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Abstract: One-dimensional continuous functions are important fundament for studying other com-
plex functions. Many theories and methods applied to study one-dimensional continuous functions
can also be accustomed to investigating the properties of multi-dimensional functions. The properties
of one-dimensional continuous functions, such as dimensionality, continuity, and boundedness, have
been discussed from multiple perspectives. Therefore, the existing conclusions will be systematically
sorted out according to the bounded variation, unbounded variation and hölder continuity. At the
same time, unbounded variation points are used to analyze continuous functions and construct
unbounded variation functions innovatively. Possible applications of fractal and fractal dimension in
reinforcement learning are predicted.
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1. Introduction

It is a widely held view that dimensionality is an important indicator to describe
functions, but different functions have many disparate internal structures and properties.
Traditional topological dimension had not dealt with some characteristics of the intricate
functions well. In recent years, there is a growing body of literature that recognises the
importance of using fractal dimension instead of topological dimension to describe the
functions. The fractal dimension is an extension of the topological dimension. The fractal
dimension reflects the effectiveness of the space occupied by the complex sets, and it is a
measure of the irregularity of the complex sets. It is cross-combined with the chaos theory
of dynamical systems and complements each other. It admits that the part of the world may
show similarity with the whole in a certain aspect under certain conditions or processes.
The value of the fractal dimension can be not only an integer but also a fraction. So fractal
dimension can measure complex sets like the Cantor ternary set. From the point of view
of the measure theory, the fractal dimension is the jump point that makes the measure of
the set change from infinity to zero. Fractal dimension includes the Hausdorff dimension,
the Box dimension and the Packing dimension. Each dimension has a special definition
and many calculation methods. The tool for studying fractal dimension is no longer just
classic calculus, and a full discussion about the properties of continuous functions lies
beyond the scope of classical calculus. Fractional calculus (FC) has gradually become
the main method [1–3]. Since classical calculus is a special case of fractional calculus [4],
many problems that cannot be measured by classical calculus can be solved by fractional
calculus, such as studying the properties of continuous functions that are continuous but
not differentiable everywhere [5,6]. The most widely used FC is the Riemann-Liuville
fractional calculus and the Weyl-Marchaud fractional calculus.

Recent work has established that one-dimensional continuous functions have signif-
icant and useful properties [7]. For instance, the Box dimension of bounded variation
functions and the functions with Riemann-Liuville fractional calculus are both one. The
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Box dimension of continuous functions is not less than one. Fractional integral does not
increase the dimensionality of the functions, and this special operator makes the fractal
dimension have a special linear relationship.

However, there are still some issues that are worth considering and discussing. For
example, is the Hausdorff dimension of a continuous function with bounded variation equal
to one? What are the Hausdorff dimension and the Box dimension of functions satisfying
the Hölder condition? Is there a one-dimensional unbounded variation function? Can the
function of unbounded variation and bounded variation be mutually converted under
special prerequisites? Are there other ways to better explore unbounded variation functions
effectively? It is these original questions that promote the emergence of new concepts
and many new analytical tools. A few years ago, scholars always used the definition
of bounded variation to define the unbounded variation function. The definition is not
conducive to exploring the nature of the unbounded variation function. As unbounded
variation functions defined by the unbounded variation point directly, a new perspective
for studying unbounded variation functions was gradually discovered. At the same time,
the relevant conclusions about unbounded variation points have also been rigorously
proved. For example, the Box dimension of an unbounded variation function with only
an unbounded variation point is one. If this function has self-similarity at the same time,
its Hausdorff dimension is also one. A more interesting topic is to investigate the changes
between some classic functions and the functions after fractional calculus. These changes
usually include fractal dimension [8–10], continuity [11,12], boundedness [13,14] and types
of fractional calculus [15,16].

After concentrated discussions on some special functions theoretically [17,18], scholars
do not have any visual information of the functions [19,20]. The most obvious evidence is
the Weierstrass function. Researchers not only know about its functional properties, but also
clearly know what its image looks like. Nevertheless, scholars are not very familiar with the
image of any one-dimensional continuous functions with an unbounded variation point.
Therefore, several attempts have been made to construct the special functions [21], such as
one-dimensional continuous functions with finite or infinite unbounded variation points,
and unbounded variation functions that satisfy the Hölder condition. The construction
process of these special functions mainly uses some compression, translation and symmetric
transformations. There are also some special unbounded variation functions that are
obtained by special operations on the basis of the devil function [22].

So far, there existed many research angles and conclusions on one-dimensional con-
tinuous functions and their fractional calculus [23]. In order to have a comprehensive
understanding, this paper will systematically sort out the current research results from
the perspectives of bounded variation, unbounded variation and the Hölder condition. A
more detailed analysis of unbounded variation functions through the unbounded variation
point will also be elaborated. Combined with the very popular reinforcement learning in
machine learning, some very interesting practical applications are predicted. For example,
the evaluation model based on the fractal dimension and the random search method based
on the fractal structure. The advantage of the fractal evaluation model based on the fractal
dimension is that the method based on the local information can evaluate the distance
between any two states to the equilibrium state. The distance can speed up the calculation
process of algorithms. At the same time, evaluating the current state during the training
process can also optimize and improve algorithms reasonably. The fractal random search
method also makes full use of the self-similarity to reduce the search time as much as possi-
ble on the basis of ensuring the probe of the entire space. Finally, the framework to prove
the convergence of reinforcement learning algorithms is introduced using fractal attractors.

The main innovations of this manuscript are as follows. First, the existing conclu-
sions about one-dimensional continuous functions are summarized through three different
classification methods, which is helpful to study other complex functions. The second is
to introduce the concept of the unbounded variation point to directly study unbounded
variation functions. The unbounded variation point can effectively grasp the essence of
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unbounded variation functions. At the same time, some special unbounded variation
functions can be constructed based on the unbounded variation point, and the images of
these complex unbounded variation functions can be easily obtained. Third, by combining
reinforcement learning and fractal theory, some possible application directions are pre-
dicted, and a unique fractal evaluation model is proposed. These results can provide some
new ideas for other researchers.

