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Abstract: In our work, we derived the fractional order q-integrals and q-derivatives concerning a
basic analogue to the Aleph-function of two variables (AFTV). We discussed a related application and
the q-extension of the corresponding Leibniz rule. Finally, we presented two corollaries concerning
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1. Introduction

Fractional calculus represents an important part of mathematical analysis. The concept
of fractional calculus was born from a famous correspondence between L’Hopital and
Leibniz in 1695. In the last four decades, it has gained significant recognition and found
many applications in diverse research fields (see [1–6]). The fractional basic (or q−) calculus
is the extension of the ordinary fractional calculus in the q-theory (see [7–10]). We recall
that basic series and basic polynomials, particularly the basic (or q−) hypergeometric
functions and basic (or q−) hypergeometric polynomials, are particularly applicable in
several fields, e.g., Finite Vector Spaces, Lie Theory, Combinatorial Analysis, Particle
Physics, Mechanical Engineering, Theory of Heat Conduction, Non-Linear Electric Circuit
Theory, Cosmology, Quantum Mechanics, and Statistics. In 1952, Al-Salam introduced the
q-analogue to Cauchy’s formula [11] (see also [12]). Agarwal [13] studied certain fractional
q-integral and q-derivative operators. In addition, various researchers reported image
formulas of various q-special functions under fractional q-calculus operators, for example,
Kumar et al. [14], Sahni et al. [15], Yadav and Purohit [16], Yadav et al. [17,18], and maybe
more. The q-extensions of the Saigo’s fractional integral operators were defined by Purohit
and Yadav [19]. Several authors utilised such operators to evaluate a general class of
q-polynomials, the basic analogue to Fox’s H-function, basic analogue to the I-function,
fractional q-calculus formulas for various special functions, etc. The readers can see more
related new details in [16–18,20] on fractional q-calculus.

The purpose of the present manuscript is to discuss expansion formulas, involving the
basic analogue to AFTV [21]. The q-Leibniz formula is also provided.

We recall that q-shifted factorial (a; q)n has the following form [22,23]

(a; q)n =

{
1, (n = 0)

∏n−1
i=0

(
1− aqi), (n ∈ N∪ {∞}) , (1)
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such that a, q ∈ C and it is assumed that a 6= q−m (m ∈ N0).
The expression of the q-shifted factorial for negative subscript is written by

(a; q)−n =
1

(1− aq−1) (1− aq−2) · · · (1− aq−n)
(n ∈ N0). (2)

Additionally, we have

(a; q)∞ =
∞

∏
i=0

(
1− aqi

)
(a, q ∈ C; |q| < 1). (3)

Using (1)–(3), we conclude that

(a; q)n =
(a; q)∞
(aqn; q)∞

(n ∈ Z), (4)

its extension to n = α ∈ C as:

(a; q)α =
(a; q)∞
(aqα; q)∞

(α ∈ C; |q| < 1), (5)

such that the principal value of qα is considered.
We equivalently have a form of (1), given as

(a; q)n =
Γq(a + n)(1− q)n

Γq(a)
(a 6= 0,−1,−2, · · · ), (6)

where the q-gamma function is expressed as [8]:

Γq(a) =
(q; q)∞

(qa; q)∞(1− q)a−1 =
(q; q)a−1

(1− q)a−1 , (a 6= 0,−1,−2, · · · ). (7)

The expression of the q-analogue to the Riemann–Liouville fractional integral operator
(RLI) of f (x) has the following expression [12]:

Iµ
q { f (x)} = 1

Γq(µ)

∫ x

0
(x− tq)µ−1 f (t)dqt, (8)

here, <(µ) > 0, |q| < 1 and

[x− y]υ = xυ
∞

∏
n=0

[
1− (y/x)qn

1− (y/x)qn+υ

]
= xυ

( y
x

; q
)

υ
(x 6= 0). (9)

The basic integral [8] is given by

∫ x

0
f (t)dqt = x(1− q)

∞

∑
k=0

qk f
(

xqk
)

