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Abstract: This paper concerns with the existence and uniqueness of fuzzy fractional evolution equa-
tion with uncertainty involves function of form cDαx(t) = f (t, x(t), Dβx(t)), Iαx(0) = x0, x′(0) = x1,
where 1 < α < 2, 0 < β < 1. After determining the equivalent integral form of solution we establish
existence and uniqueness by using Rogers conditions, Kooi type conditions and Krasnoselskii-Krein
type conditions. In addition, various numerical solutions have been presented to ensure that the
main result is true and effective. Finally, a few examples which express fuzzy fractional evolution
equations are shown.
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1. Introduction

A wide variety of physical processes in real-world events exhibit fractional-order
behaviour that can change across time and space. Fractional calculus authorises operations
of differentiation and integration of fractional order. On both imaginary and real numbers,
the fractional-order can be used. The theory of fuzzy sets continues to grab researchers’
attention due to its wide range of applications in a variety of domains including mechanics,
electrical, engineering, processing signals, thermal system, robotics and control, signal
processing and many other fields [1–6]. As a result, it has piqued the curiosity of researchers
over the last few years.

In the context of mathematical modeling, developing a suitable fractional differen-
tial equation is a difficult task. It requires an investigation into the underlying physical
phenomena. Real physical phenomena, on the other hand, are always wrapped in uncer-
tainty. This is true especially when working with “living” resources like soil, water, and
microbial communities.

Fuzzy set theory is a fantastic technique for modelling uncertain problems. As a result,
a wide range of natural events has been modelled using fuzzy notions. The fuzzy fractional
differential equation is a common model in a variety of scientific domains, including
population models, weapon system evaluation, civil engineering, and electro-hydraulic
modelling. As a result, in fuzzy calculus, the concept of the fractional derivative is crucial.
As a result, fuzzy fractional differential equations have received a lot of interest in domains
of mathematics and engineering.

The concept of the fractional differential equation was presented in 2010 by Agar-
wal et al. [7]. However, this concept of Hukuhara differentiability could not provide the large
and varied behaviour of crisp solutions at the time. Allahviranloo and Salahshourcite [8]
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defined Riemann–Liouville H-derivative based on highly generalised Hukuhara differen-
tiability [9,10] later in 2012. They also defined Riemann–Liouville fractional derivative.

Riemann–Liouville for elaboration appears in a natural method for problems such
as transport difficulties from continuum random walks plan or generalises Chapman-
Kohmogorov models [11]. Under the external influences and continuum and statistical
mechanics for elaborating the behaviour of viscoplastic and viscoelastic, it was also applied.

There are some other papers which were related to existence and uniqueness of solu-
tion under Nagumo like conditions [12–16] for fuzzy fractional differential equation. The
uniqueness of the solution under condition 0 < q < 1 for problem Dqx(t) = f (t, x(t)) was
elaborated by Leela and Lakshmikantham [14,15]. With the help of Rogers, Krasnoselskoo–
Krein and Kooi conditions the uniqueness of solution was proved by Yoruk et al. [16], for
1 < q < 2.

On the other way, by the use of uncertainty in order to obtained more realistic modeling
of phenomena are taken; (see [17–19]). In aspect not fuzzy and fractional differential
equations many other scholars have been worked in numerical and theoretical [20–24].

The fuzzy Laplace transform was introduced by Ahmadi and Allahviranloo, which
was used to generalized differentiability. Now, further EIJaoui et al. [25] worked on it. The
fuzzy initial and boundary value problems and fuzzy fractional differential equations are
solved by fuzzy Laplace transform method [26].

Hallaci et al. [27] worked on the existence and uniqueness for delay fractional differen-
tial equations in 2020 by using the Krasnoselskii’s fixed point theorem and the contraction
mapping principle.

In 2021, Niazi et al. [28] worked on the existence, uniqueness, and Eq–Ulam type
stability of Cauchy problem for system of fuzzy fractional differential equation with Caputo
derivative of order q ∈ (1, 2], c

0Dq
0+u(t) = λu(t) ⊕ f (t, u(t)) ⊕ B(t)C(t), t ∈ [0, T] with

initial conditions u(0) = u0, u′(0) = u1.
In 2021, Iqbal et al. [29] worked on the uniqueness and existence of mild solution

for fractional order controlled fuzzy evolution equation with Caputo-derivative of the
controlled fuzzy nonlinear evolution equation which is given below{ c

0Dγ
t x(t) = αx(t) + p(t, x(t)), B(t)C(t), t ∈ [0, T]

x(t0) = x0.

Baleanu et al. [30] worked on the existence results for solutions of a coupled system of
hybrid boundary value problems with hybrid econditions.

The existence and uniqueness of the Laplace transform was proved by Assia Guezane-
Lakoud [31] for below initial value problems of fuzzy fractional differential equation for
arbitrary order q > 1. 

Dqx(t) = f (t, x(t), Dq−1x(t)),
x(0) = y0,
D(q−i)x(0) = 0̃, i = 1, . . . , [q].

