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Abstract: This paper is concerned with the existence of the solution to mixed-type non-linear fractional
functional integral equations involving generalized proportional (κ, φ)-Riemann–Liouville along
with Erdélyi–Kober fractional operators on a Banach space C([1, T]) arising in biological population
dynamics. The key findings of the article are based on theoretical concepts pertaining to the fractional
calculus and the Hausdorff measure of non-compactness (MNC). To obtain this goal, we employ
Darbo’s fixed-point theorem (DFPT) in the Banach space. In addition, we provide two numerical
examples to demonstrate the applicability of our findings to the theory of fractional integral equations.
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1. Introduction

Fractional calculus is a well-known mathematical tool for the description of anomalous
and non-local diffusion together with physical investigation and has also found applications
in various fields from physics and engineering to the investigation of natural phenomena and
financial analysis. The field of fractional calculus plays a central role in mathematical analy-
sis which analyses the derivatives and integrals of any real or complex order by employing
the Euler gamma function. Fractional calculus enables us to illustrate different occurrences
and impacts in various science disciplines as well as in engineering, including frequency
dispersion of power types, long-range interactions of power-law types, spatial dispersion
of power types, intrinsic dissipation, fractional diffusion waves, fractional viscoelasticity,
fractional electrochemistry, fractional relaxation-oscillation, fractional electromagnetics, fad-
ing memory (forgetting), fractional biological population models, the openness of systems,
optics, signals processing, the vibration of earthquake motion, and several others. In the 16th
century, the idea of fractional calculus was introduced. The first application of fractional
calculus to engineering problems is considered to be Abel’s study of the tautochrone prob-
lem. During the 19th and early 20th centuries, the ideas and multiple practical invocations
of fractional calculus were substantially developed.

Functional integral equations play a vital role in distinct disciplines, as well as in the
analysis of many real-life problems, and can be modeled by utilizing fractional operators
very efficiently to describe a range of phenomena, including media with non-integer
mass dimensions, seepage flow in porous media, the fractal structure of matter and non-
linear oscillations of earthquakes. Non-linear fractional integral equations are of practical
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importance in distinct areas of modeling, including fluid dynamic traffic models, the theory
of radioactive transmission, the theory of statistical mechanics, cytotoxic activity, and
acoustic scattering [1–5].

Different real-life situations, which are modeled by the application of fractional integral
equations, can be studied by employing fixed-point theory (FPT) and MNC [6–13]. In recent
years, FPT, first proposed by Stephen Banach, has been widely used in different scientific
fields. FPT has been applied in relation to recrystalization theory, phase-transition theory,
object-oriented analysis, and programming language analysis, together with having several
potential applications in immunology, aerospace, neural networks, and healthcare, among
others. Dhage [14] discussed global attractivity results for non-linear functional integral
equations via a Krasnoselskii-type fixed-point theorem, Aghajani et al. [15] studied fixed-
point theorems for Meir–Keeler condensing operators via a measure of non-compactness,
and Javahernia et al. [16] studied common fixed points in generalized Mizoguchi–Takahashi-
type contractions. Mohammadi et al. [17] also investigated the existence of solutions for
a system of integral equations using a generalization of Darbo’s fixed-point theorem.
Jleli et al. [18] proved some generalizations of Darbo’s theorem and studied applications
to fractional integral equations. FPT can also been used to seek solutions for fractional
functional integral equations. Fractional functional integral equations of various types have
made essential contributions to a wide range of real-world problems. Many problems in
mathematics, science, engineering and astronomy can be explained by utilizing particular
types of fractional integral equations. For examples, please see [19–25].

Recently, several research articles have been published in connection with applications
of FPT.

In 2020, Arab et al. [26] discussed the solvability of functional-integral equations
(fractional order) using a measure of non-compactness

u(t) = f (t, u(t)) +
Hu(t)
Γ(γ)

∫ t

0

g,(s)
(g(t)− g(s))1−γ

k(t, s, u(s))ds,

where t ∈ I = [0, 1], γ ∈ (0, 1). Existence results were obtained through the techniques of
MNC and a generalized version of Darbo’s fixed-point theorem by introducing a new µ-
set contraction operator using control functions in Banach spaces.

In 2022, Das et al. [27] investigated the generalization of a Darbo-type theorem and
its application to the existence of implicit fractional integral equations in tempered se-
quence spaces

zn(ς) = Kn

(
ς, z(ς),

∫ ς

a

g,(w)Hn(ς, w, z(w))

(g(ς)− g(w))1−α
dw
)

,

where α ∈ (0, 1), ς ∈ I = [a, T], T > 0, a ≥ 0, z(ς) = (zn(ς))∞
n=1 ∈ E and E is a Banach

sequence space. Existence results were obtained through the techniques of MNC and
Darbo’s fixedpoint theorem in tempered sequence space `α

p.
In 2022, Mohiuddine et al. [28] established the existence of solutions for non-linear

integral equations in tempered sequence spaces via a generalized Darbo-type theorem

Ωn(ξ) = Fn

(
ξ, Ω(ξ),

∫ ξ

0
Gn(ξ, s, Ω(s))ds

)
,

for n ∈ N, where Ω(ξ) = (Ωn(ξ))∞
n=1, ξ ∈ I = [0, a], a > 0. To realize the existence of the

solutions of the integral equations, the authors used the concept of MNC and Darbo-type
fixed point in tempered sequence space C([I, `α

p]).
In 2022, Das et al. [29] investigated the iterative algorithm and theoretical treatment of

the existence of a solution for (k, z)-Riemann—Liouville fractional integral equations

Ψ(h) = Θ
(
h,G(h, Ψ(h)), z

kJ
α f (h)

)
,
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for z ∈ IR+\ {−1} , 1 > k > 0, α > 0, h ∈ I = [1, T]. To realize the existence of the solution
of those integral equations, the authors used the concept of MNC and Darbo’s fixed-point
theorem in the Banach space C([1, T]). They also discussed an iterative algorithm which
was constructed by a homotopy perturbation method to find the approximate solution.

