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Abstract: This paper gives the null controllability for nonlocal stochastic differential inclusion with
the Hilfer fractional derivative and Clarke subdifferential. Sufficient conditions for null controllability
of nonlocal Hilfer fractional stochastic differential inclusion are established by using the fixed-point
approach with the proof that the corresponding linear system is controllable. Finally, the theoretical
results are verified with an example.
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1. Introduction

The controllability of various deterministic and stochastic control systems has been
investigated in many works (see [1-9]). It should be emphasized that there are many
different notions of controllability for fractiona-evolution systems—for example, approxi-
mate controllability, complete controllability, null controllability, and so on. However, most
work on controllability has focused on deterministic models rather than stochastic models.
However, deterministic models often fluctuate due to the presence of environmental noise.
It is reasonable and practical to import stochastic effects into investigations with deter-
ministic models. In recent years, fractional stochastic differential equations and fractional
stochastic inclusions have attracted the attention of many researchers and have become
increasingly popular due to their practical applications in various fields of science and
engineering (see [1-24]). Moreover, Hilfer proposed a generalized Riemann-Liouville
fractional derivative—for brevity, this is called the Hilfer fractional derivative—which
includes the Riemann-Liouville fractional derivative and Caputo fractional derivative
(see [25,26]). Subsequently, a few authors have studied the controllability of fractional
stochastic differential inclusions involving Hilfer fractional derivatives—for example, Yang
and Wang [27] studied the approximate controllability of Hilfer fractional differential in-
clusions with nonlocal conditions. Dineshkumar et al. [28] discussed the approximate
controllability of Sobolev-type Hilfer neutral fractional stochastic differential inclusions.
However, no work has been reported in the literature regarding the null controllability of
nonlocal stochastic differential inclusion with the Hilfer fractional derivative and Clarke
subdifferential. In order to complete this part, in the present work, we analyze the following
system:

DIrU(g) € BU(g) + (g, U(g)) + AX(g)

+0(g, U(c)) “5E +02(c, U(c)), ¢ € T = (0,4], (1)
18700 U (0) + p(u) = U,
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where Dg’f is the Hilfer fractional derivative, 0 < i < 1, % < 0 < 1, and U is the
infinitesimal generator of a compact semigroup {X(¢),¢ > 0} in Hilbert space A, where
supger [IR(6)[| < TL, TI> 1.

In this paper, there exists a separable Hilbert space & with norm || - || and inner
product (-, -)g. Assume that {@(¢) }¢>0 is an 3-valued Wiener process with a finite trace
nuclear covariance operator ® > 0, L(¥, A) is the space of all bounded linear operators
from ¥ into A, and Clarke’s subdifferential of (¢, U(g)) is 92(¢g, U(g)) (see [21]). U(-)
takes values in A, the function of the control is X(-) € L?(T, F) for the Hilbert space of
admissible control functions, where F is a Hilbert space, and A is a bounded linear operator
from FintoA. 7y : T X A — 2N isa non-empty, bounded, closed, convex, and multivalued
map, ¥ : T x A = Le(S,A), and p : C(T, A) — A. In the current paper, the space of all
®-Hilbert-Schmidt operators from ¥ to A is Lo (¥, A).

2. Preliminaries

Definition 1 ([25,26]). The Hilfer fractional derivative of order 0 < X < 1and 0 < ¢ < 1is
defined as

o d (1- _
pEu(e) = 100 4 000y

where

_ 1 s U
I°U = F(Q)/o (g—K)“QdK' ¢>0

and I'(-) is the Gamma function.

Let (Q,Y,{Y }c>0,K) be a complete probability space and let D := C(T,L*(Y, A)) be
a Banach space with norm ||[U||p = supgeTEHg(l’h)(l’Q)U(g)||2)1/2, where L2(Y,A) =
L2(Q, Y, K, A). Let L2,(T, A) be the Hilbert space of all random processes that are Y c-adapted mea-
surable as defined on T with values in A and the norm HUHL%[('E,A) = (f(;7 E|U(g)[|3)? < c.

Definition 2 ([28]). Let J be a Banach space with the dual spaces J* and G : ] — R, which is a
locally Lipschitz functional on J. Clarke’s generalized directional derivative of G at the point € [
in the direction x € J is defined by

G(t+vx) —G(1) .

