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Abstract: Studies have shown that fractional calculus can describe and characterize a practical system
satisfactorily. Therefore, the stabilization of fractional-order systems is of great significance. The
asymptotic stabilization problem of delayed linear fractional-order systems (DLFS) subject to state and
control constraints is studied in this article. Firstly, the existence conditions for feedback controllers
of DLFS subject to both state and control constraints are given. Furthermore, a sufficient condition for
invariance of polyhedron set is established by using invariant set theory. A new Lyapunov function is
constructed on the basis of the constraints, and some sufficient conditions for the asymptotic stability
of DLFS are obtained. Then, the feedback controller and the corresponding solution algorithms are
given to ensure the asymptotic stability under state and control input constraints. The proposed
solution algorithm transforms the asymptotic stabilization problem into a linear/nonlinear program-
ming (LP/NP) problem which is easy to solve from the perspective of computation. Finally, three
numerical examples are offered to illustrate the effectiveness of the proposed method.

Keywords: delayed linear fractional-order systems; feedback controller; positive invariant set;
asymptotic stabilization

1. Introduction

Fractional calculus almost appeared at the same time as classic calculus, but it has
not been paid more attention to due to its lack of application background and difficult
calculation. Fractional calculus has experienced rapid development during the last few
decades both in mathematics and applied sciences. It has been recognized as an excellent
tool to describe modern complex dynamics [1,2]. From this perspective, some models
governing physical phenomena have been reformulated in light of fractional calculus to
better reflect their non-local, frequency- and history-dependent properties. With the rapid
development of computer technology, fractional calculus is widely used in many fields,
such as image processing [3], fluid mechanics [4], and environmental science [5]. Time
delay often occurs in different practical systems, and the delayed fractional-order system
can better describe these phenomena [6–8].

However, time delay will lead to system performance degradation, poor stability and
even failure to work [9,10]. In fact, many scholars have extensively studied the stability
of delayed fractional-order systems. For instance, the finite-time stability was discussed
in [11–14]. Using the Laplace transform method, the globally asymptotic stability was stud-
ied in [15]. The Mittag-Leffler stability was discussed in [16,17]. The asymptotic stability
was investigated using the frequency domain method [18], integral inequality method [19],
linear matrix inequality (LMI) method [20], and Lyapunov function method [21,22].

On the other hand, for security reasons or physical constraints, the control input,
the state, and/or output variables must be bounded in practice. That is to say, the hard
constraints of these variables should be considered. At this time, how to design a feedback
controller to ensure the stability of the system under constraints is an interesting topic
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in system theory and synthesis. For constrained integer-order systems, state feedback
controllers were designed to study the asymptotic stability of linear discrete-time systems
and linear continuous-time systems under constraints in [23,24]. Based on the LMI method,
the optimization problem of state feedback controllers for linear discrete-time systems and
continuous-time systems was further analyzed in [25,26]. A more effective method to solve
the state feedback controller was developed based on the invariance of polyhedron set
in [27,28]. As for unconstrained fractional-order systems, in [29], the global stabilization
of fractional-order neural network was investigated by using the positive-system-based
method. In [30], the stabilization of fractional-order T-S fuzzy systems was discussed
by using LMI method. In [31], based on Lyapunov functions, a state feedback controller
was designed to study the stabilization of fractional-order nonlinear systems. However,
there are few studies concerning the stabilization problems of fractional-order system with
constraints, except [32]. In [32], the stabilization problem of fractional-order linear systems
with control input constraints was addressed by using the invariance of polyhedron set,
but state constraints are not considered there.

Based on the above discussions, it is not only necessary but also more challenging to
study the stabilization problem of DLFS under constraints. In this article, the stabilization
problem of DLFS with state and control constraints is studied. Our main contributions
include: (1) The sufficient conditions that ensure the state constraint set and/or the control
constraint set are positive invariant sets (PIS) are established by using the invariant set
theory; (2) A new Lyapunov function is constructed on the basis of the constraints, and
the asymptotic stability conditions for DLFS are obtained; and (3) A feedback controller
and its solution algorithm are proposed to make DLFS under the state and control input
constraints asymptotically stable.

The article is organized as follows. Some preliminaries and the problem formulation
are given in Section 2. In Section 3, existence conditions for the PIS and the feedback
controller are developed. A feedback controller and its solution algorithm are proposed
in Section 4 to ensure the DLFS under state and control constraints asymptotically stable.
To illustrative the effectiveness of the proposed method, three examples are presented in
Section 5. Section 6 contains some conclusions.