In the present paper, we present the (κ, φ)-type generalized proportional Riemann–
Liouville fractional integral operator φ

κI
℘,υ
a , where υ ∈ (0, 1], φ ∈ IR+\ {−1} and a, ℘, κ >

0, for a continuous function Ψ($) is given by

(
φ
κI

℘,υ
a Ψ)($) =

(φ + 1)1− ℘
κ

υ
℘
κ κΓκ(℘)

∫ $

a
exp

[
(υ− 1)($φ+1 − ςφ+1)

υ

]
($φ+1 − ςφ+1)

℘
κ −1ςφΨ(ς)dς.

In addition, we present the Erdélyi–Kober fractional integral operator Îα
ζ,a, where

ζ > 0, a > 0, and 0 < α < 1, for a continuous function Ψ($) is given by

(Îα
ζ,aΨ)($) =

ζ

Γ(α)

∫ $

a

ςζ−1Ψ(ς)

($ζ − ςζ)1−α
dς.

The study of biological population dynamics can be analyzed using different types of
fractional operators which have been defined and can be categorized into broad classes
according to their properties and behaviors. In our study, we establish an important
connection between (κ, φ)-type generalized proportional Riemann–Liouville and Erdélyi–
Kober fractional operators, writing one in terms of the other by making use of the theory of
fractional calculus with respect to the same function on the Banach space C([1, T]).

Moreover, in terms of application, the main goal of this paper is to study the non-linear
fractional order biological population model including the determination of the surge in
the birthrate Ψ($) at any time $ to allow for future necessary planning. The dependence
of the birthrate Ψ($) on previous birthrates Ψ($η − ςη), for women in the child-bearing
age range 1 < ς < T, η > 1, is given by the mixed type integral equation associated with
generalized proportional (κ, φ)-Riemann–Liouville along with Erdélyi–Kober fractional
operators as follows:

Ψ($) = g($) + f($, q($, Ψ($)), (φ
κI

℘,υ
1 Ψ)($)) + F($, h($, Ψ($)), (Îα

ζ,1Ψ)($)), (1)

where Ψ(ς) is the probability that the female lives to age ς. g($), q($, Ψ($)), and h($, Ψ($))
are the terms added to allow for girls already born before the oldest child-bearing women
of age (ς = T) were born. F and f are the survival functions, which are the fraction of the
number of people that survive to age $. Further, υ ∈ (0, 1], ℘ > 1, κ > 0, φ ∈ IR+\ {−1},
ζ > 0, 0 < α < 1 and $ ∈ I = [1, T].

This model was studied by Gurtin and MacCamy in [30] and numerous authors have
conducted in-depth research on it. In [31], Metz and Diekmann gave a detailed account of
the use of mathematical models for physiologically structured populations. In [32], Cushing
provides a broad survey of the literature in the area of delay in population dynamics. For a
deep evaluation of age-dependent population dynamics, one can refer to [33–42].

We discuss below the motivation for studying Equation (1) as well as the nature of our
findings. In this paper, we sought to extend the theory of fractional calculus methods by
considering fractional integral equations in relation to the modeling of biological population
dynamics. Secondly, we sought to review relevant work in this area. Thirdly, we consider that
the proposed fixed-point theorem has the advantage of relaxing the constraint of the domain
of compactness, which is necessary for several fixed-point theorems. Our findings generalize,
extend, and complement previously published findings.

The paper is organized as follows: Section 2 presents the preliminary concepts con-
cerning fractional calculus, MNC, and FPT that are pertinent to our study. In Section 3, we
focus on the solvability of Equation (1). In Section 4, we present two examples to illustrate
the applicability of our findings. in Section 5, our conclusions are presented.
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2. Preliminaries

In this section, we provide notations, definitions, and additional information to
support discussion of our principal findings.

Suppose that E is a Banach space with the norm ‖.‖E. The symbol B[θ, v0] represents
the closed ball centered at θ together with radius v0 in E. The symbols Ω̄, Conv Ω represent
the closure and convex hull of a subset Ω of E, respectively. Denote by IR the set of all real
numbers and IR+ = [0, ∞). Denote by N∗ the set of all natural numbers without zero and
∅ represents the empty set. Further, assume that ME indicates the family of all non-empty
and bounded subsets of E, and NE indicates its subfamily of all relatively compact subsets.

Suppose that E = C(I) is the space of real-valued continuous maps defined on I,
wherein I = [1, T]. Then, E is a Banach space together with the norm:

‖z‖ = sup{|z($)| : $ ∈ I}, for some z ∈ E.

Definition 1 ([43]). A function χ : ME → IR+ is called an MNC in E if it fulfils the following con-
ditions:

(i) Ω ∈ ME and χ(Ω) = 0 provides Ω is precompact;
(ii) ker Ø = {Ω ∈ ME : χ(Ω) = 0} is non-void and ker Ø ⊂ NE;
(iii) Ω ⊆ Ω1 ⇒ χ(Ω) ≤ χ(Ω1);
(iv) χ(Ω̄) = χ(Ω);
(v) χ(Conv Ω) = χ(Ω);
(vi) χ(ρΩ+ (1− ρ)Ω1) ≤ ρχ(Ω) + (1− ρ)χ(Ω1), ∀ 0 ≤ ρ ≤ 1;
(vii) if Ωm ∈ ME, χ(Ω) = χ(Ω̄), Ωm+1 ⊂ Ωm, where m = 1, 2, ... and that lim

m→+∞
χ(Ωn) = 0. Then,

we can write Ω∞ =
⋂+∞

m=1 Xm 6= ∅.