. (10)

Equation (8), in conjunction with (10); then, we have the series representation of (RLI),
as follows

Iµ
q f (x) =

xµ(1− q)
Γq(µ)

∞

∑
k=0

qk
[
1− qk+1

]
µ−1

f
(

xqk
)

. (11)

We mention that for f (x) = xλ−1, the following can be written [16]

Iµ
q

(
xλ−1

)
=

Γq(λ)

Γq(λ + µ)
xλ+µ−1 (<(λ + µ) > 0). (12)
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2. Basic Analogue to Aleph-Function of Two Variables

We recall that AFTV [21] is an extension of the I-function possessing two variables [24].
Here, in the present article, we define a basic analogue to AFTV.

We record

G(qa) =

[
∞

∏
n=0

(
1− qa+n)]−1

=
1

(qa; q)∞
. (13)

Next, we have

ℵ(z1, z2; q)

= ℵ0,n1;m2,n2 :m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1

z2

; q

∣∣∣∣∣∣∣
(
aj; αj, Aj

)
1,n1

,
[
τi
(
aji; αji, Aji

)]
n1+1,Pi

;

[
τi
(
bji; β ji, Bji

)]
1,Qi

;(
cj, γj

)
1,n2

,
[
τi′
(

cji′ , γji′
)]

n2+1,Pi′
;
(
ej, Ej

)
1,n3

,
[
τi′′
(

eji′′ , γji′′
)]

n3+1,Pi′′(
dj, δj

)
1,m2

,
[
τi′
(

dji′ , δji′
)]

m2+1,Qi′
;
(

f j, Fj
)

1,m3
,
[
τi′′
(

f ji′′ , Fji′′
)]

m3+1,Qi′′


=

1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)zs1
1 zs2

2 dqs1 dqs2, (14)

where ω =
√
−1, and

φ(s1, s2; q) =
∏n1

j=1 G
(

q1−aj+αjs1+Ajs2
)

∑r
i=1 τi

{
∏Qi

j=1 G
(

q1−bji+β jis1+Bjis2
)

∏Pi
j=n1+1 G

(
qaji−αjis1−Ajis2

)}
×

∏m2
j=1 G

(
qdj−δjs1

)
∏n2

j=1 G
(

q1−cj+γjs1
)

∑r′
i′=1 τi′

{
∏

Qi′
j=m2+1 G

(
q1−dji′+δji′ s1

)
∏

Pi′
j=n2+1 G

(
qcji′−γji′ s1

)}
G(q1−s1) sin πs1

×
∏m3

j=1 G
(

q f j−Fjs2
)

∏n3
j=1 G

(
q1−ej+Ejs2

)
∑r′′

i′′=1 τi′′
{

∏
Qi′′
j=m3+1 G

(
q1− f ji′′+Fji′′ s2

)
∏

Pi′′
j=n3+1 G

(
qeji′′−Eji′′ s2

)}
G(q1−s2) sin πs2

, (15)

where z1, z2 6= 0 and are real or complex. An empty product is elucidated as unity, and
Pi, Pi′ , Pi′′ , Qi, Qi′ , Qi′′ , m1, m2, m3, n1, n2, n3 are non-negative integers, such that Qi, Qi′ , Qi′′ >
0; τi, τi′ , τi′′ > 0(i = 1, · · · , r; i′ = 1, · · · , r′; i′′ = 1, · · · , r′′). All the As, αs, γs, δs, Es, and
Fs are presumed to be positive quantities for standardization intention, the as, bs, cs, ds,
es, and f s are complex numbers. The definition of a basic analogue to AFTV will, how-
ever, make sense, even if some of these quantities are equal to zero. The contour L1 is
in the s1-plane and goes from −ω∞ to +ω∞, with loops where necessary, to make sure
that the poles of G