Notations: In this article, R+ denotes the set of positive real numbers, Rn denotes n
dimensional real vector space, Rn×n denotes n× n real matrices. z stands for a complex
number and Re(z) stands for the real part of z. ρi represents the ith element of vector ρ, and
Qi represents the ith row of matrix Q, Qij represents the ith row and jth column element of
matrix Q. For ρ ∈ Rn, ρ > 0(ρ > 0) means ρi > 0(ρi > 0). For a ∈ Rn, b ∈ Rn, a > b(a > b)
means ai > bi(ai > bi). A > 0 indicates that each entry of the matrix A is nonnegative.

2. Preliminaries and Problem Formulation
2.1. Preliminaries

Consider the DLFS:{ C
0 Dα

t x(t) = Ax(t) + A0x(t− τ) + Bu(t), t > 0,
x(t) = x0, −τ 6 t 6 0,

(1)

where 0 < α 6 1, τ = constant is the time delay, A ∈ Rn×n and A0 ∈ Rn×n are the
system matrices, B ∈ Rn×m is the input matrix, x(t) ∈ Rn is the state, and u(t) ∈ Rm is the
control input.

Definition 1 ([12]). The Caputo fractional derivative of x(t) is defined as

C
0 Dα

t x(t) =
1

Γ(1− α)

∫ t

0
(t− s)−αx′(s)ds,

where the order 0 < α 6 1 and Γ(z) =
∫ ∞

0 e−ttz−1dt, Re(z) ∈ R+.
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Definition 2 ([33]). The fractional integral of x(t) is defined as

0 Iα
t x(t) =

1
Γ(α)

∫ t

0
(t− s)α−1x(s)ds,

where the order α ∈ R+.

By the above Definition, we obtain the solution of system (1) as

x(t) = x0 + 0 Iα
t (

C
0 Dα

t x(t))
= x0 +

1
Γ(α)

∫ t
0 (t− s)α−1[Ax(s) + A0x(s− τ) + Bu(s)]ds.

Definition 3 ([34]). A continuous function β(x) : [0,+∞) −→ [0,+∞) is said to be a class-κ
function if the function β(x) is strictly increasing and β(0) = 0.

Definition 4 ([29]). A nonempty set P is called the positive invariant sets (PIS) if and only if

x0 ∈ P implies x(t) ∈ P, for t > 0,

where x(t) is the trajectory starting with the initial value x0.

Lemma 1 ([34]). Assume that there exist class-κ functions βi, i = 1, 2, 3 and a continuously
differentiable function V(x(t)) such that:

β1(‖ x(t) ‖) 6 V(x(t)) 6 β2(‖ x(t) ‖), (2)

and
C
0 Dα

t V(x(t)) 6 −β3(‖ x(t) ‖), (3)

where the order 0 < α < 1, then system (1) is guaranteed to be stable. If β3(s) > 0 for s > 0, then
system (1) is guaranteed to be asymptotically stable.

Lemma 2 ([35]). The polyhedron set P(Q, ρ) = {x(t) ∈ Rn : Qx(t) 6 ρ}, Q ∈ Rq×n,
ρ ∈ Rq, ρ > 0, and P(K, ω) = {x(t) ∈ Rn : Kx(t) 6 ω}, K ∈ Rm×n, ω ∈ Rm, ω > 0
have the relation

P(Q, ρ) ⊆ P(K, ω)

if and only if there exists L ∈ Rm×q, L > 0 such that{
LQ = K,
Lρ 6 ω.

(4)

2.2. Problem Formulation

In this article, the following assumptions are needed.

Assumption 1. The state variables are constrained by the polyhedron set

P(Q, ρ) = {x(t) ∈ Rn : Qx(t) 6 ρ}, (5)

where Q ∈ Rq×n, q > n, and ρ ∈ Rq, ρ > 0, and the polyhedron set P(Q, ρ) is closed
and nonempty.

Assumption 2. The control input u(t) satisfies the following constraints

− w1 6 u(t) 6 w2, (6)

where w1 > 0 and w2 > 0 are real vectors.
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The asymptotic stabilization problem of DLFS (1) is to find a state feedback controller
u(t) = Kx(t) that makes all trajectories starting with the initial value x0 asymptotically
stable and also satisfy the state constraints (5) and the control constraints (6).