Section 2 mainly recalled some basic concepts, such as the definition of fractal dimen-
sion, bounded variation functions, unbounded variation points and fractional calculus.
Section 3 mainly discussed the bounded variation function and its fractional calculus.
Section 4 focused on the correlation between the continuity of Hölder and variation func-
tions. Section 5 primarily explored the unbounded variation function through the un-
bounded variation point, and gave the construction process of one-dimensional continuous
unbounded variation functions. Section 6 forecasted some applications of fractal and fractal
functions in reinforcement learning and analyzed the advantages and disadvantages of
these methods. The logical structure of this paper is shown in Figure 1.

Figure 1. The logical structure of the paper.

2. Basic Concepts

Among fractal dimension, the Box dimension is the most widely used. However, some
other dimension is still mentioned in some engineering problems, such as the modified Box
dimension and the Packing dimension. At the same time, the relationship between these
dimension is often analyzed and compared in theoretical research. Most of the definitions
are based on measurement theory, and there are also some interrelationships between
various dimension. Typical definitions of fractal dimension are as follows.
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Definition 1. ([24,25]) Let F be a non-empty bounded subset of Rn and Nδ(F) be the smallest
number of sets of diameter at most δ which can cover F. The lower and upper Box dimension of F
respectively are defined as

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

, (1)

and

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

. (2)

If (1) and (2) are equal, the common value is the Box dimension of F:

dimB(F) = lim
δ→0

log Nδ(F)
− log δ

.

If F can be decomposed into a countable number of pieces F1, F2, · · · in such a way that the
dimension of the largest piece should be as small as possible. This idea leads to the following modified
Box-counting dimension,

dimMB(F) = inf{sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi}, (3)

dimMB(F) = inf{sup
i

dimBFi : F ⊂
∞⋃

i=1

Fi}. (4)

If (3) and (4) are equal, the common value is the modified Box-counting dimension of F. Let

P s(F) = inf{∑
i

P s
0(Fi) : F ⊂

∞⋃
i=1

Fi}.

It may be shown that P s(F) is the s-dimensional Packing measure. The definition of the
Packing dimension [26] in the usual way:

dimP F = sup{s : P s(F) = ∞} = inf{s : P s(F) = 0}.

The above dimension is put forward for some specific problems. In the research
process, the appropriate fractal dimension should be selected according to the needs. For
example, the measurement of the Hausdorff dimension is more accurate and the calculation
of the Box dimension is simpler through programs.

The Jordan decomposition theorem is widely applied in the proof process of various
problems, and the core concept of the theorem is the function with bounded variation. The
definition of the bounded variation function is shown in Definition 2. The unbounded
variation function can be defined by the complementary set of bounded variation func-
tions, but this paper will research unbounded variation functions through the unbounded
variation point that can be found in Definition 3.

Definition 2. ([27]) Let f (x) be defined on I = [0, 1]. A set of points P = {x0, x1, · · · , xn},
satisfying the inequalities 0 = x0 < x1 < · · · < xn−1 < xn = 1, is called a partition. P =
{x0, x1, · · · , xn} is a partition of I and write4 fk = f (xk)− f (xk−1), for k = 1, 2, · · · , n. If there
exists a positive number M such that

n

∑
k=1
| 4 fk| ≤ M,

for all partitions of I, f (x) is said to be of bounded variation on I.
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Bounded variation functions have many important properties [28,29]. Such as, a
monotonic function is a bounded variation function. The sum, difference, and product of a
finite number of bounded variation functions are still the bounded variation function. The
absolutely continuous function must be the function of bounded variation.

Definition 3. (UV point) Let f (x) be a continuous function on I.
(1) For p ∈ (0, 1). There exists a closed subinterval Q = [q1, q2] (0 ≤ q1 < p < q2 ≤ 1)

of I such that the variation of f (x) on Q is finite, then denote (p, 0) as a bounded variation point
of f (x), or (p, 0) as an unbounded variation point of f (x).

(2) For p = 0 or p = 1. There is a closed subinterval Q = [0, q1] (0 < x ≤ 1) or Q = [q1, 1]
(0 ≤ q1 < 1) of I and the variation of f (x) on Q is finite, then denote (p, 0) is a bounded variation
point of f (x), otherwise (p, 0) is an unbounded variation point of f (x).

Due to the complexity of the function structure, the functions of unbounded variation
are often non-differentiable functions in the defined interval. The concept of the UV
point grasps the essence of unbounded variation functions and transforms the complex
structure cleverly. Classical calculus is difficult to analyse the properties of unbounded
variation functions, but the properties of some special unbounded variation functions can
be investigated by fractional calculus [30,31]. This article mainly utilizes the Riemann-
Liouville fractional integral and the Weyl fractional integral [32] to study unbounded
variation functions. Their definitions can be found in Definition 4.

Definition 4. ([33,34]) (1) Let f (x) ∈ CI , ν > 0. D−ν f (0) = 0 and for x ∈ (0, 1],

D−ν f (x) =
1

Γ(ν)

∫ x

0
(x− t)ν−1 f (t)dt

is the Riemann-Liouville fractional integral of f (x) of order ν.
(2) Let f (x) be a continuous function defined on (−∞,+∞) and 0 < ν < 1.

W−ν f (x) =
1

Γ(ν)

∫ ∞

x
(t− x)ν−1 f (t)dt

is called as the Weyl fractional integral of f (x) of order ν.

The abbreviation CI and BVI will be represented for continuous functions and bounded
variation functions defined on I respectively. Denote G( f , I) as the image of f (x) on I.
Denote bounded variation function and unbounded variation function as BVF and UVF
respectively. C0 is the Cantor set.