(
qdj−δjs1

)
(j = 1, · · · , m2) are to the right-hand side and all the poles of

G
(

q1−aj+αjs1+Ajs2
)
(j = 1, · · · , n1), G

(
q1−cj+γs1

)
(j = 1, · · · , n2) lie to the left-hand side

of L1. The contour L2 is in the s2-plane and goes from −ω∞ to +ω∞, with loops where
necessary, to ensure that the poles of G

(
q f j−Fjs2

)
(j = 1, · · · , m3) are to the right-hand

side and all the poles of G
(

q1−aj+αjs1+Ajs2
)
(j = 1, · · · , n1), G

(
q1−ej+Ejs2

)
(j = 1, · · · , n2)

lie to the left-hand side of L2. For values of |s1| and |s2|, the integrals converge, if
<(s1 log(z1)− log sin πs1) < 0 and <(s2 log(z2)− log sin πs2) < 0.



Fractal Fract. 2022, 6, 71 4 of 8

3. Main Formulas

Here, we obtain fractional q-integral and q-derivative formulas concerning the basic
analogue to AFTV. Here, we have the following notations:

A1 =
(
aj; αj, Aj

)
1,n1

,
[
τi
(
aji; αji, Aji

)]
n1+1,Pi

; B1 =
[
τi
(
bji; β ji, Bji

)]
1,Qi

. (16)

C1 =
(
cj, γj

)
1,n2

,
[
τi′
(

cji′ , γji′
)]

n2+1,Pi′
;
(
ej, Ej

)
1,n3

,
[
τi′′
(

eji′′ , γji′′
)]

n3+1,Pi′′
. (17)

D1 =
(
dj, δj

)
1,m2

,
[
τi′
(

dji′ , δji′
)]

m2+1,Qi′
;
(

f j, Fj
)

1,m3
,
[
τi′′
(

f ji′′ , Fji′′
)]

m3+1,Qi′′
. (18)

Theorem 1. Let <(µ) > 0, ρi ∈ Z+ (i = 1, 2), and |q| < 1; then, the Riemann–Liouville
fractional q-integral of (14) exists and is given as

Iµ
q

xλ−1ℵ0,n1;m2,n2 :m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1

 = (1− q)µxλ+µ−1

× ℵ0,n1+1;m2,n2 :m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A1; C1

B1, (1− λ− µ; ρ1, ρ2); D1

, (19)

where <(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. We apply the definitions (8) and (14) in the left-hand side of (19), we have (say I)

I =
1

Γq(α)

∫ x

0
(x− yq)α−1

{
yλ−1 1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

(ziyρi )si dqs1dqs2

}
dqy. (20)

By using standard calculations, we arrive at

I =
yλ−1

Γq(α)

1

(2πω)2

×
∫

L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

zsi
i

{∫ x

0
(x− yq)α−1yλ+∑2

i=1 ρisi−1dqy
}

dqs1 dqs2

=
1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

zsi
i Iµ

q

{
xλ+∑2

i=1 ρisi−1
}

dqs1 dqs2. (21)

Next, we apply formula (12) to the equation above; then, we get

I =
1

(2πω)2

∫
L1

∫
L2

π2φ(s1, s2; q)
2

∏
i=1

zsi
i

Γq

(
λ + ∑2

i=1 ρisi

)
Γq

(
λ + µ + ∑2

i=1 ρisi

) xλ+µ+∑2
i=1 ρisi−1dqs1dqs2. (22)

Considering the above q-Mellin–Barnes double contour integrals in terms of the basic
analogue to AFTV, we obtain (19).

If we use a fractional q-derivative operator without initial values, defined as

I−µ
q { f (x)} = Dµ

x,q{ f (x)} = 1
Γq(−µ)

∫ x

0
(x− tq)−µ−1 f (t)dqt, (23)

where <(µ) < 0; then, we yield the following result:
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Theorem 2. For <(µ) > 0, ρi ∈ Z+ (i = 1, 2), and |q| < 1, the Riemann–Liouville fractional
q-derivative of (14) exists and is given by

Dµ
x,q

xλ−1ℵ0,n1;m2,n2 :m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1

 = (1− q)−µxλ−µ−1

× ℵ0,n1+1;m2,n2 :m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A1; C1

B1, (1− λ + µ; ρ1, ρ2); D1

, (24)

where <(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. If we replace µ by −µ in (19), and follow the proof of Theorem 1, then we can easily
obtain (24).