G%(B;x) = limsup 1/

v—0T 7=
Clarke’s generalized gradient of G at B € J is given by
IG(B) = {B* € G*: G°(B;x) = (B*,x), Vx € I}.

Definition 3 ([26,29]). A Y, stochastic process U € D is a mild solution of (1) if U(0) =
Uy — u(U) € Aand B(g) € L3(T, A) such that B(g) € 0Z(g, U(g)) for ¢ € T and

U(©) = Wugle)lUo — w(W] + [ Pole ~0)(x, U)dx+ [ Pyl — 0)AX(x)dx
+/Og PQ(Q—K)IB%(K)dK—i—/Og Po(c — x)0(x, U(x))dd(x), ¢ €T %)
where
Nno(©) = I\ OPe) Pole) =M Tyle), Tols) = [ a0¥o(6)N(c0)S,

where . ( 9)n—1
Yo(0) = n; RS ng),e € (0,00).

Lemma 1 ([26]). The operators Xy, , and Py have the following properties:
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(i) {Py(g) : ¢ > 0} is continuous in the uniform operator topology.
(ii)  Forany fixed ¢ > 0, Ny, ,(g) and Py(g) are linear and bounded operators, and

I1ge—1 1= (1-e)
uj|, |IN U| < =———-—-
F(Q) H || ” h,g(g) ” F(h(l — Q) ¥ Q)

(iii) {Py(g) : ¢ > 0} and {¥y,(g) : ¢ > 0} are strongly continuous.

1Po(e)U]l < -

Some assumptions are considered to establish the null controllability criteria for the nonlinear
system (1):
(A1) Let E||AX(¢)||? < TIAE||X(g)||? for all X(g) € F on T where T1 > 0.

(A2) y: Tx A — 28 s locally Lipschitz continuous forallg € T, z, Uy, Up € A, 3C, > 0
such that

Ellv(¢, th) = (g, W)|I* < CE(Ur = Wa|?, Ell7(s, DI* < C(1+E[U|?).

(A3) 0 : XA — Lo(¥,A) is locally Lipschitz continuous for all ¢ € T, U, Uy, Uy € A, and
there exist constants Cz > 0 such that

El|[9(¢, Ur) = 9(, W) |5 < C3(EUs — Ual?, EI9(s, U)[I3 < Co(1+ E[UP).

(A4) Z: T x A — R such that:

(I) E(-,U):T — RismeasurableV U € A,
(II) E(g,-) : A — Rislocally Lipschitz continuous for ¢ € T,

——

(II1) 3afunction € L}(T,R*), C4 > 0, which satisfies
E||9E(c, U)||* = sup{E[|B(c)||* : B(c) € 9E(c, U)} < £(¢) + CE[IU?,

VUeAae ceTand U € A.
(A5) p: C(T, A) — A is continuous, for any U, Uy, Uy € C(I,A) 3 C5 > 0, such that

E[u(Un) — u(Wa) > < GSE[IUh — WUa|?, E[lu(UD)|* < Cs(1+ E[[U?).

Now, we define an operator ® : L2, (T, A) — 2L (T.A) as follows: O(U) = {B € L}(T,A) :
B(g) € 0Z(g, U(g)) ae. ¢ € T for U € L3(T, A)}.

Lemma 2 ([28]). The set ©(U) has nonempty, convex, and weakly compact values for U €
L2(T, A) and if (A4) holds.

Lemma 3 ([30]). If (A4) holds, the operator Y satisfies the following: If U, — U in L2,(T, A),
&n — & is weakly in L%, (T, A) and &, € ©(Uy), then & € O(U).

3. Main Result

To prove the null controllability criteria for the nonlinear system (1), we present the
linear Hilfer fractional stochastic differential equation as follows:

Dyfw(c)=0w(c) +7(¢) + AX(c) + 8(¢)*5, ¢eT=(0,q),
I(g}:@)(lfh)w(o) = wy,

®)

which is associated with the system (1)
Consider

LIxX = /O " Po(g — 1) AX(k)dx : Ly(T,F) — A,

where L] X has a bounded inverse operator (Ly) ! with values in Ly (T, F) /ker(L}), and
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NJ(w,y,8) = Ny (6)w + /Oq Po(q — )y (x)dx + /Oq Py(q —x)8(x)d@(x) : A x Lo(T,F) — A.