3. Bounded Variation Functions and Their Fractional Integral

The structure of the bounded variation function is not complex. Simple calculations
show that its Box dimension is one [35,36]. Furthermore, the bounded variation function
after the Weyl fractional integral is still a bounded variation function, so its Box dimension
is still one. The relationship between them can be shown in Figure 2.

The proof process of the above related conclusions will be given in detail. First of all, a
frequently occurring lemma is necessary to be displayed.

Lemma 1. Given a function f (x) and an interval [a, b], R f is the maximum range of f (x)
over [a, b], i.e.,

R f [a, b] = sup
a<x, y<b

| f (x)− f (y)|.

Let f (x) ∈ CI
⋂

BVI . Suppose that 0 < δ < 1 and m be the least integer greater than or
equal to δ−1. If Nδ is the number of squares of the δ−mesh that intersect G( f , I), then
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δ−1
m−1

∑
i=o

R f [iδ, (i + 1)δ] ≤ Nδ ≤ 2m + δ−1
m−1

∑
i=0

R f [iδ, (i + 1)δ].

Figure 2. The properties of bounded variation functions.

Proof of Lemma 1. The number of mesh squares of δ in the column above the inter-
val [iδ, (i + 1)δ] that intersect G( f , I) belongs to [R f [iδ, (i + 1)δ]/δ, 2 + (R f [iδ, (i + 1)δ]/δ)].
By summing all such intervals together, the lemma can be proved.

Theorem 1. (1) If dimBG( f , I) ≥ 1 and f (x) is a continuous function, dimBG( f , I) ≤ 2.
(2) If f (x) ∈ CI

⋂
BVI , dimB G( f , I) = 1.

Proof of Theorem 1. By using Definition 1,

dimBG( f , I) ≥ lim
δ→0

log C
δ

− log δ
= 1, dimBG( f , I) ≤ lim

δ→0

log C
δ2

− log δ
= 2.

Let {xi}n
i=1 be arbitrary points satisfying 0 = x0 < x1 < x2 < · · · < xn = 1, then

sup
(x0,x1,··· ,xn)

n

∑
k=1
| f (xk)− f (xk−1)| < C.

Let m be the least integer greater than or equal to 1
δ . Nδ is the number of squares of the

δ−mesh that intersect G( f , I). Combining Lemma 1,

Nδ ≤ 2m + δ−1
m

∑
i=1

R f [(i− 1)δ, iδ].

For 1 ≤ i ≤ m− 1 and xi, 0 = iδ, xi, 3 = (i + 1)δ, xi, 1, xi, 2 ∈ (iδ, (i + 1)δ),

R f [iδ, (i + 1)δ] ≤ sup
xi, 0<xi, 1<xi, 2<xi, 3

3

∑
k=1
| f (xi, k)− f (xi, k− 1)|.

There exists a positive constant C such that Nδ ≤ Cδ−1 and

dimBG( f , I) ≤ 1, 0 < v < 1.
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Simultaneously, the topolopy dimension of a continuous function f (x) is no less
than 1,

dimBG( f , I) ≥ 1, 0 < v < 1.

Thus, dimB G( f , I) = 1.

If non-negative constants C and α can be found to formula the following inequation

| f (x)− f (y)| ≤ C|x− y|α,

f (x) is a Hölder continuous function [37]. When α = 1, f (x) is a Lipschitz continuous
function. Throughout this paper, the term f (x) ∈ LipC means that f (x) is a Lipschitz
continuous function on I and the Lipschitz constant is C.

Corollary 1. If f (x) ∈ LipC, then dimB G( f , I) = 1.

Proof of Corollary 1. f (x) ∈ LipC, ∀ x, y ∈ I,

| f (x)− f (y) |≤ C | x− y | .

Let {xi}n
i=1 be arbitrary points satisfying 0 = x0 < x1 < x2 < · · · < xn = 1. Since

sup
(x0, x1,..., xn)

n

∑
k=1
| f (xk)− f (xk−1)| ≤ C

n

∑
k=1
|xk − xk−1| ≤ C,

f (x) ∈ BVI and dimB G( f , I) = 1.

Corollary 1 shows that a function that satisfies the Lipschitz condition must be a BVF.
However, a function that satisfies the Hölder condition is not necessarily a BVF [38,39]. The
counter-example is as follows:

f (x) =

{
−1/lnx, 0 < x ≤ 0.5,
0, x = 0.

Obviously, since this function is monotonically increasing in [0, 0.5], it is a BVF. But for
any α > 0, this function does not satisfy the Hölder condition of order α.

Theorem 2. If f (x) ∈ CI
⋂

BVI , dimB G(W−v f , I) = 1.

Proof of Theorem 2. Since f (x) ∈ CI and f (x) is of bounded variation on I, f (x) can be
replaced with the difference of two monotone increasing and continuous functions g1(x)
and g2(x) by the Jordan decomposition theorem, f (x) = g1(x)− g2(x), where g1(x) =
h1(x)− c, g2(x) = h2(x)− c, h1(x) = h2(x) = c on [1,+∞). Then h1(x) and h2(x) are also
monotone increasing and continuous functions.

(1) If f (0) ≥ 0, let g1(0) ≥ 0 and g2(0) = 0. By Definition 4,

G1(x) = W−vg1(x) =
1

Γ(v)

∫ ∞

x

h1(t)− c
(t− x)1−v dt, 0 < v < 1,
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G1(x) still is a continuous function on I when g1(x) is a continuous function. Let
0 ≤ x1 ≤ x2 ≤ 1 and 0 < v < 1,

G1(x2)− G1(x1)

=
1

Γ(v)

∫ ∞

x2

(t− x2)
v−1(h1(t)− c)dt− 1

Γ(v)

∫ ∞

x1

(t− x1)
v−1(h1(t)− c)dt

=
1

Γ(v)

∫ 1

x2

(t− x2)
v−1(h1(t)− c)dt− 1

Γ(v)

∫ 1

x1

(t− x1)
v−1(h1(t)− c)dt

=
1

Γ(v)
(
∫ 1

x2

(t− x2)
v−1h1(t)dt−

∫ 1

x1

(t− x1)
v−1h1(t)dt)

+
1

Γ(v)
(
∫ 1

x1

(t− x1)
v−1cdt−

∫ 1

x2

(t− x2)
v−1cdt)

=
1

Γ(v)

∫ 1−x2+x1

x1

(t− x1)
v−1(h1(t− x1 + x2)− h1(t))dt

+
1

Γ(v)

∫ 1

1+x1−x2

(t− x1)
v−1(c− h1(t))dt

≥0.