4. Leibniz’s Formula

The q-expression of the Leibniz rule for the fractional q-derivatives [13] is written
below

Lemma 1. For regular functions U(x) and V(x), we have

Dα
x,q{U(x)V(x)} =

∞

∑
n=0

(−1)nq
n(n+1)

2 [q−µ; q]n
(q; q)n

Dµ−n
x,q {U(xqn)}Dn

x,q{V(x)}. (25)

Next, we have the following formula:

Theorem 3. For <(µ) < 0, ρi ∈ Z+ (i = 1, 2), then the Riemann–Liouville fractional q-
derivative of a product of two basic function is written as

ℵ0,n1+1;m2,n2 :m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A1; C1

B1, (1− λ + µ; ρ1, ρ2); D1


=

∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−µ; q]n
(q; q)n

(
qλ; q

)
n−µ

× ℵ0,n1+1;m2,n2 :m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(0; ρ1, ρ2), A1; C1

B1, (n; ρ1, ρ2); D1

, (26)

where <(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. To apply the q-Leibniz rule, we take

U(x) = xλ−1 and V(x) = ℵ0,n1;m2,n2 :m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1

.

By using Lemma 1, we obtain the following relation:

Dµ
x,q

xλ−1 ℵ0,n1;m2,n2 :m3,n3
Pi ,Qi ,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
A1; C1

B1; D1


=

∞

∑
n=0

(−1)nq
n(n+1)

2 [q−µ; q]n
(q; q)n

Dµ−n
x,q (xqn)λ−1Dn

x,q{ℵ(z1xρ1 , z2xρ2 ; q)}. (27)
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Next, by using Theorem 2 and setting λ = 1, we obtain

Dn
x,q{ℵ(z1xρ1 , z2xρ2 ; q)}

= (1− q)−nx−n ℵ0,n1+1;m2,n2 :m3,n3
Pi+1,Qi+1,τi ;r;Pi′ ,Qi′ ,τi′ ;r

′ ;Pi′′ ,Qi′′ ,τi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(0; ρ1, ρ2), A1; C1

B1, (n; ρ1, ρ2); D1

. (28)

By using the above equation and the following result:

Dµ
x,q

{
xλ−1

}
=

Γq(λ)

Γq(λ− µ)
xλ−µ−1 (λ 6= −1,−2, · · · ), (29)

We can easily obtain the desired result (26) after several algebraic manipulations.

5. Particular Cases

By setting τi, τi′ , τi′′ → 1, the basic analogue to AFTV reduces to the basic analogue to
the I-function of two variables [24].

Let
A′1 =

(
aj; αj, Aj

)
1,n1

,
(
aji; αji, Aji

)
n1+1,Pi

; B′1 =
(
bji; β ji, Bji

)
1,Qi

. (30)

C′1 =
(
cj, γj

)
1,n2

,
(

cji′ , γji′
)

n2+1,Pi′
;
(
ej, Ej

)
1,n3

,
(

eji′′ , γji′′
)

n3+1,Pi′′
. (31)

D′1 =
(
dj, δj

)
1,m2

,
(

dji′ , δji′
)

m2+1,Qi′
;
(

f j, Fj
)

1,m3
,
(

f ji′′ , Fji′′
)

m3+1,Qi′′
. (32)

We have the following result:

Corollary 1.