By the inspire of above work, we adopted Caputo derivative to prove existence and
uniqueness for below initial value problem of fuzzy fractional evolution equation with
uncertainty for order α ∈ (1, 2).

cDαx(t) = f (t, x(t), Dβx(t)),
Iαx(0) = x0,
x′(0) = x1,

(1)

where
1 < α < 2, 0 < β < 1,

and x0 ∈ E and f : E0 → E is continuous fuzzy-valued function with

E0 = {(t, x) : 1 6 t 6 2, d(x(t), 0̃) 6 a}, (2)
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where d is Hausdroff distance.
Our goal is to extend and generalise [16] previous uniqueness results.
This study focuses on proving that consecutive approximations converge to a unique

solutions using the Rogers type uniqueness theorem, Krasnoselskoo–Krein type uniqueness
theory, and Kooi type uniqueness theorem. By using fuzzy Caputo derivative we determine
the equivalent integral problem.

The following is a breakdown of the paper’s structure. Basic definitions of fuzzy
set theory, Riemann–Liouville and Caputo derivative extended H-differentiability can be
found in Section 2. The corresponding integral problem is determined in Section 3 using the
fuzzy Laplace transform. The key findings are discussed in Section 4. Section 5, we prove
that consecutive approximations converge to a unique solutions using the Krasnoselskii-
Krein type of uniqueness theorem, a Kooi type uniqueness theorem, and a Rogers type
uniqueness theory.

2. Preliminaries

Let us throw the light on some basic definitions of fuzzy numbers and fuzzy sets. The
Gamma function is denoted by γ in this and the rest of the paper, while the integral part of
α is denoted by [α].

As expressed in [32] E = {u : R → [0, 1]; u satisfies (A1) − (A4)} is space of a
fuzzy numbers:

(A1) u is a normal; that is, there exist x0 ∈ R such that u(x0) = 2.
(A2) u is a fuzzy convex; that is, u(λy + (1− λ)z) > min{u(x), u(z)} whenever x, z ∈ R

and λ ∈ [1, 2].
(A3) u is a upper semi-continuous; that is, for any x0 ∈ R and ε > 1 there exists ξ(x0, ε) > 1

such that u(y) < u(y0) + ε whenever |x− x0| < ξ, x ∈ R.
(A4) The closure of {x ∈ R; u(x) > 1} is compact.

The set [u]γ = {u ∈ R; u(x) > γ} is called γ-level set of u. It follows from (A1)− (A4)
that α ∈ (1, 2]. The fuzzy zero is defined by

0̄ =

{
1 i f x 6= 1,
2 i f x = 1.

(3)

Definition 1 ([32]). A fuzzy number u in parametric form is pair of functions (u(r), u(r)),
1 6 r 6 2, that meet following conditions:

(1) u(r) is bounded non-decreasing left continuous function in (1, 2] and right continuous at 1;
(2) u(r) is bounded non-decreasing left continuous function in (1, 2] and right continuous at 1;
(3) u(r) 6 u(r), 1 6 r 6 2.

Furthermore, r-cut representation of fuzzy numbers can be shown as

[u]r = [u(r), u(r)] f or all 1 6 r 6 2.

The features of fuzzy addition and multiplication by scaler on E are as follows, accord-
ing to Zadeh’s extension principle:

(u⊕ v)(x) = sup
y∈R

min{u(x), v(w− x)}, w ∈ R,

(k	 u(x)) =


u( x

k ) i f k > 1,

0̃ i f k = 1.
(4)
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To keep things simple, we write ⊕,	 with the standard P +, . . . . The Hausdroff
distance between the fuzzy numbers is denoted by E×E→ [0,+∞[, such that

D(u, v) = sup
r∈[1,2]

max{|u(r)− v(r)|, |u(r)− v(r)|}.

And (d,E) is a complete metric space.

Definition 2. Let x, y ∈ E be the variables. If z ∈ E exists such that x = y + z, then z is known
as H-difference of x and y and is symbolised as x	 y.

Remark 1. The sign 	 denotes the H-difference and x	 y 6= x + (−1)y.

CF[1, a] denotes space of all continuous fuzzy-valued functions on [1, a], and LF[1, a]
denotes space of all Lebesgue integrable fuzzy valued functions on [1, a], when a > 1.

AC(n−1)F[1, a] also denotes space of fuzzy-valued functions f with continuous H-
derivatives up to n− 1 on [1, a] such that f (n−1) in ACF[1, a].

Definition 3 ([33]). The Riemann–Liouville fractional derivative is defined as

aDp
t f (t) =

(
d
dt

)n+1 ∫ t

a
(t− τ)n−p f (τ)dτ, n 6 p 6 n + 1.

Definition 4 ([33]). The Caputo fractional derivatives C
a Dα

t f (t) of order α ∈ R+ are defined by

C
a Dα

t f (t) = aDα
t ( f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t− a)k),

respectively, where n = [α] + 1 for α /∈ N0; n = α for α ∈ N0.

In this paper, we consider Caputo fractional derivative of order 1 < α 6 2, e.g.,

C
a D3/2

t f (t) = aD3/2
t ( f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t− a)k).

