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Abstract: In our work, we derived the fractional order g-integrals and g-derivatives concerning a
basic analogue to the Aleph-function of two variables (AFTV). We discussed a related application and
the g-extension of the corresponding Leibniz rule. Finally, we presented two corollaries concerning
the basic analogue to the I-function of two variables and the basic analogue to the Aleph-function of
one variable.

Keywords: Fractional g-integral; g-derivative operators; basic analogue to the Aleph-function; basic
analogue to the I-function; g-Leibniz rule

1. Introduction

Fractional calculus represents an important part of mathematical analysis. The concept
of fractional calculus was born from a famous correspondence between L'Hopital and
Leibniz in 1695. In the last four decades, it has gained significant recognition and found
many applications in diverse research fields (see [1-6]). The fractional basic (or 4—) calculus
is the extension of the ordinary fractional calculus in the g-theory (see [7-10]). We recall
that basic series and basic polynomials, particularly the basic (or 4—) hypergeometric
functions and basic (or 4—) hypergeometric polynomials, are particularly applicable in
several fields, e.g., Finite Vector Spaces, Lie Theory, Combinatorial Analysis, Particle
Physics, Mechanical Engineering, Theory of Heat Conduction, Non-Linear Electric Circuit
Theory, Cosmology, Quantum Mechanics, and Statistics. In 1952, Al-Salam introduced the
g-analogue to Cauchy’s formula [11] (see also [12]). Agarwal [13] studied certain fractional
g-integral and g-derivative operators. In addition, various researchers reported image
formulas of various g-special functions under fractional g-calculus operators, for example,
Kumar et al. [14], Sahni et al. [15], Yadav and Purohit [16], Yadav et al. [17,18], and maybe
more. The g-extensions of the Saigo’s fractional integral operators were defined by Purohit
and Yadav [19]. Several authors utilised such operators to evaluate a general class of
g-polynomials, the basic analogue to Fox’s H-function, basic analogue to the I-function,
fractional g-calculus formulas for various special functions, etc. The readers can see more
related new details in [16-18,20] on fractional g-calculus.

The purpose of the present manuscript is to discuss expansion formulas, involving the
basic analogue to AFTV [21]. The g-Leibniz formula is also provided.

We recall that g-shifted factorial (a;q), has the following form [22,23]

1 (n=0)

(‘1; ‘7);1 = { H?:_()’l (1 — aqi), (1’1 e NU {Oo}) ’ .
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such that a,q € C and it is assumed thata # g~ (m € Np).
The expression of the g-shifted factorial for negative subscript is written by

1

(ﬂ}Q)fn = (1 _ aq_l) (1 _ aq_Z) . (1 _ [16]_”) (TI € NO)' 2)
Additionally, we have
H(l—aq) (a,q € C;|q| <1). (©)]
i=0
Using (1)—(3), we conclude that
(2;49)
aq), = ——— ne ), 4)
@0 = o (€D)
its extension ton = a € C as:
(2;9)
a; = 1% a e G <1), (5)
@0 = s @EC; gl <1)
such that the principal value of 4% is considered.
We equivalently have a form of (1), given as
Tga+n)(1—9)"
. — 1 —-1-2 ...
(a/ Q)n - rq(a) (ﬂ # Or 1/ 2/ )/ (6)
where the g-gamma function is expressed as [8]:
(7:9) (7:9)a—1
Iy(a) = = = , (a#0,-1,-2,---). @)
q — —
(@D (-9

The expression of the g-analogue to the Riemann-Liouville fractional integral operator
(RLI) of f(x) has the following expression [12]:

BUFY = 5y ) s dg ®
here, R(¢) >0, |g| < 1and
N e AT
vl = T [ s = (), %00 ©)

The basic integral [8] is given by

* ok k
/O f(Bdgt = x(1=q) ¥ a*f (xd"). (10)
k=0
Equation (8), in conjunction with (10); then, we have the series representation of (RLI),
as follows .
H k+1 k

f(x) = ; a*[1-a] (). (11

We mention that for f(x) = x)"l, the following can be written [16]

1y (x/\_l) = Mx”ﬂ—l (R(A+p) >0). (12)
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2. Basic Analogue to Aleph-Function of Two Variables

We recall that AFTV [21] is an extension of the [-function possessing two variables [24].
Here, in the present article, we define a basic analogue to AFTV.
We record

~1
G(q”)=[l—[(1—q“+”)] = ,1 : (13)