Remark 1. The family ker Ø is called the kernel of MNC χ. Further, Ω∞ ∈ kerχ and χ(Ω∞) ≤
χ(Ωm) for m = 1, 2, 3, ..., we can find χ(Ω∞) = 0. This implies that Ω∞ ∈ ker Ø.

Theorem 1 ([44], DFPT). Suppose that χ is an MNC, E is a Banach space, and Q ⊆ E is non-empty,
bounded, closed, and convex. In addition, consider U : Q→ Q be a continuous map. If there is

χ(US) ≤ kχ(S), S ⊆ Q,

for a constant k ∈ [0, 1). Then, U has a fixed point in the set Q.

Definition 2 ([45–47]). The Riemann–Liouville fractional integral of order α > 0, for a continuous
map f on [a, b], is defined by

Iα
a f (r) =

1
Γ(α)

r∫
a

f (s)(r− s)α−1ds, a < r ≤ b,

wherein Γ(.) is the Euler gamma function. The Riemann–Liouville integral is motivated by the
well-known Cauchy formula:

r∫
a

ds1

s1∫
a

ds2...

sn−1∫
a

f (sn)dsn =
1

(n− 1)!

r∫
a

f (s)(r− s)n−1ds, n ∈ N∗.

Definition 3. The Erdélyi–Kober operator is a fractional integral [48] operator proposed by Arthur
Erdélyi (1940) and Hermann Kober (1940). The Erdélyi–Kober fractional integral operator Iν,α

ζ,a , where
ζ > 0, α > 0, a > 0, and ν ∈ R, for a sufficiently well-behaved continuous function f (ω) is defined by

Iν,α
ζ,a f (ω) =

ζ

Γ(α)
ω−ζ(α+ν)

ω∫
a

sζ(ν+1)−1 f (s)
(ωζ − sζ)1−α

ds.
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Definition 4. The κ-gamma function is a generalization of the classical gamma function introduced
by Diaz and Pariguan [49], denoted and defined as:

Γκ(℘) = lim
n→∞

n!κn(nκ)
℘
κ −1

(℘)n,κ
, κ > 0, ℘ > 0,

where the notation (℘)n,κ is the Pochhammer’s κ-symbol [50] for factorial function. The integral
form of the κ-gamma function is denoted and defined as [51]

Γκ(℘) =
∫ ∞

0
e−

sκ

κ s℘−1ds, κ > 0, ℘ > 0.

Further, the Riemann–Liouville κ-fractional integral of the function f of order α > 0,
as introduced by Mubeen and Habibullah [52], is denoted and defined as

κ Iα
0 f (r) =

1
κΓκ(℘)

r∫
0

f (s)(r− s)
α
κ−1ds, κ > 0, r > 0.

Definition 5. Suppose that W( 6= ∅) ⊆ C(I) is bounded. Then, the modulus of continuity of z,
where z ∈ W, and ε > 0 is stated as follows:

w(z, ε) = sup{|z($2)− z($1)| : $1, $2 ∈ I; |$2 − $1| ≤ ε},

together with
w(W, ε) = sup{w(z, ε) : z ∈ W},

w0(W) = limε→0 w(W, ε),

where the map w0(W) is a regular MNC in C(I). There also exists a Hausdorff MNC χ, which is
governed by χ(W) = 1

2w0(W) (see [43]).

3. New Results

This section mainly concentrates on the solvability of the Equation (1) in the Banach
space C(I).

Let Bv0 = {Ψ ∈ E : ‖Ψ‖ ≤ v0}. We consider the following essential hypotheses for
proving our main theorem as follows:

H1. The function g : I → IR is continuous and bounded with a1 = sup$∈I |g($)|.

H2. The functions f : I× IR2 → IR , q : I× IR→ IR are continuous, such that there exist constants
a2, a3, a4 ≥ 0 such that

|f($, q, I1)− f($, q̄, Ī1)| ≤ a2|q− q̄|+ a3|I1 − Ī1|, for q, q̄, I1, Ī1 ∈ IR and $ ∈ I.

Further, |q($, P1)− q($, P2)| ≤ a4|P1 − P2|, P1, P2 ∈ IR.

H3. The functions F : I × IR2 → IR, h : I × IR→ IR are continuous, such that there exist constants
a5, a6, a7 ≥ 0 satisfying

|F($, h, Î1)− F($, h̄, ¯̂I1)| ≤ a5(|h− h̄|) + a6|Î1 − ¯̂I1|,

for $ ∈ I and h, Î1, h̄, ¯̂I1 ∈ IR.
Further, |h($, Q1)− h($, Q2)| ≤ a7|Q1 − Q2|, Q1, Q2 ∈ IR.

H4. There exists v0 ∈ IR+ satisfying

sup{|g($) + f($, q, I1) + F($, h, Î1)| : $ ∈ I, q ∈ [−q′, q′], I1 ∈ [−I1′, I1′], h ∈ [−h′, h′],
Î1 ∈ [−Î1

′, Î1
′]} ≤ v0,
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where
q′ = sup{|q($, Ψ($))| : $ ∈ I, Ψ($) ∈ [−v0, v0]},
I1
′ = sup{(φ

κI
℘,υ
1 Ψ)($)| : $ ∈ I, Ψ($) ∈ [−v0, v0]},

h′ = sup{|h($, Ψ($))| : $ ∈ I, Ψ($) ∈ [−v0, v0]},
and Î1

′ = sup{(Îα
ζ,1Ψ)($)| : $ ∈ I, Ψ($) ∈ [−v0, v0]}.