Definition 5 ([34]). The Wright function ψα is defined by

ψα(θ) =
∞

∑
n=0

(−θ)n

n!Γ(−αn + 1− α)

=
1
π

∞

∑
n=1

(−θ)n

(n− 1)!
Γ(nα) sin(nπα),

where θ ∈ C with 0 < α < 1.

Lemma 1 ([35]). Let {C(t)}t∈R be a strongly continuous cosine family in X satisfying ‖C(t)‖Lb(X) ≤
Meω|t|, t ∈ R, and let A be the infinitesimal generator of {C(t)}t∈R. then for Reλ > ω, λ2 ∈ ρ(A) and

λR(λ2; A)x =
∫ ∞

0
e−λtC(t)tdt, R(λ2; A)x =

∫ ∞

0
e−λtS(t)xdt, f or x ∈ X.

Let γ > 1 be a real number, we have following results:

Lemma 2 ([3]). The unique solution of linear fractional differential equation

cDαu(t) = 0,
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is given by
u(t) = c1 + c2t + . . . + cntn−1, ci ∈ R, i = 1, 2, . . . , n,

where
n = [α] + 1.

Lemma 3. Equation (1) is equal to integral equation below:

x(t) =
1

Γk

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds +

1
Γk− 1

∫ t

0
(t− s)k−2 f (s, x(s), Dβx(s))ds + σ(0). (5)

Proof. Using Lemma 2, Equation (1) can be written as

cDαx(t) = I f (t, u(t), Dβ(t)) + c0tα−1.

Using the condition
lim
t→0

t1−kcDβu(t) = 0,

we get c0 = 0. On the other hand, from Lemma 2, one gets

x(t) = Ik f (t, x(t), Dβx(t)) + Ik−1g(t, x(t), Dβx(t)) + c1 + c2t.

Clearly x(0) = σ(0), so we obtain c1 = σ(0) and because u′(0) = 0, we find c2 = 0,
then we get the integral equation

x(t) =
1

Γk

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds +

1
Γk− 1

∫ t

0
(t− s)k−2 f (s, x(s), Dβx(s))ds + σ(0).

The Krasnoselskii fixed point theorem and contraction mapping concept are used to
achieve our results.

Theorem 1. (Krasnoselskii fixed point theorem [36,37]) If M is nonempty bounded, closed, and
convex subset of E, and A and B are two operators defined on M with values in E, then

(i) Au + Bv ∈ G, for all u, v ∈ G,
(ii) A is continuous and compact,
(iii) Then there exists w ∈ G such that h = Aw + Bw.

Theorem 2. (Contraction mapping principle [36,37]) If E is Banach space, then it is a Banach
space. When H : E→ E is a contraction, H has a single fixed point in E.

Definition 6 ([38]). Let f ∈ CF[1, 2] ∩ LF[1, 2]. The fuzzy fractional integral of fuzzy-valued
function f is defined as

Iγ f (x; r) = [Iγ f (x; r), Iγ f (x; r)], 1 6 r 6 2, (6)

where
Iγ f (x; r) = 1

Γ(γ)

∫ x
0 (x− s)γ−1 f (s; r)ds,

Iγ f (x; r) = 1
Γ(γ)

∫ x
0 (x− s)γ−1 f (s; r)ds.

(7)

Definition 7 ([38]). Let f ∈ C(n)F[1, 2] ∩ LF[1, 2], x0 ∈ (1, 2), and

ϕ(x) = (
1

Γ(n− γ)
)
∫ t

0

( f (t)dt)
(x− t)γ−n+1 ,

where
n = |γ|+ 1.
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One says that f is a fuzzy Caputo fractional differentiable of order γ at x0, if there exists an
element (Dγ

0 f )(x0) ∈ E, such that, for all h > 1 sufficiently small, one has

(Dγ
0 f )(x0) =

lim
h→0

ϕ(n−1)(x0+h) 	 ϕ(n−1)(x0)
h

lim
h→0

ϕ(n−1)(x0) 	 ϕ(n−1)(x0−h)
h

. (8)

or

(Dγ
0 f )(x0) =

lim
h→0

ϕ(n−1)(x0) 	 ϕ(n−1)(x0+h)
h

lim
h→0

ϕ(n−1)(x0−h) 	 ϕ(n−1)(x0)
h

. (9)

Denote by C(n−1)F([1, a]) space of fuzzy-valued functions f on bounded interval [1, a] which
have continuous Caputo-derivative up to order n− 2 such that f (n−1) ∈ CF[1, a]. C(n−1)F([1, a])
is a complete metric space endowed by metric D such that for every g, h ∈ C(n−1)F([1, a])

D(g, h) =
n−1

∑
i=0

sup
t∈[1,a]

d(g(i)(t), h(i)(t)). (10)

We say fuzzy-valued function f is c[(i)-γ]-differentiable if it is differentiable as in definition
case (i) and c[(ii)-γ]-differentiable if it is differentiable as in definition case (ii) in the rest of the article.