Next, we have

N(z1,22;9)
2| (@A) [T g A ], L
_ Onympnpims,ng g
T UPLQu TP Qi i P QT !
il <l 1 5 il <l 1 Zy I:Tl (b]lf ‘B]'i/ Bji)]l/Qi;

Ci, Vi |:T'/ (C“/ /):| ;e E; |:T'// (6"// “//)i|
(]/')/])anl ! ]1/’)/]1 ny+1,Py (], ])1/”3l ! I ’,le n3+1,Pn

(A 67) 1y 1 () mingy’ S ) ms [t (e Fr) | my+1,Qy0

1
/L /L (51,52 0)2]' 23 dgst dgsz, (14)
1 2

(2nw)?

where w = v/—1, and

H?il G <q1—aj+zxjs1+A152>
P(s1,52;9) = > Ti{HjQ:il G (ql—bji+,5ji51+3ji52> H]P;nlﬂ G (qaﬁ—"‘jiSrAﬁSz) }
7 o) o)
I 6(0) 2 5

X
1" Q; 1—f.n+F., P, 1 —E.. .
E :-’// 1 Ti’/ {l |] il R 1 (;(q f/'” /t”SZ) jl” X 1 (;; <qe]1” /1”52) }G(ql*SZ) SIN 7TSp

. (15)

where z1,z; # 0 and are real or complex. An empty product is elucidated as unity, and
B;, Py, Pin, Q;, Qr, Qin, mq, mp, m3, 0y, 2, N3 are non-negative integers, such that Q;, Q;, Qi >
0,7, T, T >0i=1,---,r, i'=1,---,/; i =1,--- 7). All the As, as, s, Js, Es, and
Fs are presumed to be positive quantities for standardization intention, the as, bs, cs, ds,
es, and fs are complex numbers. The definition of a basic analogue to AFTV will, how-
ever, make sense, even if some of these quantities are equal to zero. The contour L, is
in the s;-plane and goes from —woo to +weo, with loops where necessary, to make sure

that the poles of G (qd!' 75151) (j=1,---,mp) are to the right-hand side and all the poles of
G(qlf‘lﬁ“!’SﬁAl’SZ) G=1,---,m), G(qlfcﬁﬂfsl) (j=1,---,np) lie to the left-hand side
of L1. The contour L; is in the sy-plane and goes from —woo to +woo, with loops where
necessary, to ensure that the poles of G(qf/_F/sz) (j=1,---,mj3) are to the right-hand
side and all the poles of G(ql_”f+“fsl+A152> G=1,---,m), G(ql_eerEst) G=1,---,m)

lie to the left-hand side of Lp. For values of |s1| and |sp|, the integrals converge, if
R (s11og(z1) —logsints1) < 0 and R(sylog(zz) — logsin 7tsy) < 0.
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3. Main Formulas

Here, we obtain fractional g-integral and g-derivative formulas concerning the basic
analogue to AFTV. Here, we have the following notations:

Ay = (aj;a), Aj)llnll i (aji; i, Aji)]nlJrLPi; By = [7i(bji; B, Bji)]l,an (16)
C = (Cj’ ’)/j)l,nz’ [Ti/ (C]'i// ')’ji/)} n2+1,Pi/; (6/', Ej)l [T// ( it 7]”)} n3+1,Pi//. (17)
Dl = (d], (s]) |:Tz (d]lll ]1/):|m2+1,Qi/; (f]r Fj)l,mg,’ |:Ti// (fﬁ”’ Fji”)]m3+1,Qi,,. (18)

Theorem 1. Let R(u) > 0, p; € ZT (i =1,2), and |q| < 1; then, the Riemann—Liouville
fractional g-integral of (14) exists and is given as

z71xP1 Aq1;Cqy

W) L A=1\0n1;mp,np:m3,n3 . — (1 _ A \H A1

lp > NP{,Q{,Ti;r;Pi/,Qi/,Ti/ 5P Qi Tr it x| =(1-q)x
ZpxP2 B1; D,

_— z1xP1 (1—A;01,02), A1;C
1+ Ly, nyims, ng .

x NP +1,Q;+1,7;1; Py, Q,/ T,-/,'V,}Pi//,Ql-//,Tl-//,'r” ;4 4 (19)

zpxP? B1, (1 = A —p;01,02); D1

where RN (s;log(z;) —logsins;) < 0 (i =1,2).