Definition 4 ([31]). The linear system (3) is exactly null controllable on T if 3 & > 0 such that
I(Lg)*w]l> = af| (Ng)*w|* ¥ w € A.

Lemma 4 ([32]). Let (3) be exactly null controllable on T; then, the linear operator (LO)’lNg :
A x Ly(T,A) — Lp(T, F) is bounded and the control

b
X(g) = —(Lo) ™! |:Nh,g(g)w0 + /Oq Po(q — 1)y (x)dx + /0 Po(q —x)d(x)de(x) | (c)
transfers the system (3) from wy to 0.

Definition 5 ([30]). The system (1) is exact null controllable on T if 3 a stochastic control X &
Ly(T, F) such that the solution U(c) of (1) satisfies U(q) = 0.
To establish the null controllability, we add the following assumption:

(A6) The fractional linear system (3) is exactly null controllable on T.

Definition 6. If the assumptions (A1)—(A6) hold, then the system (1) is exactly null controllable
on T provided that

R 25C5H2q2(h71)(179)+ 25H2q2()71
27 ) 21— +o) | (20— 1)I(o)

251%1A|UQ>—WFq@—1}
X< 1+ < 1.
{ (20 —1)I%(0)

Proof. We define W, : D — 2P as follows:

{(Cz + Tr(®)Cs) + C4‘1} }

{ ZeD:Z(g) = Wy o(g)[Uo — u(U +fo Py(g — 1)y (x, U(x))dx }
Wo(U) =S + [5 Polc — x)AX(x)d + [y Po(g — x)B(x)dx
+ J§ Polg —1)8(x, U(x))d(x) , B € O(U)
where
4 g
K(e) = ~(L0) [Naa(@)lthy — p(W)] + [ Pl — )70, Ui
+/ Py(c — K)B dK+/ Po(c — k)0 (x, U(x))dad (x )](g)
O

In the following steps, we show that W, has a fixed point:

Step 1: For each U € D, W,(U) has nonempty, convex, and weakly compact values.
According to Lemma 2.2, it is easy to see that W,(U) has nonempty and weakly
compact values. Moreover, as ©(U) has convex values, if By, B, € ©(U), then
0By + (1 —-96)B, € ©(U) VI € (0,1), which clearly implies that W,(U) is convex.

Step 2: The operator Wy is bounded on a bounded subset of D.

Let us consider A, = {U € D: |U[|3 < p}, p > 0. It is obvious to conclude that A,
is a bounded, closed, and convex set of D. We claim that there exists a constant p > 0
such that for each x € W,(U), U € A, [|x]3 < p.

If x € W,(U), then there exists a B € ®(U) such that
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Ix(e)l3

IA

IA

IN

x(g) = Nhg( )[Uo — u(W)] + [ P U(x))dse
—I—fo Py(c —K)AX dK—i—f PQ )B(K)dk 4)
+ Jo Pols —1)8(x, U(x))do(x), ¢ €T.

From (A1)-(A5) and Lemma 1, we get

25sup MU E|Ry, 4 (6)[Up — p(W)]?
e

EI [ Pols — K26 U)axl + Bl [ Pyl ~ x)AX(x)dx|?
E| [ Pols ~ xB()ax|? + || [ Pols — 0)8(x, U(x)deo () )

9
25511% GCUMLE Ry o (6)[Up — (W] +E| /0 Po(g — 1)y (i, U(x) )] |?
85 ’

1 (L) PE [ Pols =) o) Uo = )] + [ ol = )7, )
+/: Pg(ng)IBS(K)dK+/; Pg(g—K)ﬂ(K,U(K))ch(K)]dKHZ
FEI [ Pols ~ 00B)ax? + || [ Pyc — )96, U(0)d(0)|)
25112 2 )
{rz(h(l oy [Eltl? (140
+25H2q1—2h(1—g)
(20 = 1)I*(e)
2SIPIL | (Lo) P2\ _
X{” 20~ 17(g) }""'
Thus, W,(A,,) is bounded in D.