Further, a2a4 + a5a7 < 1.

H5. There exists a positive solution v0 ∈ IR+ such that

a1 + (a2a4 + a5a7)v0 + a3

v0 exp

[
(υ−1)(Tφ+1)

υ

]
(φ+1)−

℘
κ

℘υ
℘
κ κ

℘
κ −1Γ( ℘κ )

(Tφ+1 − 1)
℘
κ + a6

v0
Γ(α+1)T

ζα

≤ v0.

Remark 2. As a consequence of the hypotheses (H2) and (H3), we find

|q($, 0)| = 0,
|f($, 0, 0)| = 0,
|h($, 0)| = 0,

and |F($, 0, 0)| = 0.

Theorem 2. Under the assumptions (H1)–(H5) with Remark 2, we are enabled to assert that
Equation (1) possesses a solution in C(I).

Proof. Let U : Bv0 → E be an operator stated as follows:

(UΨ)($) = g($) + f($, q($, Ψ($)), (φ
κI

℘,υ
1 Ψ)($)) + F($, h($, Ψ($)), (Îα

ζ,1Ψ)($)).

Step 1: We show that U maps Bv0 into Bv0 . Let us assert that U ∈ Bv0 , we estimate

|(UΨ)($)| = |g($) + f($, q($, Ψ($)), (φ
κI

℘,υ
1 Ψ)($)) + F($, h($, Ψ($)), (Îα

ζ,1Ψ)($))|
≤ |g($)|+ |f($, q($, Ψ($)), (φ

κI
℘,υ
1 Ψ)($))− f($, 0, 0)|+ |f($, 0, 0)|

+|F($, h($, Ψ($)), (Îα
ζ,1Ψ)($))− F($, 0, 0)|+ |F($, 0, 0)|

≤ a1 + a2|q($, Ψ($))|+ a3|(φ
κI

℘,υ
1 Ψ)($)|+ |f($, 0, 0)|+ a5|h($, Ψ($))|

+a6|(Îα
ζ,1Ψ)($)|+ |F($, 0, 0)|

≤ a1 + a2|q($, Ψ($))− q($, 0)|+ |q($, 0)|+ a3|(φ
κI

℘,υ
1 Ψ)($)|

+a5|h($, Ψ($))− h($, 0)|+ |h($, 0)|+ a6|(Îα
ζ,1Ψ)($)|

≤ a1 + a2a4|Ψ($)|+ a3|(φ
κI

℘,υ
1 Ψ)($)|+ a5a7|Ψ($)|

+a6|(Îα
ζ,1Ψ)($)|,

wherein

|(φ
κI

℘,υ
1 Ψ)($)|

=

∣∣∣∣ (φ+1)1− ℘
κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $
1 exp

[
(υ−1)($φ+1−ςφ+1)

υ

]
($φ+1 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

∣∣∣∣
≤ (φ+1)1− ℘

κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∣∣∣∣ ∫ $
1 exp

[
(υ−1)($φ+1−ςφ+1)

υ

]
($φ+1 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

∣∣∣∣
≤

v0 exp

[
(υ−1)(Tφ+1)

υ

]
(φ+1)1− ℘

κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $
1 ($

φ+1 − ςφ+1)
℘
κ −1ςφdς

≤
v0 exp

[
(υ−1)(Tφ+1)

υ

]
(φ+1)−

℘
κ

℘υ
℘
κ κ

℘
κ −1Γ( ℘κ )

(Tφ+1 − 1)
℘
κ ,
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and

|(Îα
ζ,1Ψ)($)| =

∣∣∣∣ ζ
Γ(α)

∫ $
1

ςζ−1Ψ(ς)
($ζ−ςζ )1−α dς

∣∣∣∣
≤ ζ

Γ(α)

∫ $
1

ςζ−1|Ψ(ς)|
($ζ−ςζ )1−α dς

< v0ζ
Γ(α)

∫ $
1

ςζ−1

($ζ−ςζ )1−α dς

< v0
Γ(α+1)T

ζα.

Thus, if ‖Ψ‖ < v0, then

‖(UΨ)‖

< a1 + (a2a4 + a5a7)v0 + a3

v0 exp

[
(υ−1)(Tφ+1)

υ

]
(φ+1)−

℘
κ

℘υ
℘
κ κ

℘
κ −1Γ( ℘κ )

(Tφ+1 − 1)
℘
κ

+a6
v0

Γ(α+1)T
ζα.

Finally, from the hypothesis H5, we infer that ‖(UΨ)‖ < v0, i.e., U maps Bv0 into it-
self.