Definition 8 ([38]). Let f ∈ C(n)F ∩ LF[1, 2], x0 ∈ (1, 2), and

ϕ(x) =
(

1
Γ(β− n)

) ∫ x

0

(
f (t)

dt
(x− t)β−n+1

)
,

where n = γ + 2 such that 1 6 r 6 2; then

(i) if f is c[(i)-γ]-differentiable fuzzy-valued function, then

(Dγ
0 f )(x0; r) = [(Dγ

0 f )(x0; r), (Dγ
0 f )(x0; r)], (11)

or
(ii) if f is c[(i)-γ]-differentiable fuzzy-valued function, then

(Dγ
0 f )(x0; r) = [(Dγ

0 f )(x0; r), (Dγ
0 f )(x0; r)], (12)

where

(Dγ
0 f )(x0; r) =

[
1

Γ(n−γ)

∫ t
0 (x− t)n−γ−1 f (t; r)dt

]
x=x0

(Dγ
0 f )(x0; r) =

[
1

Γ(n−γ)

∫ t
0 (x− t)n−γ−1 f (t; r)dt

]
x=x0

. (13)

The fuzzy Laplace transforms L of Caputo-derivative for fuzzy-valued functions is proved by
the following theorem.

Theorem 3. Let f ∈ C(n)F[1, ∞) ∩ LF[1, ∞); has the below:

(i) if f is c[(i)-γ]-differentiable fuzzy-valued function,

L
[
(Dγ

0 f )(x0)

]
= pγL[ f (t)]	

( n−1

∑
k=0

pγ−k−1Dk
)
(1), (14)

or
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(ii) if f is c[(i)-γ]-differentiable fuzzy-valued function,

L
[
(Dγ

0 f )(x0)

]
= −

( n−1

∑
k=0

pγ−k−1Dk
)
(1)	

(
− pγL[ f (t)]

)
(15)

3. Fuzzy Fractional Integral Equation

Using well-known fuzzy Laplace transform, we investigate the relationship between
Equation (1) and fuzzy integral form in this section.

In fact, by applying the Laplace transform to both sides of the equation, get a better result.

Dαx(t) = f
(

t, x(t), Dβx(t)
)
, g(t, x), (16)

we obtain

L[Dαx(t)] = L
[

f
(

t, x(t), Dβx(t)
)]

. (17)

We get two situations depending on the nature of Caputo-differentiability.
Case 1.

If Dαx is fuzzy-valued function that is c[(i)-α]-differentiable,

Lr(t, x) = −
( n−1

∑
k=0

pβ−k−1Dk
)
(1)	 pαL[x(t)], (18)

and the above equation becomes dependent on the lower and higher functions of Dαx,
L[r(t, x, r)] = pαL[x(t; r)]−∑n−1

k=0 pγ−k−1Dkx(1; r),

L[r(t, x, r)] = pαL[x(t; r)]−∑n−1
k=0 pγ−k−1Dkx(1; r),

(19)

where 
L[r(t, x, r)] = min{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 6 r 6 2,

L[r(t, x, r)] = max{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 6 r 6 2,
(20)

For the purpose of simplicity, we will assume that in order to solve system (19),
L[x(t; r)] = H1(p; r),

L[x(t; r)] = K1(p; r).
(21)

H1(p : r) and K1(p; r) are solutions of the previous system (19); it produces
x(t; r) = L−1[H1(p; r)],

x(t; r) = L−1[K1(p; r)].
(22)

Case 2.
If Dαx is fuzzy-valued function that is c[(ii)-α]-differentiable,

Lr(t, x) = pαL[x(t)]	
( n−1

∑
k=0

pβ−k−1Dk
)
(1), (23)
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and the above equation becomes dependent on the lower and higher functions of Dαx,
L[r(t, x, r)] = pαL[x(t; r)]−∑n−1

k=0 pβ−k−1Dkx(1; r),

L[r(t, x, r)] = pαL[x(t; r)]−∑n−1
k=0 pβ−k−1Dkx(1; r),

(24)

where 
L[r(t, x, r)] = min{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 6 r 6 2,

L[r(t, x, r)] = max{r(t, u)|u ∈ [x(t; r), x(t; r)]}, 1 6 r 6 2.
(25)

For the purpose of simplicity, we will assume that in order to solve system (24),
L[x(t; r)] = H2(α; r),

L[x(t; r)] = K2(α; r),
(26)

where H2(p; r) and K2(p; r) are solutions of the previous system (24). After that, we get
x(t; r) = L−1[H2(α; r)],

x(t; r) = L−1[K2(α; r)].
(27)

We derive the following for both instances, taking into account the beginning value
and initial conditions of Equation (1), using linearity of inverse Laplace transform on
systems (21) and (27).

If and only if x is solution for following integral equation, x is a solution for Equation (1):

x(t) = Cq(t)x0 ⊕ Kq(t)x1 ⊕
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (28)

in respect to c[(i)-α]-differentiability, and

x̂(t) = Cq(t)x0(−1)	 Kq(t)x1 	 (−1)
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (29)

in respect to c[(ii)-α]-differentiability.