Step 3: The set {W,(U) : U € Ay} is equicontinuous.

Forany U € Ay, x € W,(U), there exists a B € ©(U) such that (4) holds for each
¢eT.

For 0 < ¢1 < g2 < g, weget

{(Cz + Tr(®)C3) (1 +¢) + 1Bl (1,re) + CMKJ} }

lx(s2) — x(c1)l3

< 25| (Nho(gz) - Nhg@l)) (U — (W),

+251 £ Pyea — )70 (1)) [ Pyler — )y, L))
125] 2 Pylea — )8k, U(x))deo(x) — J&* Polc1 — x)8(x, U(k))deo(x)[3

Po(s
Pol(g
+25|| [5* Polg2 — 1) B(x)dx — 1PQ(€1*K) (r)d||5;
+25]] [5* Po(g2 — 1) AX(x )dK* o' Polc1 — k) AX (ic)dx||f,
(

—25||(Nhggz> Nhg<g1>)[uofu<u>]nﬁ

+25] [ Polea — x)y(x, U()) x|} .
+25|| [5" | Polg2 — ) — Polg1 — x) |y (x, U (x))dx||3, ®
+25]| [£2 Py (g2 — )8, U(x))deo(x) |3

+25] [ | P2 = 1) = Pols1 — )| 8, U(x))deo(x) 13
+25] [ Pyler — 0Bl
+25] f | Pals2 — %) = Polr — %) [ B(x)dx |3
+25] [ Pyls2 — ©)AX(k)dx |3,
+25 f5" | Po(62 — k) — Polg1 — 1) | AX (i) dic] |-
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Since R(g) (¢ > 0) is compact, then, the right-hand side of (5) tends to zero as ¢» — ¢;.
Thus, W, (U)(g) is continuous in (0,4|. In addition, for g1 = 0and 0 < ¢, < g,
Ellx(¢2) — x(0)||3 — 0 with respect to U € A, as go — 0.

Hence, we conclude that {W,(U)(¢) : U € Ay} is equicontinuous in .

Step 4: W, is completely continuous.

We show that V¢ € T, p > 0, the set Hy,(¢) = {x(¢) : x € W,(A,)} is relatively
compact in A. Clearly, H,(0) is compact. Let 0 < ¢ < g be fixed, 0 < € < g, for
U € Ay, and we define

X)) = W [ ”(/] " 0 — )"0 11, (8) R (x06) [Up — u(UI)]d6d

0)) .

+0 /nge /]-°° B(c — 1), (0)R((g — 1)°0) (x, U (k) )dodx

+o /0 o /] " 0(c — 1) N (O)R((c — x)°0)AX (k) d6dx

e /06—6 /Joo 0(c —x)° ", (O)R((¢ — x)°0)B(x)d6dx

o[ / T 0(g — 1) (O)R((g — 1)%0)8(x, U(x))dOdx

_ QN 60]))) /Og € ]°°9 ~O- 101y, (9)R (120 — %)) [Up — u(U)]d0dx

+oR(e%) /nge /]OOG — 1) 1Y, (0)N(( — %)% — €))7y (x, U(x))dOdx

+oR(e%) /:76 /009 — %)% 1‘I’Q(G)N((g — )0 — €%7) AX (x)dbdx
]

+oR(e%) /nge /009 —x)¢” 1‘I’Q(G)N((g —)%0 — €°7)B(x)d0dx

FoRr(e?) /_/ ¢ — )2 T, (O)R((g — x)°0 — €%))9(x, U (x) ) dbdx.

Ellx(s)
2502

< 009

Since R(e%), €2 > 0 is a compact operator, the set Hy/(¢) = {x*/(g) : x*/ €
Wy (Ay)} is relatively compact in A. In addition, we have

— X (Q)If = sup cp FIMIIE|x () — X (6) 12

supge,ﬂ, €2(17Fl) (1-0)

xE| Jy fé" PRk, (B)R (k26) [Uo — p(U)]d6ddx |

2 sup gz(l—m(l—e)

<E| [ [0 ( ) KQ*l‘Pg(f’)N(KQG)[Uo—V(U)}dBdKHZ

2507 sup, e 20N~ oF) JE 11606 — x)0 1 OOR((¢ — )%6)(x, U(x))d6tx]?