Step 2: We show that U is continuous in Bv0 . To do this, suppose that ε > 0, together with
Ψ, Ψ̄ ∈ Bv0 such that ‖Ψ− Ψ̄‖ < ε, we estimate

|(UΨ)($)− (UΨ̄)($)|
≤ |g($) + f($, q($, Ψ($)), (φ

κI
℘,υ
1 Ψ)($)) + F($, h($, Ψ($)), (Îα

ζ,1Ψ)($))

−g($) + f($, q($, Ψ̄($)), (φ
κI

℘,υ
1 Ψ̄)($)) + F($, h($, Ψ̄($)), (Îα

ζ,1Ψ̄)($))|

≤ a2|q($, Ψ($))− q($, , Ψ̄($))|+ a5|h($, Ψ($))− h($, Ψ̄($))|
+a3|(φ

κI
℘,υ
1 Ψ)($)− (

φ
κI

℘,υ
1 Ψ̄)($)|+ a6|(Îα

ζ,1Ψ)($))− (Îα
ζ,1Ψ̄($))|

≤ a2a4|Ψ($)− Ψ̄($)|+ a5a7|Ψ($)− Ψ̄($)|+ a3|(φ
κI

℘,υ
1 Ψ)($)− (

φ
κI

℘,υ
1 Ψ̄)($)|

+a6|(Îα
ζ,1Ψ)($))− (Îα

ζ,1Ψ̄($))|,

wherein

|(φ
κI

℘,υ
1 Ψ)($)− (

φ
κI

℘,υ
1 Ψ̄)($)|

=

∣∣∣∣ (φ+1)1− ℘
κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $
1 exp

[
(υ−1)($φ+1−ςφ+1)

υ

]
($φ+1 − ςφ+1)

℘
κ −1ςφ

(Ψ(ς)− Ψ̄(ς))dς

∣∣∣∣
≤ (φ+1)1− ℘

κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∣∣∣∣ ∫ $
1 exp

[
(υ−1)($φ+1−ςφ+1)

υ

]
($φ+1 − ςφ+1)

℘
κ −1ςφ

(Ψ(ς)− Ψ̄(ς))dς

∣∣∣∣
<

ε exp

[
(υ−1)(Tφ+1)

υ

]
(φ+1)−

℘
κ

℘υ
℘
κ κ

℘
κ −1Γ( ℘κ )

(Tφ+1 − 1)
℘
κ ,

and

|(Îα
ζ,1Ψ)($))− (Îα

ζ,1Ψ̄($))| =

∣∣∣∣ ζ
Γ(α)

∫ $
1

ςζ−1(Ψ(ς)−Ψ̄(ς))
($ζ−ςζ )1−α dς

∣∣∣∣
≤ ζ

Γ(α)

∫ $
1

ςζ−1|Ψ(ς)−Ψ̄(ς)|
($ζ−ςζ )1−α dς

< ζε
Γ(α)

∫ $
1

ςζ−1

($ζ−ςζ )1−α dς

< ε
Γ(α+1)T

ζα.
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Thus, if ‖Ψ− Ψ̄‖ < ε, then

‖(UΨ)($)− (UΨ̄)($)‖

< a2a4ε + a5a7ε + a3

ε exp

[
(υ−1)(Tφ+1)

υ

]
(φ+1)−

℘
κ

℘υ
℘
κ κ

℘
κ −1Γ( ℘κ )

(Tφ+1 − 1)
℘
κ + a6

ε
Γ(α+1)T

ζα.

Now, we obtain
‖(UΨ)($)− (UΨ̄)($)‖ → 0, as ε→ 0.

This implies that U : Bv0 → Bv0 is continuous.
Step 3: We prove that an estimate of U with respect to w0.

To do this, suppose a fixed, arbitrary, ε > 0, and W are a non-empty subset of Bv0 .
Further, we take Ψ ∈ W and $1, $2 ∈ I = [1, T] together with $1 ≤ $2 so that |$2 −
$1| ≤ ε. Then, we estimate

|(UΨ)($2)− (UΨ)($1)|
= |g($2) + f($2, q($2, Ψ($2)), (

φ
κI

℘,υ
1 Ψ)($2)) + F($2, h($2, Ψ($2)), (Îα

ζ,1Ψ)($2))

−g($1) + f($1, q($1, Ψ($1)), (
φ
κI

℘,υ
1 Ψ)($1)) + F($1, h($1, Ψ($1)), (Îα

ζ,1Ψ)($1))|
≤ |g($2)− g($1)|
+|f($2, q($2, Ψ($2)), (

φ
κI

℘,υ
1 Ψ)($2))− f($1, q($1, Ψ($1)), (

φ
κI

℘,υ
1 Ψ)($1))|

+|F($2, h($2, Ψ($2)), (Îα
ζ,1Ψ)($2))− F($1, h($1, Ψ($1)), (Îα

ζ,1Ψ)($1))|
≤ |g($2)− g($1)|
+|f($2, q($2, Ψ($2)), (

φ
κI

℘,υ
1 Ψ)($2))− f($2, q($2, Ψ($2)), (

φ
κI

℘,υ
1 Ψ)($1))|

+|f($2, q($2, Ψ($2)), (
φ
κI

℘,υ
1 Ψ)($1))− f($2, q($1, Ψ($1)), (

φ
κI

℘,υ
1 Ψ)($1))|

+|f($2, q($1, Ψ($1)), (
φ
κI

℘,υ
1 Ψ)($1))− f($1, q($1, Ψ($1)), (

φ
κI

℘,υ
1 Ψ)($1))|

+|F($2, h($2, Ψ($2)), (Îα
ζ,1Ψ)($2))− F($2, h($2, Ψ($2)), (Îα

ζ,1Ψ)($1))|
+|F($2, h($2, Ψ($2)), (Îα

ζ,1Ψ)($1))− F($2, h($1, Ψ($1)), (Îα
ζ,1Ψ)($1))|

+|F($2, h($1, Ψ($1)), (Îα
ζ,1Ψ)($1))− F($1, h($1, Ψ($1)), (Îα

ζ,1Ψ)($1))|
≤ w(g, ε) + a3|(φ

κI
℘,υ
1 Ψ)($2)− (

φ
κI

℘,υ
1 Ψ)($1)|+ a2|q($2, Ψ($2))− q($1, Ψ($1))|

+wf(I, ε) + a6|(Îα
ζ,1Ψ)($2))− (Îα

ζ,1Ψ)($1))|+ a5|h($2, Ψ($2))− h($1, Ψ($1))|
+wF(I, ε)