If there exists u(t) = Kx(t) for system (1), then, by linear constraints (6), we obtain

P(K,−w1, w2) = {x(t) ∈ Rn : −w1 6 Kx(t) 6 w2}. (7)

Let A = A + BK; clearly, u(t) = Kx(t) is the solution of the asymptotic stabilization
problem of system (1) if and only if the closed-loop system{ C

0 Dα
t x(t) = Ax(t) + A0x(t− τ), t > 0,

x(t) = x0, −τ 6 t 6 0
(8)

is asymptotically stable, and the trajectory x(t) starting with x0 satisfy x(t) ∈ P(Q, ρ) and
x(t) ∈ P(K,−w1, w2) for any t > 0.

3. Main Results
3.1. Existence Conditions for the Feedback Controller with the Constraints

Theorem 1. The controller u(t) = Kx(t), K ∈ Rm×n is the solution of the asymptotic stabilization
problem of system (1) if

(i) There exists a PIS denoted by M ∈ Rn for the system (8) satisfies M ⊆ P(Q, ρ) and
M ⊆ P(K,−w1, w2);

(ii) There exists a Lyapunov function that makes the system (8) asymptotically stable.

Proof. Condition (i) ensures that there exists a PIS

M = {x0 ∈ Rn : ∀x0 ∈ M, x(t) , x(t; x0) ∈ M}

such that M ⊆ P(Q, ρ) and M ⊆ P(K,−w1, w2), where x(t; x0) is the trajectory starting
with x0. Then we can obtain Qx(t) 6 ρ,−w1 ≤ Kx(t) 6 w2. Furthermore, the condition
(ii) ensures that system (8) is asymptotically stable. Hence, the controller u(t) = Kx(t) is
the solution of the asymptotic stabilization problem of system (1).

When considering both the state and control constraints, let P(Q, ρ) be the PIS of
system (8), that is, P(Q, ρ) is equal to M, then we obtain:

Corollary 1. The controller u(t) = Kx(t), K ∈ Rm×n is the solution of the asymptotic stabiliza-
tion problem of system (1) if

(i) P(Q, ρ) is a PIS of the system (8) and P(Q, ρ) ⊆ P(K,−w1, w2);
(ii) There exists a Lyapunov function that makes the system (8) asymptotically stable.

Moreover, if considering only the control constraints, let P(K,−w1, w2) be the PIS of system (8),
that is, P(K,−w1, w2) is equal to M, we obtain:

Corollary 2. The controller u(t) = Kx(t), K ∈ Rm×n is the solution of the asymptotic stabiliza-
tion problem of system (1) if

(i) P(K,−w1, w2) is a PIS of the system (8);
(ii) There exists a Lyapunov function that makes the system (8) asymptotically stable.

3.2. PIS and Stability Conditions for System (8)

Theorem 2. If there exists a matrix K ∈ Rm×n, real matrices F, F0 ∈ Rq×q and a scalar ε > 0
such that 

Q(A + BK) = FQ,
QA0 = F0Q,

(F + F0)ρ 6 −ερ,
(9)
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then the system (8) is asymptotically stable and the polyhedron set P(Q, ρ) is a PIS.

Proof. Choose the Lyapunov function of the form

V(x(t)) = max
{

max
(

Q1x(t)
ρ1

, 0
)

, · · · , max
(

Qqx(t)
ρq

, 0
)}

.

If, for 1 6 i 6 q, it satisfies Qix(t)
ρi

< 0, we obtain V(x(t)) = 0. However, due to the fact
that Qix(t) cannot always be negative, this case does not exist, so V(x(t)) > 0. Hence, there
must exist an i, such that 0 < Qix(t) 6 ρi, that is to say, 0 < V(x(t)) 6 1; then, according
to (9), we obtain

C
0 Dα

t V(x(t)) = Qi
ρi

C
0 Dα

t x(t) = Qi
ρi
[Ax(t) + A0x(t− τ) + Bu(t)]

= Qi
ρi
[(A + BK)x(t) + A0x(t− τ)]

= 1
ρi
[(FQ)ix(t) + (F0Q)ix(t− τ)]

= 1
ρi

(
n
∑

j=1

q
∑

k=1
FikQkjxj(t) +

n
∑

j=1

q
∑

k=1
F0ikQkjxj(t)

)

= 1
ρi

(
q
∑

k=1
Fik

n
∑

j=1
Qkjxj(t) +

q
∑

k=1
F0ik

n
∑

j=1
Qkjxj(t)

)
6 1

ρi

( q
∑

k=1
Fikρk +

q
∑

k=1
F0ikρk

)
= 1

ρi
[(F + F0)ρ]i

6 1
ρi
(−ερi) 6 −εV(x(t)) < 0.