252 sy o 20 DIOE] [ [ e — )0 MEoO)R((c — 1)90) s, L) o ©
+2502 supgdrgz(1 MA=E|| [ [18(c — 1) ¥ (8)R((g — x)20) AX (x)dodx ||

257 sy 20 DIOE] T [ bl — )0 Yo ON( (e — x)%6) AX )b

+25¢% sup . ¢2IITAE|| & [16(5 — 1)0 ¥ (0)R(( — x)°60) B(x)dOdx |2

+2502 supgdrgz(1 ma-oE| fgg ef 9 (¢ — 1) ¥, (0)R((g — x)20)B(x)dOdx||*
#25¢2supycr 100§ 0 0 M ON((c —1%0)0(s Ui

+25¢? supgdrg21 n-oE| fgg ef 9 (¢ — 1) ¥, (0)N((g — x)20) 8 (x, U(x))dOdx]|>.

We see that when € — 0" and j — 07, the inequality (6) tends to zero. Thus, the set
H,,(g) is relatively compact in A. Hence, from Step 3 and the Arzela—Ascoli theorem,
W, is completely continuous.
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(n(Un), v

Iu(e)l?

Step 5: W) has a closed graph.

Let us consider U,, — U, in D, x, € Wy(U,), and x, — X+ in D. We will prove that
X« € Wy(Uy).

Actually, x, € W,(U,) shows that there exists a B, € ®(U,) such that

xn(6) = Rpo(6)[Uo — p(Un)] + [5 Pols —K)’Y(K Un(x))dx
+ J§ Polc — ¥)AX(x)dx + [ Py(g — 1) By ()dxc @)
+ Jo Pols — 1) 9(x, Un( ))de(x), geT

From (A2)-(A5), it is easy to verify that {p(Uy), v(-, Uy), By, 0(-, Un) }p>1 € A X
A x L2(I,A) x Ly is bounded. Then, we get

(-, Un), By, 0(-, Uy)) — (u(Us), y(-, Us), By, 8(-, U ) )weaklyinA x A x L3 (I, A) X Lg. 8)
According to (7), (8), and the compactness of the operator X(g), we have that
(O Nl - (L] 5 Pole = R0, U ()
+ Jo Polc — ®)AX(x)dx + [ PQ ©) B, () dx )
+ 5 Polc = 0)8(x, U (1)) (x).
Concentrating on x, — x» in D and B, € ®(U,), from (9) and Lemma 3, we can get
B, € ©(U,). Therefore, we can show that x. € W,(U,), which shows that W, has a
closed graph. By using Proposition 3.3.12(2) of [30], we find the conclusion that W, is
upper semicontinuous.
Step 6: An a priori estimate.
From previous steps, we found that W, is compact convex valued and upper semi-
continuous and that W,(A,) is relatively compact. By Theorem 2.10 from [29], we can
prove thattheset S = {U € D : yU € Wy, 5 > 1} is bounded.
Let us consider U € $ and assume that there occurs a B € ®(U) such that
uG) = nleh,g(g)[Uo = u(W)]+ 57" [§ Polg — 1)y (i, U (i) )
/i fo Py(g — 1) AX(x)dx + 71 [ Po(g — x)B(x)dx (10)
+1771 f5 Polg — 1)8(x, U(x))d(x).
From (A1)-(A5) and Lemma 1, we can get
< 250y PLE(Ry0 () [Uo — p(U)]|I?
+E|| fog PQ(Q x)y (1, U (x) )dx||* + E| fo PQ(Q — 1) AX (i) ||
+E| [5 Pol —1)B ( )ﬂlKH2 +E| f5 Po(c —x)8(x, U(x))de (i) | *}
< 25{E|Ry, Q( [Uo — u(W)]|* + EJ| fog Pe ¢ — ) (1, U(x))dx|>
+114 [ (Lo) ' PE] fog Polg —x) {Nh,g(q)[UO = u(W)] + J§ Pols — )y (1, U(x))dx
+ JJ Po(c — ®)B(x)dx + [ Po(c — x)8(x, U(x))do(x )} dx||?
TE| Ji Pole — 0)B()de|? + EI| J§ Pol — )8(x, U(x))d(x) 1} ()
< 25H2q2(f171)(1