≤ w(g, ε) + a3|(φ
κI

℘,υ
1 Ψ)($2)− (

φ
κI

℘,υ
1 Ψ)($1)|+ a2|q($2, Ψ($2))− q($2, Ψ($1))|

+|q($2, Ψ($1))− q($1, Ψ($1))|+ wf(I, ε)
+a6|(Îα

ζ,1Ψ)($2))− (Îα
ζ,1Ψ)($1))|+ a5|h($2, Ψ($2))− h($2, Ψ($1))|

+|h($2, Ψ($1))− h($1, Ψ($1))|+ wF(I, ε)
≤ w(g, ε) + a2a4|(Ψ($2)−Ψ($1))|+ a2wq(I, ε) + wf(I, ε)

+a3|(φ
κI

℘,υ
1 Ψ)($2)− (

φ
κI

℘,υ
1 Ψ)($1)|+ a6|(Îα

ζ,1Ψ)($2))− (Îα
ζ,1Ψ)($1))|

+a5a7|Ψ($2))−Ψ($1))|+ a5wh(I, ε) + wF(I, ε),

wherein

wF(I, ε) = sup{|F($2, h, J1)− F($1, h, J1)| : $1, $2 ∈ I; |$2 − $1| ≤ ε},
wq(I, ε) = sup{|q($2, Ψ)− q($1, Ψ)| : $1, $2 ∈ I; |$2 − $1| ≤ ε},
wh(I, ε) = sup{|h($2, Ψ)− h($1, Ψ)| : $1, $2 ∈ I; |$2 − $1| ≤ ε},
wf(I, ε) = sup{|f($2, q, I1)− f($1, q, I1)| : $1, $2 ∈ I; |$2 − $1| ≤ ε},
w(g, ε) = sup{|g($2)− g($1)| : $1, $2 ∈ I; |$2 − $1| ≤ ε}.
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Also

|(φ
κI

℘,υ
1 Ψ)($2)− (

φ
κI

℘,υ
1 Ψ)($1)|

=

∣∣∣∣ (φ+1)1− ℘
κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $2
1 exp

[
(υ−1)($φ+1

2 −ςφ+1)
υ

]
($

φ+1
2 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

− (φ+1)1− ℘
κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $1
1 exp

[
(υ−1)($φ+1

1 −ςφ+1)
υ

]
($

φ+1
1 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

∣∣∣∣
= (φ+1)1− ℘

κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∣∣∣∣ ∫ $2
1 exp

[
(υ−1)($φ+1

2 −ςφ+1)
υ

]
($

φ+1
2 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

−
∫ $1

1 exp
[
(υ−1)($φ+1

2 −ςφ+1)
υ

]
($

φ+1
2 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

∣∣∣∣
+ (φ+1)1− ℘

κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∣∣∣∣ ∫ $1
1 exp

[
(υ−1)($φ+1

2 −ςφ+1)
υ

]
($

φ+1
2 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

−
∫ $1

1 exp
[
(υ−1)($φ+1

1 −ςφ+1)
υ

]
($

φ+1
1 − ςφ+1)

℘
κ −1ςφΨ(ς)dς

∣∣∣∣
≤ (φ+1)1− ℘

κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $2
$1

exp
[
(υ−1)($φ+1

2 −ςφ+1)
υ

]
($

φ+1
2 − ςφ+1)

℘
κ −1ςφ|Ψ(ς)|dς

+ (φ+1)1− ℘
κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $1
1

∣∣∣∣( exp
[
(υ−1)($φ+1

2 −ςφ+1)
υ

]
($

φ+1
2 − ςφ+1)

℘
κ −1

− exp
[
(υ−1)($φ+1

1 −ςφ+1)
υ

]
($

φ+1
1 − ςφ+1)

℘
κ −1
)

ςφΨ(ς)

∣∣∣∣dς

≤
exp

[
(υ−1)(Tφ+1)

υ

]
(φ+1)−

℘
κ

℘υ
℘
κ κ

℘
κ −1Γ( ℘κ )

(Tφ+1 − 1)
℘
κ ‖Ψ‖

+‖Ψ‖ (φ+1)1− ℘
κ

υ
℘
κ κ

℘
κ Γ( ℘κ )

∫ $1
1

∣∣∣∣( exp
[
(υ−1)($φ+1

2 −ςφ+1)
υ

]
($

φ+1
2 − ςφ+1)

℘
κ −1

− exp
[
(υ−1)($φ+1

1 −ςφ+1)
υ

]
($

φ+1
1 − ςφ+1)

℘
κ −1
)

ςφ

∣∣∣∣dς,

and

|(Îα
ζ,1Ψ)($2)− (Îα

ζ,1Ψ)($1)|

=

∣∣∣∣ ζ
Γ(α)

∫ $2
1

ςζ−1Ψ(ς)

($
ζ
2−ςζ )1−α

dς− ζ
Γ(α)

∫ $1
1

ςζ−1Ψ(ς)

($
ζ
1−ςζ )1−α

dς

∣∣∣∣
≤ ζ

Γ(α)

∣∣∣∣ ∫ $2
1

ςζ−1Ψ(ς)

($
ζ
2−ςζ )1−α

dς−
∫ $1

1
ςζ−1Ψ(ς)

($
ζ
2−ςζ )1−α

dς

∣∣∣∣
+ ζ

Γ(α)

∣∣∣∣ ∫ $1
1

ςζ−1Ψ(ς)

($
ζ
2−ςζ )1−α

dς−
∫ $1

1
ςζ−1Ψ(ς)

($
ζ
1−ςζ )1−α

dς

∣∣∣∣
≤ ζ

Γ(α)

∫ $2
$1

ςζ−1|Ψ(ς)|
($

ζ
2−ςζ )1−α

dς + ζ
Γ(α)

∫ $1
1

(
ςζ−1

($
ζ
2−ςζ )1−α

− ςζ−1

($
ζ
1−ςζ )1−α

)
|Ψ(ς)|dς

≤ ‖Ψ‖
Γ(α+1)

[
2($ζ

2 − $
ζ
1)

α − ($ζ
2 − 1)α + ($ζ

1 − 1)α

]
.