I0,n1+1;m2,n2 :m3,n3
Pi+1,Qi+1;r;Pi′ ,Qi′ ,;r

′ ;Pi′′ ,Qi′′ ,;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(1− λ; ρ1, ρ2), A′1; C′1

B′1, (1− λ + µ; ρ1, ρ2); D′1


=

∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−µ; q]n
(q; q)n

(
qλ; q

)
n−µ

× I0,n1+1;m2,n2 :m3,n3
Pi+1,Qi+1;r;Pi′ ,Qi′ ,;r

′ ;Pi′′ ,Qi′′ ;r
′′

 z1xρ1

z2xρ2

; q

∣∣∣∣∣∣
(0; ρ1, ρ2), A′1; C′1

B′1, (n; ρ1, ρ2); D′1

, (33)

where <(si log(zi)− log sin πsi) < 0 (i = 1, 2).

Proof. By setting τi, τi′ , τi′′ → 1 and following the proof of Theorem 3, we can easily obtain
the desired result (33).

Remark 1. If the basic analogue to the I-function of two variables reduces to the basic analogue to
the H-function of two variables [25], then we can obtain the result due to Yadav et al. [18].

The basic analogue to AFTV reduces to the basic analogue to AFTV, defined by
Ahmad et al. [26].

Let
A =

(
aj, Aj

)
1,n, · · · ,

[
τi
(
aji, Aji

)]
n+1,pi

. (34)

B =
(
bj, Bj

)
1,m, · · · ,

[
τi
(
bji, Bji

)]
m+1,qi

. (35)

Then, we have following relation:
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Corollary 2.

ℵm,n+1
pi+1,qi+1,τi ;r

(
zxρ; q

∣∣∣∣ (1− λ; ρ), A
B, (1− λ + µ; ρ)

)

=
∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−µ; q]n
(q; q)n

(
qλ; q

)
n−µ

ℵm,n+1
pi+1,qi+1,τi ;r

(
zxρ; q

∣∣∣∣ (0; ρ), A
B, (n; ρ)

)
. (36)

If we set τi → 1 in (36), then the basic analogue to AFTV reduces to the basic analogue
to the I-function of one variable. We have

Corollary 3.

Im,n+1
pi+1,qi+1;r

zxρ; q

∣∣∣∣∣∣∣
(1− λ; ρ),

(
aj, Aj

)
1,n, · · · ,

(
aji, Aji

)
n+1,pi(

bj, Bj
)

1,m, · · · ,
(
bji, Bji

)
m+1,qi

, (1− λ + µ; ρ)


=

∞

∑
n=0

(−1)nqnλ+
n(n−1)

2 [q−µ; q]n
(q; q)n

× Im,n+1
pi+1,qi+1;r

zxρ; q

∣∣∣∣∣∣∣
(0; ρ),

(
aj, Aj

)
1,n, · · · ,

(
aji, Aji

)
n+1,pi(

bj, Bj
)

1,m, · · · ,
(
bji, Bji

)
m+1,qi

, (n; ρ)

. (37)

Remark 2. If the basic analogue to AFTV reduces to the basic analogue to the H-function of one
variable (see [27]), then we can report a similar expression.

Remark 3. We can generalize the q-extension of the Leibniz rule for the basic analogue to special
multivariable functions; by this, we can obtain similar formulas by using similar methods.

6. Conclusions

After the famous letter between L’Hopital and Leibniz from 1695, using integral trans-
formations, we obtained a new field in mathematics, called fractional calculus. Among
other things, there are fractional derivative and fractional integrals, as well as fractional
differential equations. It is also well-known that fractional calculus operators and their
basic (or q−) analogues have many applications, such as signal processing, bio-medical
engineering, control systems, radars, sonars, to solve dual integral and series equations
in elasticity, etc. In this article, we have proposed the fractional-order q-integrals and
q-derivatives involving a basic analogue to AFTV [11,12,26,28]. Some remarkable appli-
cations of these integrals and derivatives have also been discussed. By specializing the
various parameters as well as the variables in the basic analogue to AFTV, we can obtain a
large number of q-extensions of the Leibniz rule, involving a large set of basic functions,
that is, the product of such basic functions, which are describable in terms of the basic
analogue to the H-function [25,27], the basic analogue to Meijer’s G-function [27], the basic
analogue to MacRobert’s E-function [29], and the basic analogue to the hypergeometric
function [10,16–18].
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