(x,
W[(EIIU0||2+C5(1+E|U }
_|_

2 201
Tl (R C mga+Euu>|>|mmum++cme<nﬂ}
{ 25H2HAH (Lo)~1)%q 2‘3_1}

X 120
<y +§RZE||U( )

where
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2 25112q2 V=) (E|| U + C5) | 2511247
' I2(h(1~0) +0) (20 - 1T%(e)

2 —1(2,,20—1
><{1+25H HA”(LO)Z 1°g }
(20 —1)I*(0)

and

S,

2511211, [|(Lo) ~t||?q%e ! }

(20 —1)I%(0)

- 25C5H2q2(h71)(1fg)+ 25H2q2Q71
27 21 —0)+e) | (20-1)I%(0)

[(Cz + Tr(®)Cs) + CM} }{1 +

Since R, < 1, from (3.9), we obtain

Ul = SquEIIQ“"‘”“‘Q)U(@)||2 < Ry + Ra || U5
ce

Then, |U|3 < 1?75}?2 implies that the set & is bounded. According to Theorem 2.10
from [29], W, has a fixed point. Any fixed point of Wy is a mild solution of the system
(1) on T. Hence, the system (1) is exact null controllable on T.

4. Example

The following control system is described by Hilfer fractional stochastic partial differ-
ential inclusions with the Clarke subdifferential and nonlocal conditions:
Ly 2
Dyi#U(g,z) € 37 (U(g2)

d -
+205m( (6,2)) +7(5,2) + Leos(U(g,2)) 19 +9E(g, U(g,2)), g € T = (0,1],
U(g,0) =U(g,2) =0, €T, (12)
3

I§+U(O,z) + Zle a; U(g;,z) = Up(z), 0 <z <3,

13
where Dg_'lr4 is the Hilfer fractional derivative of order i = %, 0= %, 0<gy<g <

. < gp < 1,Uy(z) € A = L*[0,3]), and @ is a Wiener process. The functions are
defined as U(c)(z) = U(g,z), gsin(U(c,z)) = (¢, U(g,2)), meos(U(g,z)) = 9(g, U(g,2)),
(g, U(g))(z) = E(g,U(g,z)), and X(g)(z) = 7(g,z). The bounded linear operator A is
defined by Ay = 0(¢,z), € T,0<z <2, yeF.

Let A =% = F = L%([0, 3]) and let the operator U : D(U) C A — Abegivenby U =
with D(U) = {U € A, z, £ being absolutely continuous, < a U e A, U(0) = U(2) = 0}.
Then, U can be written as

82’

ou = i(—nz)(ll, U, U, zeD(U),

where U, (s) = \/% sinns, n = 1,2, ... is the orthogonal set of eigenvectors of U.

Furthermore, for U € A, we have

—nzg

N(g)z = 2 et+n? (z, U, )Uy,.
n=1

The operator U is the infinitesimal generator of a compact semigroup {X(g)}¢>0 in
A. From the above choice, the system (12) can be written in the abstract form of (1), all
assumptions of Theorem 4 are satisfied, and
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25C5H2q2(h—1)(1—g) 25H2q29—1 |: :|
C Tr(®)C C
{ FHi-o e | Re- g (2T TG TG

2 —1(12,,20—1
><{1+25H all(Lo) g } 1
(20 —1)T?(0)

Thus, the system (12) is null controllable on (0, 1].

5. Conclusions

In this paper, a control system described by Hilfer fractional stochastic differential
inclusions with the Clarke subdifferential and nonlocal conditions was presented. By using
the fixed-point technique, fractional calculus, stochastic analysis, properties of the Clarke
subdifferential, and non-smooth analysis, the null controllability of the considered system
was investigated. Moreover, we provided an example in order to illustrate the applicability
of the results.

In future work, we can present the boundary null controllability of non-instantaneous
impulsive fractional stochastic evolution inclusions.
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