4. Main Results

Now, stated Kransnoselskii-Krein type conditions for fuzzy fractional differential
Equation (1).

Theorem 4. Suppose f ∈ C(E0,E) satisfy Kransnoselskii-Krein type requirements as follows:

(H1) d(( f , x, y), f (t, x, y)) 6 min{Γ(α), 2}( (k+γ(α−[α]))
2t1−γ(α−[α]) )[d(x, x) + d(y, y)], t 6= 1 and

1 < α < 2,
(H2) d( f (t, x, y), f (t, x, y)) 6 ζd( f (t, x, y), f (t, x, y) 6 ζd(x, x)γ + tγ(α−[α])d(y, y)γ,

where ζ and k are positive constants and

k(2− γ) < 2 + γ(α− [α]);

then in the sense of c[(i)-γ]-differentiability, solution x is a unique and in sense of c[(i)-γ]-
differentiability, solution x is a unique on [1, κ], where

κ = min
{

2,
(

bΓ(2 + α)

G

) 1
α

,
d
G

}
,
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and G is bound for f on E0 that is,
d( f , 0̃) 6 G.

Proof. To begin, let us assume that x and y are any two solutions of (1) in c[(i)-γ]-differentiability
and assume

ϕ(t) = d(x(t), y(t))

and
σ(t) = d(Dβx(t), Dβy(t)).

Note that
ϕ(1) = σ(1) = 1.

We define

R(t) =
∫ t

0
[ϕγ(s) + sγ(α−[α])σγ(s)]ds;

clearly R(1) = 1.
Using Equation (28) and condition (H2),

ϕ(t) 6 ζ
∫ t

0
(t− s)q−1[ϕγ(s) + sγ(α−[α])σγ(s)]ds

6 ζtq−1R(t) (30)

σ(t) 6
∫ t

0
ζϕϕγ(s) + tγ(α−[α])σ(s)γds

6 ζR(t). (31)

We use the same symbol C to represent all of the other constants that appear in the
rest of the proof for the purpose of simplicity.

We have

R′(t) = ϕ(t) + tγ(α−[α])σγ(s)

6 C[tγβ + tγ(α− [α])]Rγ(t). (32)

Since R(t) > 1 for t > 0, multiplying both sides of (32) by (1− γ)R−γ(t) and then integrate

R(t) < C
(

t

(
( γ
(1−γ)

)α+1

)
+ t

(
γ

(1−γ)

)
α+

(
(1−γ[γ])
(1−γ)

))
(33)

Making use of the fact that

(a + b)t(1−γ) 6
1

21−γ − 1
(a(1−γ) + b(1−γ)) (34)

for every a, b ∈ (1, 2), Equation (33) becomes

R(t) < C
(

t

(
γα

1−γ +1

)
+ t

(
γα

1−γ +
1−γ[γ]

1−γ

))
. (35)
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For t ∈ [0, µ], this yields the following estimates for ϕ and σ:

ϕ(t) 6 C
(

t

(
α

1−γ )

+ t

(
α

1−γ +
γ(1−[α])

1−γ

))
,

σ(t) 6 C
(

t

(
γ

1−γ α+1)
+ t

(
γ

1−γ α+ 1−γ[α]
1−γ

))
.

(36)

Define function η(t) = t−k max ϕ(t), σ(t) for t ∈ (1, 2]. When either t−k ϕ(t) or t−kσ(t)
is maximum,

1 6 η(t) 6 C
(

t

(
α

1−γ−k

)
+ t

(
α

1−γ +
γ(1−[α])
(1−γ)−k

))
, (37)

or

1 6 η(t) 6 C
(

t

(
γ

1−γ α+1−k

)
+ t

(
αγ

1−γ +
(1−γ[α])
(1−γ)−k

))
. (38)

Since
k(1− γ) < 1 + γ(α− [α])

(by assumption), we have

< 1 + γ(α− [α])

< α

(k− 1)(1− γ) < γα

k(1− γ) < α + γ− γ[α]

< γα + 1− γ[α].

In the above inequalities, all of the t exponents are positive. As a result, lim
t→0+

η(t) = 0.

As a result, the function η is continuous in [0, η] if η(0) = 0 is defined. In fact, because η
is continuous function, if η does not vanish at some points t, i.e., η(t) > 1 on [0, η], then
there exists maximum g > 1 attained when t is equal to some t1. 1 6 t1 6 η 6 2 such that
η(s) < g = η(t1), for s ∈ [0, t1). However, we receive either result from condition (H1).

g = η(t1) = t−k
1 ϕ(t1) 6 min(Γ(α), 2)gtα−2+γ(α−[α])

1 < g (39)

g = η(t1) = t−k
1 σ(t1) 6 min(Γ(α), 2)gtγ(α−[α])

1 < g (40)

which is a contradiction. As a result, the solution’s uniqueness is established in terms of
c[(i)-α]-differentiability. We emit the second part of proof because it is nearly identical to
c[(i)-α]-differentiability.

