz(v)− Sz(v1)‖X + ‖Kw(v)−Kw(v1)‖X

= ‖(R1(v)− R1(v1))[D(0, ϕ(0) + g(z)(0))]‖X + ‖F(v, zv)− F(v1, zv1)‖
+ k(|v− v1|+ ‖z(v)− z(v1)‖X) + ‖Kw(v)−Kw(v1)‖X .

Consequently

‖z(v)− z(v1)‖ ≤
1

1− k

(
‖Kw(v)−Kw(v1)‖X + ‖(R1(v)− R1(v1))[D(0, ϕ(0) + g(z)(0))]‖X

)
+

k
1− k

|v− v1|.

Hence, ‖z(v)− z(v1)‖X → 0 as v→ v1 and F(K,S , M) is equicontinuous.
By Lemma 4, F(1,0)(K,S , M) = co(F(K,S , M) ∪ {0}) is equicontinuous.
Using induction, F(n,0)(K,S , M) is equicontinuous ∀n ≥ 1. Now in this position, we

give the existence result for this work.

Theorem 5. Suppose that (H1)− (H7) hold. Then Equations (1) and (2) have at least one mild
solution for [−r, b].

Proof. For C ⊂ Br is a countable set, then C = F(n0,0)(K,S , C).
By Lemma 11,

ψ∞(C) = 0⇒ K(C) is compact .

By Lemma 12, F(n0,x0)(K,S , C) is equicontinuous and by Lemma 5, ψC(C) = ψ∞(C) = 0,
which implies that C is relatively compact. From Theorem 2 and Lemmas 9 and 10, we
have S +K, which have a fixed point in Br. Hence systems (1) and (2) have mild solutions
for [−r, b].

5. Application I

Consider the following neutral partial integrodifferential equation of the form

∂

∂t
[p(s, z(y, t− r))] =

∂

∂y
[p(s, z(y, t− r))]

+
∫ t

0
e−(s−t)p(s, z(y, s− r))ds

+ H
(

t, z(y, t− r),
∫ t

0
k(t, s, w(x, y− r))ds

)
(11)

for y ∈ [0, π], t ∈ I = [0, b],

z(0, t) = z(π, t) = 0, t ≥ 0,

z0(y) = ϕ(t, y) +
∫ b

0
m(s)log(1 + |z(s)(y)|)ds; t ∈ [−r, 0], y ∈ [0, π],
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where ϕ is continuous.
Let h(v, s, zs) = k(t, s, w(x, y− r)), 0 ≤ y ≤ π and D(t, zt) = p(s, z(y, t− r)). Take

X = L2[0, π] and define A : X → X as Aw = w′ with domain

D(A) =
{

w ∈ X : W is absolutely continuous w′ ∈ X, w(y) = w(0) = 0
}

.

It is clear that A is an infinitesimal generator of semigroup T(t) defined by T(t)w(s) =
w(t + s), for each w ∈ X. Thus, [T(t)]t≥0 is not compact in X and β(T(t)D) ≤ β(D) where
β is the Hausdorff measure of noncompactness and sup

t∈I
‖T(t)‖ ≤ 1.

Next, to assume the following, g : C([0, b]; X)→ X is a continuous function defined by
g(z)(y) =

∫ b
0 m(s)log(1 + z(s)(y))ds, z ∈ C([0, b]; X). Moreover, for any v ≥ 0 and y ∈ X,

we have

‖H(v)(y)‖X ≤ b(t)‖y‖ and ‖ d
dt

H(v)y‖X ≤ b(t)‖y‖.

We could see that the above system admits a resolvent operator. Further, the functions
H and k satisfy all our assumptions. Finally, the above said partial differential system (11)
has a mild solution of [−r, b].

6. Application II—Filter System

Digital filters are easily understood and calculated. The practical challenges of their
design and implementation are significant and are the subject of much advanced research.
A digital filter is a system that performs mathematical operations on a sampled, discrete
time signal to reduce or enhance certain aspects of that signal. A variety of mathematical
techniques may be employed to analyze the behavior of a given digital filter. There are two
categories of digital filters, such as infinite impulse response (IIR) filters and finite impulse
response (FIR) filters. For example, the FIR filter is often used to smooth a random process
to suppress noise and bring out a slower-varying signal and the detection of a signal in a
noisy background with a matched filter.

In [17,18], the authors discussed the methodology for an upgraded framework of FIR
from the software level to the hardware level. Moreover, in [19], the authors discussed the
coupling between an asynchronas designs and non-uniform sampling schemes in order
to implement a digital filter. In [20,21], the authors discussed the reconstruction of the
speech signal, and compared FIR and IIR filter banks and also studied the transfer functions
related to one-dimensional and two-dimensional filter systems. Motivated by the above
works, we present our filter system shown in Figure 1, which describes the rough pattern
of a block diagram. it provides the solutions with respect to a minimum number of inputs
with high accuracy and fast execution time.

1. Product modulator (PM)-1 accepts the inputs R1(v) and [ϕ(0)+ g(z)(0)] at time v = 0,
and produces the output R1(v)[ϕ(0) + g(z)(0)].

2. PM-2 accepts the inputs R1(v− s) and φ, and produces the output R1(v− s)φ.
3. The integrator executes the integral of R1(v− s)φ over the period v.

Finally, the input F(v, zv), the output from PM-1, and the output from the integrator
are moved to the summer network; then we will get output z(v).
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Figure 1. Filter diagram.

7. Conclusions

This manuscript illustrates that the existence of a mild solution for the neutral partial in-
tegrodifferential nonlocal system with finite delay is supported by a Monch–Krasnosel’skii
type fixed point theorem, measure of noncompactness, and resolvent operator theory.
Finally, we have constructed a rough filter system associated with our existence result.
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