(10)

By Lemma 1, we conclude that the system (8) is asymptotically stable.
Assuming that x0 ∈ P(Q, ρ), i.e., Qx0 ≤ ρ and A = A+ BK, according to the Definition

of x(t), we obtain

Qx(t) = Qx0 + Q
[

1
Γ(α)

∫ t
0 (t− s)α−1[Ax(s) + A0x(s− τ)

]
ds
]

= Qx0 +
1

Γ(α)

∫ t
0 (t− s)α−1[FQx(s) + F0Qx(s− τ)]ds

6 ρ + 1
Γ(α)

∫ t
0 (t− s)α−1[FQx(s) + F0Qx(s− τ)]ds

6 ρ + 1
Γ(α)

∫ t
0 (t− s)α−1(Fρ + F0ρ)ds

6 ρ− ερ
Γ(α)

∫ t
0 (t− s)α−1ds

= ρ− ερtα

αΓ(α) 6 ρ,

hence the polyhedron set P(Q, ρ) is a PIS of system (8).

Theorem 3. If there exists a matrix K ∈ Rm×n, real matrices F, F0 ∈ Rq×q, and a scalar ε > 0
such that 

K(A + BK) = FK,
KA0 = F0K,

(F̂ + F̂0)ŵ 6 −εŵ,
(11)

where ŵ =

[
w2
w1

]
, F̂ =

[
F+ F−

F− F+

]
, and

F+
ij =

{
Fij, if i = j,
max(Fij, 0), if i 6= j,

F−ij =

{
0, if i = j,
max(−Fij, 0), if i 6= j, (12)

then the system (8) is asymptotically stable and the polyhedron set P(K,−w1, w2) is a PIS.
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Proof. From (12), we have
F = F+ − F−. (13)

Replace F in (11) with (13), let A = A + BK; then, we have

KA = FK = (F+ − F−)K,
−KA = F(−K) = (F+ − F−)(−K) = (F− − F+)K.

Hence, [
K
−K

]
A =

[
F+ F−

F− F+

][
K
−K

]
. (14)

Let Q =

[
K
−K

]
, ρ = ŵ =

[
w2
w1

]
, that is, the set P(K,−w1, w2) can be reformulated as

the form of P(Q, ρ). From (14), there exists a matrix. F̂ =

[
F+ F−

F− F+

]
, such that

QA = F̂Q. (15)

In the same way, we have
QA0 = F̂0Q. (16)

On the other hand, according to (F̂ + F̂0)ŵ 6 −εŵ, we obtain

(F̂ + F̂0)ρ 6 −ερ. (17)

According to (11), we obtain (15)–(17). Then, by Theorem 2, the system (8) is asymptot-
ically stable and the polyhedron set P(Q, ρ) is a PIS. Hence, we conclude that the system (8)
is asymptotically stable and the polyhedron set P(K,−w1, w2) is a PIS.

Theorem 4. The polyhedron sets P(Q, ρ) and P(K,−w1, w2) have the relation

P(Q, ρ) ⊆ P(K,−w1, w2)

if and only if there exists L ∈ R2m×2q, L > 0 such that
L
(

Q
Q

)
=

(
K
−K

)
,

L
(

ρ
ρ

)
6
(

w2
w1

)
.

(18)

Proof. According to Lemma 2, P(Q, ρ) ⊆ P(K, w2) is equivalent to L1 ∈ Rm×q, L1 > 0 such
that L1Q = K and L1ρ 6 w2. On the other hand, P(Q, ρ) ⊆ P(−K, w1) is equivalent to
L2 ∈ Rm×q, L2 > 0 such that L2Q = −K and L2ρ 6 w1.

Hence, P(Q, ρ) ⊆ P(K,−w1, w2) if and only if there exists L =

(
L1
L2

)
> 0, L ∈ R2m×2q

such that (18) holds.