Thus, G1(x) still is a monotone increasing and continuous function on I. If

G2(x) = W−vg2(x) =
1

Γ(v)

∫ ∞

x

h2(t)− c
(t− x)1−v dt, 0 < v < 1,

G2(x) is also a monotone increasing and continuous function on I.
(2) If f (0) < 0, let g1(x) = 0 and g2(x) > 0. Using a similar way, both W−vg1(x)

and W−vg2(x) are monotone increasing and continuous functions on I. So W−v f (x) still is
a BVF on I and

dimB G(W−v f , I) = 1.

4. Unbounded Variation Functions (UVFs)
4.1. A Special UVF

The construction process of the devil stair function d(x) will be elaborated firstly. Then,
a peculiar continuous function D(x) of unbounded variation on I will be constructed on
the basis of d(x).

If x ∈ ( 1
3 , 2

3 ), d1(x) = 1
2 . Let d1(0) = 0 and d1(1) = 1. d1(x) can be exhibited on I by

connecting d1(0), d1(
1
3 ), d1(

2
3 ) and d1(1) with line segments.

If x ∈ ( 1
9 , 2

9 ), d2(x) = 1
4 . If x ∈ ( 7

9 , 8
9 ), d2(x) = 3

4 . Connecting d1(0), d2(
1
9 ), d2(

2
9 ), d1(

1
3 ),

d1(
2
3 ), d2(

7
9 ), d2(

8
9 ) and d1(1) with line segments to form d2(x) on I.

By induction, dn(x)(n ≥ 3) can be constructed. Let d(x) = limn→∞ dn(x).
The construction of D1(x) is based on d1(x) with two more line segments whose length

are 1. The line segments and the part of d1(x), x ∈ ( 1
3 , 2

3 ) make up an isosceles triangle.
In D1(x), the triangle is shown without the base line.

The construction of D2(x) is based on d2(x) and D1(x). Simultaneously for x ∈ (0, 1
3 )

or x ∈ ( 1
3 , 2

3 ), using similar ways to construct D2(x) like as d1(x)→ D1(x). However, the
length of line segments added is 1/2

21 .
The construction of D3(x) is based on d3(x) and D2(x). Simultaneously for x ∈ (0, 1

9 ),
x ∈ ( 2

9 , 1
3 ), x ∈ ( 2

3 , 7
9 ), or x ∈ ( 8

9 , 1), using similar steps to construct D3(x) like as d1(x)→
D1(x). The process of constructing is similar, the only difference is the length of line
segments added is 1/3

22 .
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By induction, the construction of Dn(x) is based on dn(x) and Dn−1(x). The length of
line segments is 1/n

2n−1 . Then, D(x) = limn→∞ Dn(x). Images of d(x) and D(x) are given as
follows Figure 3.

Figure 3. The image of d(x) and D(x).

Combining the construction process of D(x), properties of the function will be investigated.

Property 1. The length of G(D, I) is infinite on I. The lebesgue measure of differentiable points on
I is one.

Proof of Property 1. Length of G(D, I) is no less than

1 · 2 · 1 + 2 · 2 · 1/2
2

+ 4 · 2 · 1/3
4

+ · · ·+ 2n−1 · 2 · 1/n
2n−1 + · · · = 2

∞

∑
n=1

1
n
= ∞.

Thus, the length of G(D, I) is infinite on I. Let A be the set of differentiable points
of D(x) on I.

m(A) =
1
3
+ 2 · 1

9
+ 4 · 1

27
+ · · ·+ 2n−1 · 1

3n + · · · = 1.

Denote B as the set of non-differentiable points of D(x) on I, then

m(B) = 1− 1 = 0.

Property 2. The Box dimension of D(x) is one and D(x) has uncountable unbounded variation
points on I.

Proof of Property 2. Since D(x) is a continuous function, dimBG(D, I) ≥ 1. Let 0 < δ < 1,
1
δ ≤ n ≤ 1 + 1

δ . The number of squares of the δ−mesh that intersect G(D, I) are less than

2n +
1
δ

n

∑
i=1

1
i
+ 2

1
δ

.
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Thus,

dimBG(D, I) ≤ lim
δ→0

log[2n + 1
δ

n
∑

i=1

1
i + 2 1

δ ]

− log δ

≤ lim
δ→0

log[2n + 2δ−1(log(n + 1) + 1)]
− log δ

≤ 1.

Further analysis showed that dimB G(D, I) = 1.
If ∀ x ∈ C0, a positive number N0 will be found such that variation of any subinterval Ix

containing x of I is at least

1
2N0

1
N0

+ 2
1

2N0+1
1

N0 + 1
+ 22 1

2N0+2
1

N0 + 2
+ · · ·

=
1

2N0

∞

∑
n=1

1
N0 + n− 1

=
1

2N0
(

∞

∑
n=1

1
n
−

N0−1

∑
n=1

1
n
)

= ∞.

Thus, (x, 0) is an unbounded variation point of D(x) on I. Since the arbitrariness of x,
the number of unbounded variation points of D(x) on I is uncountable.

Now, the construction of H(x) that contains uncountable UV points will be displayed.
Divided I into three equal intervals,

I1,1 = [0,
1
3
], I1,2 = [

1
3

,
2
3
], I1,3 = [

2
3

, 1].