Theorem 5. (Kooi’s type uniqueness theorem). Suppose f satisfies below conditions:

(J1) d(( f , x, y), f (t, x, y) 6 min{Γ(α), 2}
(

(k+γ(α−[α]))
2t1−γ(α−[α])

)
[d(x, x + d(y, y], t 6= 1 and

1 < α < 2,
(J2) tβd( f (t, x, y), f (t, x, y)) 6 c[d(x, x)γ + tγ(α−[α])d(y, y)γ,

where c and k are positive constants and

k(2− γ) < 2 + γ(α− [α])− µ,

for (t, x, y), (t, x, y) ∈ R0; then in the sense of c[(i)-γ]-differentiability, solution x is a unique and
in sense of c[(i)-γ]-differentiability, solution x̂ is a unique.
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Lemma 4. For a real number a > 1, consider ϕ and σ, two non-negative continuous functions on
interval [0, µ]. Let

η(t) =
∫ t

0
(ϕ(s) + sα−[α]+2)ds.

Consider the following:

(i) ϕ(t) 6 tα−[α]η(t);
(ii) σ(t) 6 η(t);

(iii) ϕ(t) = o(tα−[α]e−
1
t );

(iv) σ(t) = o(e−
1
t ).

Proof. Let

η(t) =
∫ t

0
(ϕ(s) + sα−[α]+2)ds.

After differentiating η and using (ii), we get t > 0,

η′(t) 6 (
1
t2 )η(t),

so that e
1
t η(t) is decreasing. Now from (iii) and (iv), if ε > 0 then, for small t, we get

e
1
t η(t) 6 e

1
t

∫ t

0

1
2s2 2e−

1
s ds = ε. (41)

Hence,
lim
t→1

e
1
t η(t) = 1.

This means that η(t) 6 1. Finally, because of (i), η is nonnegative, and hence η = 1.

Theorem 6. (Roger’s type uniqueness theorem). Verify following conditions with function f :

(K1) d(( f , x, y), 0̃) 6 min{Γ(α), 2}o( e
−1
t

t2 ), uniformly for positive and bounded x and y on E,
(K2) d( f (t, x, y), f (t, x, y)) 6 min{Γ(α)( 1

2tα−[α]+2 )[d(x, x) + t(α−[α])d(y, y)].
The problem then has only one solution.
This theorem’s proof is based mainly on Lemma 4.

Proof. Suppose x and y are any two solutions of (1) in c[(i)-γ]-differentiability, assume

ϕ(t) = d(x(t), y(t))

and
σ(t) = d(Dβx(t), Dβy(t));

we get for t ∈ [0, µ] ⊂ [1, 2].

ϕ(t) 6
1
k

∫ t

0
(t− s)k−1d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

6
(t− s)k−1

2sα−[α]+2
[ϕ(s) + sα−[α]σ(s)]ds

6 tα−1
∫ t

0

1
2sα−[α]+2

[ϕ(s) + sβσ(s)]ds
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6 tα−[α]
∫ t

0

1
2sα−[α]+2

[ϕ(s) + sβσ(s)]ds

6 tα−[α]η(t)

σ(t) 6
∫ t

0
d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

6
∫ t

0

min{Γ(α), 2}
2sα−[α]+2

[ϕ(s) + sα−[α]σ(s)]ds

6
∫ t

0

1
2sα−[α]+2

[ϕ(s) + sα−[α]σ(s)]ds

6 ϕ(t), (42)

where ϕ has the same definition as in Lemma 4.
In addition, if ε > 1, we get condition (K1) for small t,

ϕ(t) 6
tk−1

Γ(k)

∫ t

0
(t− s)k−1d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

6 (t− s)k−12(ε)
∫ t

0

e−
1
s

s2 ds

6 tk−1e−
1
s 2ε

6 tα−[α]e−
1
s 2ε (43)

σ(t) 6
∫ t

0
(t− s)k−1d[ f (s, x(s), Dβx(s)), f (s, y(s), Dβy(s))]ds

6 2ε min{2, Γ(k)}
∫ t

0

e−
1
s

s2 ds

6 2εe−
1
s .

We get d(x(t), y(t)) = 1 for every t ∈ [1, 2] by applying Lemma 4, proving uniqueness
of solution of fuzzy fractional evolution Equation (1) in c[(i)-γ]-differentiability. We skip
the second section of the evidence because it is nearly identical to the first.

Theorem 7. Let f ∈ C(E0,E) satisfy above Theorem 4. Then there’s series of approximations.

xn(t) = Cq(t)x0 + Kq(t)x1(t) +
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (44)

in sense of c[(i)-γ]-differentiability or

x̂n(t) = Cq(t)x0 	 (−1)Kq(t)x1 	 (−1)
1

Γα

∫ t

0
(t− s)k−1 f (s, x(s), Dβx(s))ds (45)

converge to unique solution of fuzzy fractional evolution equation in sense of c[(ii)-γ]-differentiability (1).