Remark 1. Theorem 2 proposes a sufficient condition that ensures the state constraint set P(Q, ρ) is
a PIS and the system (8) is asymptotically stable. On this basis, Theorem 3 proposes a sufficient con-
dition that ensures the control constraint set P(K,−w1, w2) is a PIS and the system (8) is asymptoti-
cally stable. Theorem 4 gives a sufficient and necessary condition to ensure P(Q, ρ) ⊆ P(K,−w1, w2).
When considering both state and control constraints. One can use Theorem 2 and Theorem 4 to find
a feedback controller for the asymptotic stabilization problem of system (1) according to Corollary 1.
When considering only control constraints. One can use Theorem 3 to find a feedback controller for
the asymptotic stabilization problem of system (1) according to Corollary 2.
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4. Design Algorithms

In this section, two solution algorithms are designed for the state feedback controllers.
Case 1: Considering both the state and control constraints, by Theorem 2, Theorem

4, and Corollary 1, the solution to matrix inequalities (9) and (18) is the solution to the
feedback controller of the asymptotic stabilization problem for system (1). However, for
system (1), the rate of convergence to equilibrium is an important index. The largest ε can
ensure the fastest convergence rate to the equilibrium. This can be settled by solving the
following LP problem with objective function

S(K, F, F0, L, ε) = ε (19)

and constraints 

Q(A + BK) = FQ,
QA0 = F0Q,

(F + F0)ρ 6 −ερ,
ε > 0,

L
(

Q
Q

)
=

(
K
−K

)
,

L
(

ρ
ρ

)
6
(

w2
w1

)
.

(20)

Case 2: Considering only the control constraints, by Theorem 3 and Corollary 2, the
solution to matrix inequality (11) is the solution to the feedback controller of the asymptotic
stabilization problem for system (1). This can be found by solving the following NP problem
with objective function

S(K, F, F0, ε) = ε (21)

and constraints 
K(A + BK) = FK,

KA0 = F0K,
(F̂ + F̂0)ŵ 6 −εŵ,

ε > 0.

(22)

Consider the maximum rate of convergence, from the positive definite function

V(x(t)) = max
{

max
(

Q1x(t)
ρ1

, 0
)

, · · · , max
(

Qqx(t)
ρq

, 0
)}

,

we obtain

C
0 Dα

t V(x(t)) = Qi
ρi

C
0 Dα

t x(t) = Qi
ρi
[Ax(t) + A0x(t− τ) + Bu(t)]

= Qi
ρi
[(A + BK)x(t) + A0x(t− τ)]

= 1
ρi
[(FQ)ix(t) + (F0Q)ix(t− τ)]

= 1
ρi

(
n
∑

j=1

q
∑

k=1
FikQkjxj(t) +

n
∑

j=1

q
∑

k=1
F0ikQkjxj(t)

)

= 1
ρi

(
q
∑

k=1
Fik

n
∑

j=1
Qkjxj(t) +

q
∑

k=1
F0ik

n
∑

j=1
Qkjxj(t)

)
6 1

ρi

( q
∑

k=1
Fikρk +

q
∑

k=1
F0ikρk

)
= 1

ρi
[(F + F0)ρ]i

6 1
ρi
(−ερi) 6 −εV(x(t)) < 0.

(23)

Therefore, maximizing ε is to maximize the rate of convergence.
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Remark 2. When the system parameters A, A0, and B and the constraint parameters Q, ρ, and
ŵ are fixed, from (23) we can see that the parameter ε is closely related to the rate of convergence. If
0 < ε < 1, the largest ε can ensure the fastest convergence rate to the equilibrium.

5. Numerical Examples

Example 1. Consider the delayed fractional-order electrical circuit [36] shown in Figure 1 with the
given resistance R = 1 Ω, inductance L = 0.4167 mH, capacitance C = 1.67 mF, delay element
and source voltage u.

Figure 1. The delayed fractional-order electrical circuit in [36].

Let v(t) represent the voltage across the capacitor and i(t) represent the current passing
through the inductor, using Kirchhoff’s laws, we can write the circuit equations[

dαv(t)
dtα

dαi(t)
dtα

]
= A

[
v(t)
i(t)

]
+ A0

[
v(t− τ)
i(t− τ)

]
+ Bu(t)

where A =

[
0 1

C
− 1

L − R
L

]
, A0 =

[
0 − 1

R
−C

L 0

]
, B =

[
0
1
L

]
.