Two line segments are added such that constituting an isosceles triangle with I1,2 and
the length of the segment is 1, Then I1,2 will be removed. I1,1 and I1,3 are divided into three
equal intervals respectively,

I1,1 = I2,1
⋃

I2,2
⋃

I2,3,

I1,3 = I2,4
⋃

I2,5
⋃

I2,6.

Four line segments are added such that constituting an isosceles triangle with I2,2
and I2,5. The length of the segment is 1

4 . Furthermore, delete I2,2 and I2,5. Similar way can
get H3 and H4. Hn can be got From Hn−1. By dividing

In−1,1, In−1,3, In−1,4, In−1,6, · · · , In−1,3·2n−2−1, In−1,3·2n−2

into three equal intervals respectively,

In−1,1 = In,1
⋃

In,2
⋃

In,3,

In−1,3·2n−2 = In,3·2n−1−2

⋃
In,3·2n−1−1

⋃
In,3·2n−1 .

2n line segments are added such that constituting an isosceles triangle with

In−1,2, In−1,5, · · · , In−1,3·2n−2−1.

The length of the segment is 1
n·2n−1 . Then delete In,2, In,5,· · · , In,3·2n−1−1. The image

of H(x) is Figure 4.
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Figure 4. The image of H(x).

Obviously, H(x) is a continuous function. Firstly, the length of H(x) on I is
∞
∑

n=1

1
n = ∞,

the variation of H(x) on I is infinite. Secondly, the number of δ−mesh squares that

intersect G(H, I) is at most δ−1
∞
∑

n=1

1
n + 2δ−1 and

dimB G(H, I) = lim
δ→0

log(δ−1
∞
∑

n=1

1
n + 2δ−1)

− log δ
= 1.

Finally, ∀x0 ∈ C0∪ [a, b], the variation of H(x) on [a, b] is
∞
∑

n=N0

1
N02N0−1

1
n = ∞, where N0

is a positive integer. So H(x) contains uncountable UV points.

The function that satisfies the Lipschitz condition must be a BVF, but the function that
satisfies the Hölder condition is not necessarily a BVF [40,41]. The following two special
functions are just the best evidence for the above conclusion.

4.2. UVF Satisfying the Hölder Condition of Order α(0 < α < 1)

Let An = a1 + a2 + · · ·+ an + · · · be the convergence series of positive terms and any
of terms is monotonically decreasing. The sum of An is s and the construction process of
the function fα(x) on [0, s] is as follows:

f (x) = 0, x ∈ {0, a1, a1 + a2, a1 + a2 + a3};

f (x) =
1
n

, x ∈ {a1 + a2 + · · ·+ an−1 +
an

2
(n = 1, 2, · · · )};

f (s) = 0.

fα(x) is linear in the following intervals, such as [a1 + · · · + an−1, a1 + · · · + an−1 +
an
2 ],

[a1 + · · ·+ an−1 +
an
2 , a1 + · · ·+ an−1 + an], n = 1, 2, · · · . The specific image of fα(x) is as

follows Figure 5.
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Figure 5. The image of fα(x).

Theorem 3. fα(x) is a continuous function on [0, s](0 < s ≤ 1) and the total variation of fα(x)
in the interval [0, s] is infinite.

Proof of Theorem 3. From the specific construction process of fα(x), fα(x) is a continuous
function on [0, s] obviously. The proof of its total variation is infinite will be given next.
Consider the following partition: 0 < a1

2 < a1 < a1 +
a2
2 < +a1 + a2 < a1 + a2 +

a3
2 <

a1 + a2 + a3 < · · · < a1 + a2 + · · ·+ ak. Then,

Vs
0 ( f (x)) =| f ( a1

2
)− f (0)|+ | f (a1)− f (

a1

2
)|+ | f (a1 +

a1

2
)− f (a1)|

+ · · ·+ | f (a1 + a2 + · · ·+ ak)− f (a1 + a2 + · · ·+ ak−1 +
ak
2
)|

+ | f (s)− f (a1 + a2 + · · ·+ ak)|

=1 + 1 +
1
2
+

1
2
+ · · ·+ 1

k
+

1
k

=+ ∞.

The conclusion is lim
k→+∞

Vs
0 ( f (x)) = +∞. Thus, fα(x) is an UVF on [0, s].

Theorem 4. fα(x) satisfies the Hölder condition of a given order α (0 < α < 1).

Proof of Theorem 4. Case one: two points P1(x1, y1), P2(x2, y2) on the interval are selected
arbitrarily, but the two points are in the same linear interval, a1 + · · ·+ an−1 ≤ x1 < x2 ≤
a1 + · · ·+ an−1 +

an
2 . Then the specific image of Case one is as follows Figure 6.

Figure 6. Case one.
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|y2 − y1| =
2

nan
|x2 − x1| =

2|x2 − x1|1−α

nan
|x2 − x1|α

<
2a1−α

n
nan

|x2 − x1|α

=
2

naα
n
|x2 − x1|α.

Therefore, it is significant to select the appropriate sequence an to make 2
naα

n
bounded.

a sequence that satisfies the above formula can be found easily, such as an = n
−1
α .

Case two: If the two points P1(x1, y1), P2(x2, y2) are not in the same linear interval,
moving P1 to P3(x3, y3) through translation transformation. Then the specific image of
Case two is as follows Figure 7.

Figure 7. Case two.

Combined with the proof of Case one, |y2 − y1| = |y2 − y3| ≤ C|x2 − x3|α.

Since fα(x) is a continuous function, the lower Box dimension of fα(x) is greater than or

equal to 1. The number of δ−mesh squares that intersect G( fα, [0, s]) is at most δ−1
∞
∑

n=1

1
n +

2δ−1,

dimB G( fα, [0, s]) = lim
δ→0

log(δ−1
∞
∑

n=1

1
n + 2δ−1)

− log δ
= 1.