Thus, if |$2 − $1| ≤ ε, and ε→ 0, we get

$2 → $1,

|(φ
κI

℘,υ
1 Ψ)($2)− (

φ
κI

℘,υ
1 Ψ)($1)| → 0,

and
|(Îα

ζ,1Ψ)($2)− (Îα
ζ,1Ψ)($1)| → 0.
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Hence

|(UΨ)($2)− (UΨ)($1)|
≤ w(g, ε) + a2a4w(Ψ, ε) + a2wq(I, ε) + wf(I, ε)

+a3|(φ
κI

℘,υ
1 Ψ)($2)− (

φ
κI

℘,υ
1 Ψ)($1)|+ a6|(Îα

ζ,1Ψ)($2))− (Îα
ζ,1Ψ)($1))|

+a5a7w(Ψ, ε) + a5wh(I, ε) + wF(I, ε),
i.e., w(UΨ, ε)

≤ w(g, ε) + (a5a7 + a2a4)w(Ψ, ε) + a2wq(I, ε) + wf(I, ε)

+a3|(φ
κI

℘,υ
1 Ψ)($2)− (

φ
κI

℘,υ
1 Ψ)($1)|+ a6|(Îα

ζ,1Ψ)($2))− (Îα
ζ,1Ψ)($1))|

+a5wh(I, ε) + wF(I, ε).

By utilizing the uniform continuity of the functions g, q, f, h, and F on I, I ×
[−v0, v0], I × [−q′, q′] × [−I1′, I1′], I × [−v0, v0], and I × [−h′, h′] × [−Î1

′, Î1
′],

respectively, we obtain w(g, ε) → 0, wf(I, ε) → 0, wq(I, ε) → 0, wh(I, ε) →
0, and wF(I, ε)→ 0, when ε→ 0.
Thus, taking supΨ∈W and ε→ 0, we findw0(UW) ≤ (a2a4 + a5a7)w0(W).
Hence, by utilizing DFPT, we can say that U possesses a fixed point in W ⊆ Bv0 .
Consequently, the functional integral Equation (1) possesses a solution in C(I).

Now, we will study some applications to verify the efficiency of our findings that
arise in modeling biological populations.

4. Applications

Example 1. Let us consider that the fractional order model emerges in the form of mixed-type
non-linear functional integral equations given as follows:

Ψ($) =
$e−

$2
2

6
+

$2 arctan Ψ($)

4 + 5$2 +
sin Ψ($)

1 + $2 +
(

1
3
1
3
I

3, 1
3

1 Ψ)($)

243
+

(Î
1
7
1
5 ,1

Ψ)($)

35
, (2)

wherein Ψ($) denotes the surge in the birthrate at any time $, $ ∈ [1, 2] = I.
Comparing Equation (2) with Equation(1), we get

g($) = $e−
$2
2

6 ,

f($, q, I1) = q($, Ψ) + I1
243 ,

q($, Ψ) = $2 arctan Ψ($)
4+5$2 ,

(
1
3
1
3
I

3, 1
3

1 Ψ)($)) = 320

48Γ(9)

∫ $
1 exp[−2($

4
3 − ς

4
3 )]($

4
3 − ς

4
3 )8ς

1
3 Ψ(ς)dς,

(Î
1
7
1
5 ,1

Ψ)($) = 1
5Γ( 1

7 )

∫ $
1

ς
−4
5

($
1
7−ς

1
7 )

6
7

Ψ(ς)dς,

F($, h, Î1) = h($, Ψ) + Î1
35 ,

and h($, Ψ) = sin Ψ($)
1+$2 ,



Fractal Fract. 2022, 6, 744 11 of 15

wherein Ψ(ς) denotes the probability that the female lives to age ς. g($), q($, Ψ), and h($, Ψ)
denote the terms added to allow for girls already born before the oldest child-bearing women of age
(ς = 2) were born. F and f denote the survival functions, which are the fraction of the number of
people that survive to age $.

It is clear that the functions g, f, q, F, and h are continuous satisfying

|f($, q, I1)− f($, h̄, Ī1)| ≤ |q− q̄|+ 1
243 |I1 − Ī1|,

|q($, P1)− q($, P2)| ≤ |P1−P2|6 ,
|F($, h, Î1)− F($, h̄, ¯̂I1)| ≤ |h− h̄|+ 1

35 |Î1 − ¯̂I1|,
and |h($, Q1)− h($, Q2)| ≤ |Q1−Q2|2 ,

Hence, a1 = 0.1010, a2 = 1, a3 = 1
243 , a4 = 1

6 , a5 = 1, a6 = 1
35 , a7 = 1

2 , and a2a4 +

a5a7 = 2
3 < 1.

If ‖Ψ‖ ≤ v0, then

q′ =
v0

6
, h′ =

v0

2
, I1′ =

v0 exp(−2(2
4
3 ))325(2

4
3 − 1)9

49Γ(9)
, Î1 =

7v0(2
1
5 − 1)

1
7

Γ( 1
7 )

.