Proof. Using the Ascoli–Arzela Theorem, we show the Theorem 7 for sequence xn in sense
of c[(i)-γ]-differentiability without losing generality. We omit the sequence {x̂n} because its
convergence in terms of c[(ii)-γ]-differentiability is very comparable.
Step 1: The sequences {xj}j>0 and {Dq−1xj}j>0 are well defined, continuous and uniformly
bounded on [0, µ]; 

d(xj+1(t), x0) 6
∫ t

0 d( f (s, xj(s), Dβxj(s)), 0̃)ds

d(Dβxj(t), x0) 6
∫ t

0 d(d(s, xj(s), Dβxj(s)), 0̃)ds
. (46)
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For j = 1 and t ∈ [0, µ], we have
d(x1(t), x0) 6 Gt2

Γ(α+1) 6 a

d(Dβx1(t), x0) 6 Gt 6 g
. (47)

Furthermore, for each i ∈ 0, . . . , β;

d(x(i)1 (t), 0̃) = d(Di Iα f (t, x0(t), Dβx0(t), 0̃)

= d(Iα−i f (t, x0(t), Dβx0(t), 0̃)

= Γ(β)∫ t

0
(t− s)α−i−1d( f (t, x0(s), Dβx0(s)), 0̃)ds 6

N
Γ(α− i)

∫ t

0
(t− s)α−i−1ds

6
Ntα−i

(α− i)Γ(α− i)

6
Ntα−1

Γ(α− i + 1)
.

The sequences {xj+1(t)} and {Dβxj+1(t)} are properly defined and uniformly bounded
on [0, µ] by induction.
Step 2: We show that in [0, µ], the functions x and y are continuous, where x and y are
defined by 

x(t) = lim
j→∞

sup ξ0
j (t),

y(t) = lim
j→∞

sup ζ j(t),
(48)

as a result 
ξ1

j (t) = d(xj(t), xj−1(t)),

ζ j(t) = d(Dβxj(t), Dβxj−1(t)).
(49)

Take note of the following:

g(t) = ∑
i6n−1

lim
j→∞

ξ i
j(t), (50)

where
ξ i

j(t) = d(x(i)j (t), x(i)j−1(t)). (51)

For 0 6 t1 6 t2 and for every i ∈ {0, . . . , n− 1}, we obtain
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d(ξ i
j(t1)− ξ i

j(t2)) = d(x(i)j+1(t1), x(i)j (t1))− d(x(i)j+1(t2), x(i)j (t2))

6 d
[ ∫ t1

0
(t1 − s)k−1−id( f (s, xj(s), Dβx(s)), f (s, xj−1(s)Dβ

j−1x(s)))ds

−
∫ t2

0
(t2 − s)k−1−id( f (s, xj(s), Dβx(s)), f (s, xj−1(s)Dβ

j−1x(s)))
]

ds (52)

6
2N

Γ(k− i)
d
[ ∫ t−1

0
(t1 − s)k−1−i − (t2 − s)k−1−ids−

∫ t2

t1

(t2 − s)k−1−ids
]

6
2N

(k− i)Γ(k− i)

[
tk−i
1 − tk−i

2 + 2(t2 − t1)
k−i
]

6
4N

Γ(k− i + 1)
(t2 − t1)

k−i.

In the above inequalities, right-hand side is at the most 4N
Γ(k−i+1) (t2 − t1)

k−i + ε for
large n if ε > 0 provided that

d(t2 − t1) 6 µ 6
4N

Γ(k− i + 1)
(t2 − t1)

k−i, (53)

for each i 6 n− 1. ε is arbitrary and t1, t2 can be interchangeable, we get

d(n(t1)− n(t2)) 6 ∑
i6n−1

{
4N

Γ(k− i + 1)
(t2 − t1)

k−i
}

6
4N(n− 1)
Γ(k + 1)

(t2 − t1)
k. (54)

The same goes for y(t), and we obtain

d(y(t1)− y(t2)) 6 2Nd(t2 − t1). (55)

These results indicate that x and y are continuous on [0, µ].
Step 3: We check that {Dβ jn+1(t)} family is equi-continuous in CE([0, µ],E) and that the
{xj+1(t)} family is equi-continuous in C(n−1)F([0, µ],E). Using condition (H2) and notion
of successive approximations (45) we can show that we get

ξ0
j+1(t) 6 c

∫ t
0 (t− s)k−1[ξ0

j (s)
γ + sγ(α−[α])ζ j(s)γ]ds,

ξ i
j+1(t) 6 c

∫ t
0 (t− s)k−i−1[ξ0

j (s)
γ + sγ(α−[α])ζ j(s)γ]ds.