4.3. UVF Not Satisfying the Hölder Condition of Any Order α (α > 0)

An UVF g(x) that does not satisfy the Hölder condition of any order α (α > 0) on the ba-
sis of fα(x) will be constructed. Since fα(x) satisfies the Hölder condition of order α (0 < α < 1)
on [0, s], for α∗ > α, x = a1 + a2 + · · ·+ an−1 +

an
2 , y = a1 + a2 + · · ·+ an−1 + an,

lim
n→+∞

f (y)− f (x)
|y− x|α∗ =

1
n

( an
2 )α∗ =

1
n

( 1
2n

1
α
)α∗

= 2α∗n
α∗
α −1 = +∞.

Thus, fα(x) does not satisfy the Hölder condition of any order α∗(α∗ > α) on [0, s].

Denote σn =
∞
∑

k=1

1
kn and divide the interval I as follows,

0 = β2 < β3 < β4 < · · · < βn < · · · (βn → 1, n→ +∞).
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(1) If n is an even number, g(x) can be obtained by compressing f 1
n
(x) by n times on

the ordinate, compressing by σn
βn+1−βn

times on the abscissa and moving βn to the right
along the abscissa,

g(x) =
1
n

f 1
n
[
σn(x− βn)

βn+1 − βn
].

(2) If n an is odd number,

g(x) =
1
n

f 1
n
[
σn(βn+1 − x)

βn+1 − βn
].

In addition to the above construction process, an additional supplementary definition
f (1) = 0 is reasonable. The specific image of g(x) is as follows Figure 8.

Figure 8. The image of g(x).

From the construction process of g(x), g(x) is defined everywhere on the interval I
and g(x) is a continuous function. Through similar calculation, it can be known that the
total variation of this function is also infinite. g(x) is also an UVF.

However, for interval [βn, βn+1], g(x) satisfies the Hölder condition of order 1
n and

does not satisfy the Hölder condition of order 1
n−1 . Therefore, the function g(x) does not

satisfy the Hölder condition of any order α(α > 0). Since g(x) is a continuous function, the
Box dimension of g(x) is more than one.

4.4. UVF Contained Finite UV Points

The introduction of the unbounded variation points gives a new way to study un-
bounded variation functions [42]. Many conclusions about unbounded variation functions
can be obtained by analyzing the number and location of unbounded variation points.
At the same time, if the function has self-similarity, some remarkable conclusions can be
strictly demonstrated, such as Corollary 2 and Theorem 8.

Lemma 2. ([24]) If F ⊂ Rn, then dimP F = dimMBF.

Researchers have established the following relation for F ⊂ Rn:

dimH F ≤ dimMBF ≤ dimMBF = dimP F ≤ dimBF.

Theorem 5. If f (x) is a continuous function on I and (1, 0) is the only UV point of f (x), then

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Proof of Theorem 5. Since f (x) is a continuous function on I,

1 ≤ dimH G( f , I) ≤ dimBG( f , I).
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∀ δ > 0, I = (
∞⋃

i=1
Ei)

⋃
[1− δ, 1], where Ei are subsets of I.

dimH G( f , [1− δ, 1]) ≤ dimBG( f , [1− δ, 1]) ≤ lim
δ→0

log M
δ

− log δ
= 1,

where M is a positive constant.

dimMBG( f , I) = inf{sup
δ

dimBG( f , (
∞⋃

i=1

Ei)
⋃
[1− δ, 1])} = 1.

Thus,
1 ≤ dimH G( f , I) ≤ dimMBG( f , I) = 1.

It is already becoming apparent that

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Theorem 6. If f (x) is a continuous function containing at most finite UV points on I, then

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Proof of Theorem 6. Let x1 < x2 < · · · < xn be UV points of f (x), n disjoint inter-

vals [ai, xi] ⊂ I can be found, where i = 1, 2, · · · , n. Denote A =
n⋃

i=1
[ai, xi]. By Lemma 2,

dimH G( f , [ai, xi]) = dimP G( f , [ai, xi]) = dimMB G( f , [ai, xi]) = 1.

Since the Hausdorff dimension has the property of countable stability,

dimH G( f , I) = dimH G( f , A
⋃
(I\A))

= max{dimH G( f , A), dimH G( f , I\A)}
= 1.

Given ε = min
1≤i<j≤n

|xi − xj|, Ci = [ai − ε
2 , ai +

ε
2 ], Cn+1 = I \ (

n⋃
i=1

Ci).

dimBG( f , Ci) = 1,

where i = 1, 2, · · · , n + 1. Combining the definition of the modified Box-counting dimension,

dimMBG( f , I) = inf{sup
i

dimBCi : I ⊂
n+1⋃
i=1

Ci} = 1.

It is easy to check that

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = 1.

Corollary 2. If a continuous function f (x) has the property of self-similar on I and (1, 0) is the
only UV point of, then

dimH G( f , I) = dimB G( f , I) = 1.



Fractal Fract. 2022, 6, 69 16 of 22

Proof of Corollary 2. Since f (x) is self-similar on I, G( f , I) is compact and

dimB(G( f , I)
⋂

V) = dimBG( f , I)

for all open sets V those intersect G( f , I) and dimBG( f , I) = dimMBG( f , I). Thus,

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = dimB G( f , I) = 1.

4.5. UVF Contained Infinite UV Points

Theorem 7. Let f (x) be a continuous function on I. f (x) has infinite and countable UV points
and only one accumulation point, then

dimH G( f , I) = 1.

Proof of Theorem 7. Since f (x) is a continuous function on I,

1 ≤ dimH G( f , I) ≤ dimBG( f , I).

(1) (0, 0) is an accumulation point: denote the above countable UV points as

x1 > x2 > x3 > · · · > xn > · · · .

∀δ > 0, dimH G( f , [0, δ]) = 1, there is not an accumulation point in other positions, Thus,
there exists Ei ⊂ I and Ei only contains one UV point xi, Ei

⋂
Ej = ∅ when i 6= j. f (x) only

has an UV point on Ei and
dimH G( f , Ei) = 1.