Further, the inequality arising in assumption (H4) becomes

0.1010 +
2
3
v0 +

v0 exp(−2(2
4
3 ))320(2

4
3 − 1)9

49Γ(9)
+

v0(2
1
5 − 1)

1
7

5Γ( 1
7 )

≤ v0.

If we choose v0 = 3, we get

q′ =
1
2

, h′ =
3
2

, I1′ =
exp(−2(2

4
3 ))326(2

4
3 − 1)9

49Γ(9)
, Î′1 =

21(2
1
5 − 1)

1
7

Γ( 1
7 )

.

Furthermore, the inequality arising in assumption H5 becomes

0.1010 + 2 +
exp(−2(2

4
3 ))321(2

4
3 − 1)9

49Γ(9)
+

3(2
1
5 − 1)

1
7

5Γ( 1
7 )

< 3.

Thus, all the assumptions from (H1)–(H5) with Remark 2 are satisfied. Hence, based on
Theorem 2, we may conclude that Equation (1) has a solution in C(I).

Example 2. In the second example, we consider the following fractional order model emerges in the
form of mixed-type non-linear functional integral equations:

Ψ($) =
e−$

1 + $
+

e−($−1)2
Ψ($)

5
+

Ψ($)

3 + $2 +
(

1
9
2
9
I

3
2 , 2

3
1 Ψ)($)

36 +
(Î

2
9
1
9 ,1

Ψ)($)

34 , (3)

wherein Ψ($) denotes the surge in the birthrate at any time $, $ ∈ [1, 2] = I.
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Comparing Equation (3) with Equation (1), we get

g($) = e−$

1+$ ,

f($, q, I1) = q($, Ψ) + I1
36 ,

q($, Ψ) = e−($−1)2 Ψ($)
5 ,

(
1
9
2
9
I

3
2 , 2

3
1 Ψ)($) = 331.75

55.75219.25Γ(6.75)

∫ $
1 exp[−0.5($

10
9 − ς

10
9 )]($

10
9 − ς

10
9 )5.75ς

1
9 Ψ(ς)dς,

(Î
2
9
1
9 ,1

Ψ)($) = 1
9Γ( 2

9 )

∫ $
1

ς
−8
9

($
1
9−ς

1
9 )

7
9

Ψ(ς)dς,

F($, h, Î1) = h($, Ψ) + Î1
34 ,

and h($, Ψ) = Ψ($)
3+$2 ,

wherein Ψ(ς) denotes the probability that the female lives to age ς. g($), q($, Ψ), and h($, Ψ)
denote the terms added to allow for girls already born before the oldest child-bearing women of age
(ς = 2) were born. F and f denote the survival functions, which are the fraction of the number of
people that survive to age $.

Herein, it is clear that the functions g, f, q, F, and h are continuous satisfying

|f($, q, I1)− f($, h̄, Ī1)| ≤ |q− q̄|+ 1
36 |I1 − Ī1|,

|q($, P1)− q($, P2)| ≤ |P1−P2|5 ,

|F($, h, Î1)− F($, h̄, ¯̂I1)| ≤ |h− h̄|+ 1
34 |Î1 − ¯̂I1|,

and |h($, Q1)− h($, Q2)| ≤ |Q1−Q2|4 .

Hence, a1 = 0.1839, a2 = 1, a3 = 1
36 , a4 = 1

5 , a5 = 1, a6 = 1
34 , a7 = 1

4 , and a2a4 +
a5a7 = 0.45 < 1.

If ‖Ψ‖ ≤ v0, then

q′ = v0
5 , h′ = v0

4 , I1′ =
v0 exp(−0.5(2

10
9 ))38.75(2

10
9 −1)6.75

56.7527.75Γ(6.75) , Î′1 = 4.5v0(2
1
9−1)

2
9

Γ( 2
9 )

.

Further, the inequality arising in assumption (H4) becomes

0.1839 + 0.45v0 +
v0 exp(−0.5(2

10
9 ))32.75(2

10
9 − 1)6.75

56.7527.75Γ(6.75)
+

v0(2
1
9 − 1)

2
9

18Γ( 2
9 )

≤ v0.

If we choose v0 = 5.5, we get

q′ =
5.5
5

, h′ =
5.5
4

, I1′ =
5.5 exp(−0.5(2

10
9 ))38.75(2

10
9 − 1)6.75

56.7527.75Γ(6.75)
, Î′1 =

24.75(2
1
9 − 1)

2
9

Γ( 2
9 )

.

Furthermore, the inequality arising in assumption (H5) becomes

0.1839 + 2.475 +
5.5 exp(−0.5(2

10
9 ))32.75(2

10
9 − 1)6.75

56.7527.75Γ(6.75)
+

1.375(2
1
9 − 1)

2
9

6Γ( 2
9 )

< 5.5.
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Thus, all the assumptions from (H1)–(H5) with Remark 2 are satisfied. Hence, based on
Theorem 2, we may conclude that Equation (1) has a solution in C(I).

5. Conclusions

In this paper, we investigated the solvability of mixed-type non-linear functional
integral equations involving the (κ, φ)-type generalized proportional Riemann–Liouville
fractional together with Erdélyi–Kober fractional operators arising in biological populations.
To do this, we employed fractional calculus, DFPT, and Hausdorff MNC in the Banach
space C(I). We also demonstrated the efficiency of our findings with the aid of two relevant
numerical examples. This technique can be utilized for various functional integral equations
involving distinct fractional operators.
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