Proof. We apply the definitions (8) and (14) in the left-hand side of (19), we have (say Z)

1 X
7= Fq(“)~/0 (x_yq)tx—l{y/\ !

By using standard calculations, we arrive at

2
i 71247(51,52, H ziyi)® dqsldqsz}dqy. (20)
2 i=1

Ly

B y/\—l 1
Ty(a) 27mw)?
Z . * 2 e
X / / ﬂzsb(sl,Sz;q)l_[Z?{ / (x = yq) gy TP 1dqy}dq51dq52
L /L, Pl 0
-t / / (s sz'q)ﬁzs."ly{x“z%zlpfsi_l}d s1.dgso. (21)
(an)z L, JL, [ Pl iq q q

Next, we apply formula (12) to the equation above; then, we get

2 Lo (A+Y2 . pjsi
/ / 7_[4)51’52, H : q( i=1 Pi )
27‘[0_) Ly Iy (/\ +u+ Zz 1 stz)

Considering the above g-Mellin—Barnes double contour integrals in terms of the basic
analogue to AFTV, we obtain (19). O

/\+y+2,2:1 Pisi_ldqsldq52. (22)

If we use a fractional g-derivative operator without initial values, defined as

B = Dhal ) = iy [ et 1 fOdt @)

where R(y) < 0; then, we yield the following result:
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Theorem 2. For ®(u) >0, p; € Z* (i =1,2), and |q| < 1, the Riemann—Liouville fractional
g-derivative of (14) exists and is given by

z1xP1 A; G
ZpxP2 B1; Dq
0,n1+1;my,np:m3,n3 lepl <1 - A; o pZ), Al; C1
X NP:‘+1,Q;'+1ITHT;PHfQi’fTi’ 5Py Qi Tgrr"! a ’ 24

22 B, (1= A+ u;01,02); D1
where R(s;log(z;) —logsins;) < 0 (i =1,2).

Proof. If we replace y by —u in (19), and follow the proof of Theorem 1, then we can easily
obtain (24). O

4. Leibniz’s Formula

The g-expression of the Leibniz rule for the fractional g-derivatives [13] is written
below

Lemma 1. For reqular functions U(x) and V(x), we have

00 o\ n(n2+]) .
Dy AU(x)V(x)} = ZO< D q(w)[q i DY "{U(xq")}D2 {V(x)}. (25

Next, we have the following formula:

Theorem 3. For R(u) < 0, p; € Z* (i =1,2), then the Riemann—Liouville fractional g-
derivative of a product of two basic function is written as

z1x1 (1 =X 01,02), A1;C
NO'”1 +1Lmp,np:ms,ng

Pi+1,Qi+1,73;7;P ,Qpr /Tr 5 s Pias Qo T 1" 7 4q
szPZ Bl/ (1 —)\+}1,P11P2)/ Dl

= i (—1>nan+n(n£1) [q_y’. q]n
= @), @49,
z1xP1 (0;01,02), A1;Cq

0,n1+1;ma np:ms,n3 .
X NPi+1,Qi+1,Ti}T}Pi/,Q,v/,T,v/;7’;Pi//,Q,-//,Ti//;r” 'l 4 (26)
zpxP? By, (1;01,02); D1
where R (s;log(z;) —logsins;) < 0 (i =1,2).
Proof. To apply the g-Leibniz rule, we take
z1xP1 Aq1;C
_ A1 _ wOnmynyimzng .
U(x) = x and V(x) = NPI‘,Q,‘,'L?;Y;PV,QiuTi/;r’;Pi//,Qi//,T,'//;r” 4
ZpxP2 By; D
By using Lemma 1, we obtain the following relation:
z1xP1 Aq;Cqp
Iz A—1 W0,n1;ma,np:mz,n3 .
Dx AR NPi/Qi/Ti}Y}P,'//Q,'//T,'//'V,?P,‘//rQl‘///Ti///'rH 4
ZrxP2 B1; Dq
n(n+1)
(=D 2 [g7"5ql, uen, pya
=) : % Dhy" (xq") DY g {R (212, 22275 ) }. (27)
n=0 (‘71 q)n
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Next, by using Theorem 2 and setting A = 1, we obtain

DY {R(z1x1, z0x2; q) }

0,11+ 1;my,ny:ms,n 2141 (0;p1/p2)/A1;C1
= —n . —n Un1+1my nyims,ng )
= (]- - ‘7) X NPI'+1,Q,'+1,T,';7';PZ.,,QZ.,,Tl_,;r’;pl_”,Qi”,Ti”;r// ; q . (28)
2o By, (1;p1,02); D1
By using the above equation and the following result:

— _ rq(A) —U—
D,’ﬁlq{x)‘ 1} = m:& BN £ —1,-2, ), (29)

We can easily obtain the desired result (26) after several algebraic manipulations. [

5. Particular Cases

By setting 7;, Ty, T;» — 1, the basic analogue to AFTV reduces to the basic analogue to
the I-function of two variables [24].