Denote E =
∞⋃

i=1
Ei. By the countable stability of the Hausdorff dimension,

dimH G( f , I) = dimH(G( f , E)
⋃

G( f , [0, δ]))

= sup{dimH G( f , E), dimH G( f , [0, δ])} = 1.

Thus,
dimH G( f , I) = 1.

(2) (1, 0) is an accumulation point: denote the above countable UV points as

x1 < x2 < x3 < · · · < xn < · · · .

∀ δ > 0, dimH G( f , [1− δ, 1]) = 1, there is not an accumulation point in other points.
There exists Ei ⊂ I and Ei only contains one UV point xi, Ei

⋂
Ej = ∅ when i 6= j. f (x) only

has an UV point on Ei and
dimH G( f , Ei) = 1.

Denote E =
∞⋃

i=1
Ei.

dimH G( f , I) = dimH(G( f , E)
⋃

G( f , [0, δ]))

= sup{dimH G( f , E), dimH G( f , [0, δ])} = 1.

Thus
dimH G( f , I) = 1.
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(3) xn ∈ (0, 1), (xn, 0) is an accumulation point: ∀ δ > 0, dimH G( f , [xn− δ, xn + δ]) = 1.
By the above discussions,

dimH G( f , I) = 1.

Theorem 8. Let f (x) be a continuous function containing countable UV points and f (x) only
have an accumulation point on I. If f (x) is self-similar, then

dimH G( f , I) = dimB G( f , I) = 1.

Proof. Since f (x) is a continuous function on I,

1 ≤ dimH G( f , I) ≤ dimBG( f , I).

Denote the above uncountable UV points as x1, x2, x3, · · · . There exists [ai, xi] and
[ai, xi]

⋂
[aj, xj] = ∅ when i 6= j. Thus, f (x) only have an UV point on [ai, xi] and

dimB G( f , [ai, xi]) = 1.

Thus,

dimMBG( f , E) = inf{sup
i

dimBG( f , [ai, xi]) : E =
N−1⋃
i=1

[ai, xi]} = 1.

Denote E =
N−1⋃
i=1

[ai, xi], F = [aN , 1] and H =
N−1⋃
i=1

[xi, ai+1] where a1 = 0. Further

inferences show that f (x) is a BVF on H and

dimH G( f , H) = dimB G( f , H) = 1.

It can be seen from the similar calculation process that

dimMBG( f , I) = dimMB(G( f , E)
⋃

G( f , F)
⋃

G( f , H))

= inf{sup{dimH G( f , E), dimH G( f , F), dimH G( f , H)}} = 1.

Since f (x) is self-similar on I, G( f , I) is compact and

dimB(G( f , I)
⋂

V) = dimBG( f , I)

for all open sets V that intersect G( f , I). Thus,

dimBG( f , I) = dimMBG( f , I).

Notice that the conclusion dimBG( f , I) ≥ 1 remains true.

dimH G( f , I) = dimP G( f , I) = dimMB G( f , I) = dimB G( f , I) = 1.

5. Possible Applications in Reinforcement Learning

Since AlphaGo has shown amazing abilities in Go [43,44], reinforcement learning in
machine learning has gradually been paid attention and researched by many scholars [45–48].
The core idea of reinforcement learning is to use the continuous interaction between the
agent and the environment to maximize the long-term cumulative return expectation. The
agent learns the optimal strategy through the mechanism of trial and error. Taking the
expectation of maximizing returns as the goal makes reinforcement learning “foresight”, not
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just focusing on the immediate situation, so the strategies obtained through reinforcement
learning are scientific. Since the optimal strategy can be learned by reinforcement learning,
Reinforcement learning has become an emerging method of researching decision theory. At
the same time, the learning process of the agent in reinforcement learning is dynamic, and
the required data is also generated through interaction with the environment, so a large
amount of original label data is not required.

With the advent of deep neural networks, deep reinforcement learning can solve many
complex problems. The seemingly complex fractal sets also have special regularity (self-
similarity). Therefore, can fractals and fractal dimension be used in the learning process of
the agent to speed up the learning speed of the agent or improve the search efficiency of
algorithms? This section will introduce several possible applications of fractal and fractal
dimension in reinforcement learning.

5.1. The Evaluation Model Based on Fractal Dimension

The main basis of the fractal evaluation model is the fractal dimension. Fractal
dimension is an important indicator of system stability. The multi-dimensional vector
can be formed by utilizing the parameters, such as actions and states of agents. Many
multi-dimensional vectors may establish a special set. The fractal dimension of the set can
determine the distance between the current state and the equilibrated state. The equilibrium
state is that all agents are in a stable state and there is no motivation to change the current
strategy. The main operational flows of the fractal evaluation model are as follows.

Step one: data standardization. The number of states and agents are K, N re-
spectively. State S = (s1, s2, · · · , sN , a1, a2, · · · , aN , r1, r2, · · · , rN). Standardization is to
eliminate the differences caused by the species of each data. Standardized data is S = (yij),
i = 1, 2, · · · , K ∈ Z+, y = 1, 2, · · · , 3N ∈ Z+.

Step two: weight. wj = dj/ ∑N
i=1 dj,

where dj = max1≤i,k≤K | yij − ykj |, j = 1, 2, · · · , N ∈ Z+.
Step three: calculate N(r). The distance used in the algorithm is unified as Euclidean

distance. 3N data of each state can be regarded as points on each coordinate axis in the
3n-dimensional space. These points constitute a subset of the 3n-dimensional Euclidean
space E3N . The distance from each point to the origin is dij and let R = max(dij), i =
1, 2, · · · , K ∈ Z+, j = 1, 2, · · · , 3N ∈ Z+. For a specific state, N(r) is the number of all
points satisfying dij < r and r is the radius of the hypersphere. Keep adjusting the value of
radius r until r = R and N(r) = N. When the radius is r, the number of points contained

in the hypersphere is N(r) =
3N
∑

i=0
sgn(r− dij) and sgn(x) is a symbolic function,

sgn(x) =

{
1, x > 0
0, x ≤ 0

Step four: calculate the fractal dimension. D = log N(r)/ log r.
From the above calculation process, the number of sample points contained in the

hypersphere with r will change continuously as the radius alters. At the same time, the
graph of the function formed by the above standardized data points is usually non-linear.
The fractal dimension D in this step can be fitted by the least square method,

D =

3N
3N
∑

i=1
logN(ri) log ri −

3N
∑

i=1
logN(ri)

3N
∑

i=1
logri

3N
3N
∑

i=1
(log ri)

2 −
(

3N
∑

i=1
log ri

)2 .