Let x1(t) = v(t), x2(t) = i(t). Then, the above circuit equations can be written in the form of

the DLFS (1), with α = 0.7, τ = 0.1, A =

[
0 0.6
−2.4 −2.4

]
, A0 =

[
0 −1
−4 0

]
, and B =

[
0

2.4

]
.

Suppose the control input P(K,−w, w) satisfies the constraint

− 100 6 Kx(t) 6 50. (24)

Without the control input, system (1) is unstable; for the initial condition (4, 1)T , the time
response of the state is shown in Figure 2.

The asymptotic stabilization problem of DLFS (1) is to find a controller u(t) = Kx(t) that
makes all trajectories starting with the initial condition x0 asymptotically stable and meanwhile
satisfy the control constraints (24).

According to Case 2, solving the NP problem with the objective function

S(K, F, F0, ε) = ε
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and under the constraints

K
([

0 0.6
−2.4 −2.4

]
+

[
0

2.4

]
K
)
= FK

K
[

0 −1
−4 0

]
= F0K([

F+ F−

F− F+

]
+

[
F+

0 F−0
F−0 F+

0

])[
50

100

]
6 −ε

[
50

100

]
ε > 0.

By calculation, we obtain ε = 0.8, K = [2 1], F = 1.2, and F0 = −2.

0 10 20 30

t

-2

-1.5

-1

-0.5

0

0.5

1

x
(t

)

10
9

x
1
(t)

x
2
(t)

Figure 2. The time response of the system state without feedback control.

It indicates that there exists a u(t) = [2 1]x(t) such that all trajectories originating from the
initial condition are asymptotically stable to the origin, and meanwhile the corresponding trajectory
satisfies the control constraints (24).

For the initial condition (4, 1)T , the time response of the state is shown in Figure 3.
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Figure 3. The time response of the system state with feedback control.

Additionally, u(t) satisfies the control constraints (24), which can be seen from Figure 4.
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Figure 4. The control input u(t).

So, u(t) = [2 1]x(t) is a solution to the asymptotic stabilization problem of DLFS (1).

Example 2. Consider another delayed fractional-order electrical circuits, which can be written in

the form of the DLFS (1), with α = 0.7, τ = 0.5, A =

[
−3.25 10
−1 7.1

]
, A0 =

[
−1 −2.2
0 −2.1

]
, and

B =

[
1

0.8

]
.

The state constraints P(Q, ρ) are

2x2(t) 6 0.8,
−x1(t) + 2x2(t) 6 2.4,

−0.5x1(t) + 4x2(t) > −1.8,
(25)

where Q =

 0 2
−1 2
0.5 −4

 ∈ R3×2 and ρ =

0.8
2.4
1.8

 ∈ R3, ρ > 0. It can be easily seen that the

polyhedron set P(Q, ρ) is closed and nonempty.
Suppose the control input P(K,−w, w) satisfies the constraint

− 6 6 Kx(t) 6 9. (26)

Without the control input, system (1) is unstable, the time response of the state with the initial
condition (6.8, 0.4)T is shown in Figure 5.

The asymptotic stabilization problem of DLFS (1) is to find a controller u(t) = Kx(t) that
makes all trajectories starting from the initial value x0 asymptotically stable and meanwhile satisfy
the state constraints (25) and the control constraints (26).

According to Case 1, solving the LP problem with the objective function

S(K, F, F0, L, ε) = ε

and under the constraints
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 0 2
−1 2
0.5 −4

([−3.25 10
−1 7.1

]
+

[
1

0.8

]
K
)
= F

 0 2
−1 2
0.5 −4

, 0 2
−1 2
0.5 −4

[−1 −2.2
0 −2.1

]
= F0

 0 2
−1 2
0.5 −4

,

(F + F0)

0.8
2.4
1.8

 6 −ε

0.8
2.4
1.8

,

L
[

0 −1 0.5 0 −1 0.5
2 2 −4 2 2 −4

]T

=

[
K
−K

]
,

L
[
0.8 2.4 1.8 0.8 2.4 1.8

]T
6
[

9
6

]
,

ε > 0.

By computation, we obtain
ε = 0.9,

K =
[
1.25 −10

]
,

F =

−0.9 0 0
1.1 −2 0
0 0.73̇ −0.53̇

,

F0 =

−2.1 0 0
0 −1 0
0 −0.55 −2.1

,

and

L =

[
0 0 0 0 0 2.5
0 0 0 3.75 1.25 0

]
.
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Figure 5. The time response of the system state without feedback control.