Let
/ . . . p! _— .
A1 = (a]-, &j, Aj)l,n]’ (Ll]‘i,Dé]'l', Aji)n]Jrl,Pi’ Bl = (b]',', ﬁ]‘,’, Bji)lrQi‘ (30)
Cr = (e 1)1,y (Cﬂ"%l’)nﬁl,ﬂ/’ (€37 Bi) 1y (e]l"’,y]l")nﬁl,sz' (51
/ _— . . .o .o . . . I Iy
D1 - (d]/ 6]> 1/7'12, (d]z// 5]1/) m2+1,Qi/ 7 (f]/ P])Lmaf (f]z//, F]l") m3+],Qi,/ . (32)
We have the following result:
Corollary 1.
z1xP1 (1—=A;p1,02), AL CY
IO,H1+1;7712,71221113,1’13 .
P;+1,Q,'+1;7‘;Pl-/,Ql-/,,'r’;Pl-//,Ql-//,,'r” 74 , ,
z2pxP2 By, (1= A+ p;01,02); D}
nn-1)
_ i (=D"q" 2 g5 q],,
im0 @), (@59),,
_— z1x1 (0;01,02), AL; CY
n1+1;,my,nymsn .
x IPH-ll,Qi-&-zl;V?Pi/?Qi?,;r/;Pi//,Qiu;r” x ’ (33)

2% By, (1;01,02); D
where R(s;log(z;) —logsins;) < 0 (i =1,2).

Proof. By setting T;, 7y, T» — 1 and following the proof of Theorem 3, we can easily obtain
the desired result (33). O

Remark 1. If the basic analogue to the I-function of two variables reduces to the basic analogue to
the H-function of two variables [25], then we can obtain the result due to Yadav et al. [18].

The basic analogue to AFTV reduces to the basic analogue to AFTV, defined by
Ahmad et al. [26].
Let

A= (aj Ay [T A ], (34)
B = (bj,By), . [T Bii) ] 1, (35)

Then, we have following relation:
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Corollary 2.
mmn+1 0. (1 - /\}P)/A
N1+ (254) g, (1—A+u;p)
n( 1)
= (= )”4’”* [ 4, mns1 ( (0;0), A )
N | zxf; . 36
; q)n <q ;q)n_y pi+1,q;+1,7r q B, (n;p) ( )

If we set T; — 1in (36), then the basic analogue to AFTV reduces to the basic analogue
to the I-function of one variable. We have

Corollary 3.
. (1—=A0), (aj, Aj) L (ajz‘/Aji)n+1,p’.
m,n .
pi+Lqi+Lr pr/q
(b]’ Bj)l,m (b]” B ) m+1,q;” (1 —A+ ‘u’P)
. n(n=1)
=y (=D)"g" "7 (g% q),
o (4:49),

mn+1 (0:p), (a], ) 1 A (afi’ Aﬁ)nH,P[
X L iy | 25054 . (37)
(b]" Bj)l, ’ (bﬂ’ Bll)m+1 i (n;p>

Remark 2. If the basic analogue to AFTV reduces to the basic analogue to the H-function of one
variable (see [27]), then we can report a similar expression.

Remark 3. We can generalize the q-extension of the Leibniz rule for the basic analogue to special
multivariable functions; by this, we can obtain similar formulas by using similar methods.

6. Conclusions

After the famous letter between L'Hopital and Leibniz from 1695, using integral trans-
formations, we obtained a new field in mathematics, called fractional calculus. Among
other things, there are fractional derivative and fractional integrals, as well as fractional
differential equations. It is also well-known that fractional calculus operators and their
basic (or g—) analogues have many applications, such as signal processing, bio-medical
engineering, control systems, radars, sonars, to solve dual integral and series equations
in elasticity, etc. In this article, we have proposed the fractional-order g-integrals and
g-derivatives involving a basic analogue to AFTV [11,12,26,28]. Some remarkable appli-
cations of these integrals and derivatives have also been discussed. By specializing the
various parameters as well as the variables in the basic analogue to AFTV, we can obtain a
large number of g-extensions of the Leibniz rule, involving a large set of basic functions,
that is, the product of such basic functions, which are describable in terms of the basic
analogue to the H-function [25,27], the basic analogue to Meijer’s G-function [27], the basic
analogue to MacRobert’s E-function [29], and the basic analogue to the hypergeometric
function [10,16-18].
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