At present, most reinforcement learning algorithms are based on global information.
However, due to the limitations of communication and observation, the agent cannot
obtain all the information in practical. Therefore, the MDP(Markov decision process)
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model used to solve basic reinforcement learning problems is not applicable. Researchers
establish the POMDP(Partially observable markov decision process) model [49,50] to solve
partially observable reinforcement learning problems. The main solutions include function
approximation, opponent modeling, and graph theory.

Fractal dimension is another new idea to optimize POMDP. The theoretical foundation
of using fractal dimension to evaluate stability is mainly based on the Lyapunov stability
theory. The larger fractal dimension of the set, the more stable points in the set. Therefore,
the set with lager fractal dimension is more stable than the set with small fractal dimension
under the same disturbance. The advantage of this method is that the agent does not need
to know global information. The strategy selection of agents can be guided by the fractal
dimension, and the correct strategy direction can optimize the algorithm. At the same
time, for a game where there is no pure strategy Nash equilibrium, it is still possible to
compare the distance between any two situations and the equilibrium state by calculating
the fractal dimension.

5.2. The Convergence Model Based on Fractal Attractor

At present, the convergence of most reinforcement learning algorithms lacks rigorous
proofs. However, due to the powerful fitting ability of multiple neural networks [51–53],
the algorithm can converge better in various experimental environments. The convergence
obtained in the experiment cannot effectively understand the essence of the problem and
optimize the existing algorithm. Obviously, the convergence of an algorithm is the fixed
point of a particular function mathematically. Solving the fixed point problem can also be
transformed into an attractor in fractal theory. Therefore, the convergence of the algorithm
can be verified by calculating the existence of attractors. Surprisingly, the calculation of
attractors has theoretical guarantees. Therefore, can the Bellman equation in reinforcement
learning be regarded as an iterative function system, and then its solution is the attractor of
the iterative function system? The idea of the model is shown in Figure 9.

Figure 9. The frame of convergence model.

The advantage of this convergence model lies in its versatility, which can prove the
convergence of a class of similar algorithms. The method of theoretical proof is conducive
to finding the essence of the problem, so as to provide different ideas for the optimiza-
tion algorithm.

5.3. The Random Search Algorithm Based on Fractal

Exploration and utilization is one of the important research directions in deep reinforce-
ment learning. The goal of exploration is to find more information about the environment,
and the purpose of utilization is to use the known environmental information to maximize
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rewards. In short, exploration is to try behaviors that have not yet been tried, while utiliza-
tion is to choose the next action from the knowledge that agents have already mastered.
The balance between exploration and utilization is the basic issue of reinforcement learning.
In deep reinforcement learning tasks, in order to obtain the best strategy, it is often neces-
sary to collect more information. For solving the problem of exploration and utilization,
researchers have proposed many classic methods. The ε-greedy method is a commonly
used strategy for greedy exploration.

However, the exploratory efficiency of this method is not good. Fractals generally have
the following characteristics. One is that both the whole and the part have irregularities,
and the other is that the internal structure has self-similarity and unevenness. The search
method based on the fractal structure can reduce the search time as much as possible on the
basis of ensuring that all spaces are explored. Due to the self-similar structure of the fractal,
the algorithm does not always need to repeat the previous training during the training
process. Thus the way can reduce a lot of unnecessary training time. Therefore, whether
the above-mentioned characteristics of fractal can be used to achieve efficient search is
looking forward to follow-up research and discussion. At present, there has been a lot of
research on using fractals to improve search efficiency [54–56], but these algorithms can
still continue to be optimized.

6. Conclusions

This manuscript systematically sorts out the conclusions about one-dimensional con-
tinuous functions. The Box dimension of bounded variation functions and the functions
with the Weyl fractional integral are both one. The Box dimension of continuous functions
that satisfy the Lipschitz condition is also one. These results also fully show that fractional
calculus does not increase the dimensionality of functions. This conclusion seems simple,
but no one seems to have carried out a rigorous proof. The structure of unbounded varia-
tion function is more complicated. The construction process of several special unbounded
variation functions is displayed firstly, and a lot of general conclusions about unbounded
variation functions are proved by using UV points. Combined with the self-similarity,
the conclusions of the fractal dimension of some special functions are also strictly proved.
These conclusions are very helpful for perfecting the theory of unbounded variation. At
the same time, in order to increase the practical significance of the above conclusions, some
applications of fractal and fractal dimension in reinforcement learning are also introduced.
On the one hand, these works can sort out the current results, and on the other hand,
some useful ideas and research directions can also be shown to other researchers. The
evaluation model based on fractal dimension proposed in this manuscript can effectively
accelerate the convergence speed of many reinforcement learning algorithms by using
fractal dimension to judge the stability of any state. This model is an important result of
the combination of the two theories, and it is believed that more fractal theories will be
applied to reinforcement learning.

However, the research on one-dimensional continuous functions is far from over. In
particular, what are the necessary and sufficient conditions for the conversion between
unbounded variation and bounded variation? Are there other theories and tools that can
be used to study one-dimensional continuous functions? Can existing relevant conclusions
about one-dimensional continuous functions be extended to multi-dimensional continuous
functions? Can the conclusion of the unbounded variation function be used in other fields?
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