It suggests that there exists u(t) = 1.25x1(t)− 10x2(t) such that all trajectories starting
from the initial condition are asymptotically stable to the origin, and meanwhile the corresponding
state trajectory satisfies the state constraints (25) and the control constraints (26).

For the initial condition (6.8, 0.4)T , the time response of the state is shown in Figure 6.
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Figure 6. The time response of the system state with feedback control.

For the initial condition (6.8, 0.4)T , the corresponding phase trajectory which satisfies the state
constraints (25) and the control constraints (26), is shown in Figure 7.
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-1 0 1

-0.2

0

0.2

Figure 7. The phase trajectory with the initial condition (6.8, 0.4)T .

Furthermore, u(t) satisfies the control constraints (26), which can be seen in Figure 8.
Hence, u(t) = 1.25x1(t)− 10x2(t) is a solution to the asymptotic stabilization problem of

DLFS (1).
Clearly, from Example 2, it can be seen that the control input is not saturated because the state

constraint set is a PIS. Next, we give an example without state constraints to verify the saturation
of the input control.
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Figure 8. The control input u(t).

Example 3. Consider the DLFS (1), with α = 0.8, τ = 0.8, A =

[
1 −3
−1 5

]
, A0 =

[
−1 0
0 −2

]
,

and B =

[
1 1
−1 0.5

]
.

Suppose the control input P(K,−w1, w2) satisfies the constraint[
−1
−2

]
6 Kx(t) 6

[
2
4

]
. (27)

Without the control input, system (1) is unstable; for the initial condition (−1.84,−0.64)T ,
the time response of the state is shown in Figure 9.

0 5 10 15 20

t

-6

-4

-2

0

2

4

x
(t

)

10
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x
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Figure 9. The time response of the system state without feedback control.

The asymptotic stabilization problem of DLFS (1) is to find a controller u(t) = Kx(t) that
makes all trajectories starting with the initial condition x0 asymptotically stable and meanwhile
satisfy the control constraints (27).
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According to Case 2, solving the NP problem with the objective function

S(K, F, F0, ε) = ε

and under the constraints

K
([

1 −3
−1 5

]
+

[
1 1
−1 0.5

]
K
)
= FK

K
[
−1 0
0 −2

]
= F0K

([
F+ F−

F− F+

]
+

[
F+

0 F−0
F−0 F+

0

])
2
4
1
2

 6 −ε


2
4
1
2


ε > 0.

By calculation, we obtain
ε = 0.8908,

K =

[
−2.051 7.444
−1.255 −2.629

]
,

F =

[
−4.11 0.43
0.33 −1.96

]
and

F0 =

[
−1.634 1.0362
0.2239 −1.3660

]
.

It indicates that there exists a u(t) =

[
−2.051 7.444
−1.255 −2.629

]
x(t) such that all trajectories

originating from the initial condition are asymptotically stable to the origin, and meanwhile the
corresponding trajectory satisfies the control constraints (27).

For the initial condition (−1.84,−0.64)T , the time response of the state is shown in Figure 10.
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t
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1

x
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x
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x
2
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Figure 10. The time response of the system state with feedback control.

For the initial condition (−1.84,−0.64)T , the corresponding phase trajectory is shown in
Figure 11. It can be seen that the control constraints (27) is satisfied.
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Figure 11. The phase trajectory with the initial condition (−1.84,−0.64)T .

In addition, u(t) satisfies the control constraints (27), which can be seen from Figure 12.
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Figure 12. The control input u(t).

So, u(t) =
[
−2.051 7.444
−1.255 −2.629

]
x(t) is a solution to the asymptotic stabilization problem of

DLFS (1).

6. Conclusions

The asymptotic stabilization problem of DLFS subject to state and control constraints
is studied. Based on the invariant set theory and fractional-order Lyapunov stability
theory, the feedback controller and the corresponding solution algorithms that ensure the
asymptotic stability of the DLFS under constraints are given. Numerical examples show
that the proposed method is effective. Stability of delayed fractional-order neural network
systems with constraints are a very interesting topic. In the future, we will study the
stabilization of delayed fractional-order neural network systems subject to constraints by
using the invariant set method.
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