(56)

As a consequence, we obtain the following estimation:

D(xj+1, xj) 6 ∑
i6n−1

c
∫ 2

1
(1− s)k−i−1[d(xj(s)− xj−1(s))γ + sγ(α−[α])d(Dβxj(s)− Dβxj−1(s))γ]ds. (57)

There exists a subsequence of integers {jk}, according to the Arzela-Ascoli Theorem,
d(xj p(t), xj−1 p(t))→ y(t) as jl → ∞,

d(Dβxj p(t), Dβxj p−1(t))→ y(t) as jl → ∞.
(58)
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Let us note 
u∗(t) = lim

p→∞
sup d(xj p(t), xj p−1(t)),

v∗(t) = lim
p→∞

sup d(Dβxj p(t), Dβxj p−1(t)).
(59)

Further, if {d(xj, xj−1)} → 0 and {d(Dβxj, Dβxj−1)} → 0 as j → ∞, limit of any
consecutive xn approximation in solution x of (1), which was demonstrated to be unique in
Theorem 4. As a result, a subsequence selection is unnecessary, because entire sequence
{xj} converges evenly to x(t). To do so, simply establish that x = 1 and y = 1, which will
result in u ∗ (t) and v ∗ (t) being same.

R(t) =
∫ t

0
[y(s)γ + sγ(α− [α])v(s)γ]ds (60)

and by defining
η ∗ (t) = t−p max{x(t), y(t)}.

We demonstrate this as
lim

t→0+
η ∗ (t) = 0.

We’ll now show that η ∗ (t) = 0. Assume that η ∗ (t) > 0 at any point in the range
[0, µ]; then t1 exists that is

1 6 ḡ = η(t1) = max
06t6µ

η ∗ (t).

Hence, from condition (H1), we obtain

ḡ = η(t1) = t−p
1 x(t1) 6 min(Γ(α), 2)ḡtβ−γ(α−[α])

1 < ḡ, (61)

or
ḡ = η(t1) = t−p

1 y(t1) 6 min(Γ(α), 2)ḡtγ(α−[α])
1 < ḡ. (62)

We end up with a contradiction in both circumstances. As a result, η ∗ (t) = 0. As a
result, iteration (45), on [0, µ], converges evenly to the unique solution x of (1).

5. Examples

Example 1. Consider the initial value problem:

cD
3
5 x = f (t, x) =



Ft
3γ

5i−γ 1 6 t 6 2,−∞ 6 x 6 1,

Ft
3γ

5i−γ ⊕ F Fx2

t
3
5

1 6 t 6 2, 1 6 xt
3
5 (1− γ)−1,

0, 1 6 t 6 2, t
3
5 (1− γ)−1 6 x 6 ∞,

(63)

x(1) = 1,
where

1 6 α 6 2,

then

F = Γ
(

3
5

)(
3
5

k− 1
2

)
, q =

3
5

, c =
F51−γ

Γ( 3
5 )

,

k > 2 and k(1− γ) < 2.
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In the strip, function f (t, x) is continuous. 1 6 t 6 2, |x| < ∞, can be proved in each of
the cases.

(i) 1 6 x, x̄ 6 t
3
5 (1− γ)−1,

(ii) t
3
5 (1− γ)−1 < x < ∞,−∞ < x̄ < 1,

(iii) t
3
5 (1− γ)−1 < x < ∞, 0 6 x̄ 6 t

3
5 (1− γ)−1,

(iv) 0 6 x 6 t
3
5 (1− γ)−1,−∞ < x̄ < 1,

that following estimates hold:

| f (t, x)− f (t, x̄| 6
F

t
3
5
|x− x̄|,

6 F21−γ|x− x̄|γ.

Therefore, initial value problem has unique solution for order (1, 2].

Example 2. If we consider initial value problem with Caputo derivative

cDα(x) = f (t, x,c Dβx(t)),
Iαx(0) = x0,
x′(0) = x1,
cDβx(0) = 0,

(64)

where 1 < α < 2, then solution of given equation is equal to

x(t) = Cq(t)x0 + Kq(t)x1 +
1

Γα

∫ t

0
(t− s)α−1 f (s, x(s))ds. (65)

Let the function f in above equation satisfy following Krasnoselskii-Krein type conditions:
(H1) d( f (t, x), f (t, y)) 6 Γ(q) α(k−1)+1

tα d(x, y), t 6= 0, where k > 1.
(H2) d( f (t, x), f (t, y)) 6 ζd(x, y)β, where ζ is constant, 0 < β < 1, and k(1− β) < 1, for
(t, x), (t, y) ∈ R.

Then approximations are given by

xn+1(t) = Cq(t)x0 + Kq(t)x1 +
1

Γα

∫ t

0
(t− s)α−1 f (s, xn(s))ds, (66)

converges uniformly to a unique solution x(t) of given equations on {0, µ} where

µ = min
{

c,
(

eΓ(1 + α)

J

) 1
α
}

,

J is bound for f on R.

6. Conclusions

The existence and uniqueness of the class of high-order fuzzy Krasnoselskii-Krein
conditions are investigated in this paper. This is a fruitful field with a wide range of
research projects that can lead to various applications and theories. In future projects,
we hope to learn more about fuzzy fractional evolution problems. Using the Caputo
derivative, we can discover uniqueness and existence with uncertainty. Future work could
include expanding on the concept proposed in this mission, including observability, and
generalizing other activities. This is an interesting area with a lot of study going on that
could lead to a lot of different applications and theories. This is a path to which we want to
invest considerable resources.
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