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Abstract: This paper studies the influence of space-fractional and multiplicative noise on the exact
solutions of the space-fractional stochastic dispersive modified Benjamin–Bona–Mahony equation,
driven in Ito’s sense by a multiplicative Wiener process. The bifurcation of the exact solutions
is investigated, and novel fractional stochastic solutions are presented. The dependence of the
solutions on the initial conditions is discussed. Due to the significance of the fractional stochastic
modified Benjamin–Bona–Mahony equation in describing the propagation of surface long waves in
nonlinear dispersive media, the derived solutions are significantly more helpful for and influential
in comprehending diverse, crucial, and challenging physical phenomena. The effect of the Wiener
process and the fractional order on the exact solutions are studied.
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1. Introduction

Many problems in the world can be identified through physical and mathematical
models. It has been shown that models are practically related to nonlinear partial dif-
ferential equations (NPDEs), which can be used to describe many real-life phenomena.
Several mathematical models have been determined for physical processes in the field
of scientific research, and this has led to the comprehensive study of the behaviors of
nonlinear waves receiving attention. The category of shallow water equations is one of
the most important tools for modeling the behavior of waves, which has been applied and
integrated with the mathematical process of the study of atmospheric and oceanic models.
Several phenomena of shallow water waves have been obtained from NPDEs [1–4]. For
more detail related to the equations closely connected to the developing topics, we direct
the reader to [5–9]. Closed-form solutions for nonlinear partial differential equations (PDEs)
are crucial for understanding intricate phenomena. In this regard, it is necessary to find
wave solutions, in particular. Researchers have presented new methods and refined exist-
ing approaches. Various significant methods have been introduced, such as the Darboux
transformation [10], Weierstrass elliptic functions methods [11,12], Bäcklund transforma-
tion [13], Lie group [14–17], Hirota’s method [18,19], and the bifurcation method [20–26].
The analytical and numerical solutions for various types of NPDEs have been investigated
using traditional Lie symmetry approaches; see, for instance [27].

Numerous branches of science, including physics and engineering, have emphasized
the benefits of taking random effects into account when analyzing, simulating, and mod-
eling complicated processes. The reason for this is that the noise may provide statistical
characteristics and significant phenomena that cannot be ignored [28–31]. Further, when
stochastic terms are introduced to PDEs, exact solutions are more difficult to find than
deterministic PDEs. Models based on fractional derivatives have been successful in de-
scribing nonlinear physical phenomena. A continuing interest in fractional calculus resides
in its applicability. In fields such as physics, mechanics, chemistry, and biology, fractional
calculus is extremely useful [32–35].
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We consider the fractional-space stochastic nonlinear dispersive modified Benjamin–
Bona–Mahony equation. It takes the form

dV +Dα
xV − γV2Dα

xV +Dα
xxdV =

σ

2
(V +Dα

xxV)dβ(t), (1)

where α is a non-zero real number, Dα refers to the conformable fractional derivative of
order α, 0 ≤ α < 1, σ is the intensity of the noise, and β(t) is the standard Brownian motion;
see Appendices A and B for more details about the conformable fractional derivative and
Wiener process. To our knowledge, the space-fractional stochastic dispersive modified
Benjamin–Bona–Mahony equation has not been studied in the literature, which motivates
us to examine it. We attempt to prove and discuss several possibilities for the solution
to this equation via dynamical system analysis. In other words, this equation can be
considered a generalization or an extension for the classical nonlinear dispersive modified
Benjamin–Bona–Mahony as (α→ 1, σ = 0), i.e.,

Vt + Vx − γV2Vx + Vxxt = 0. (2)

This equation initially appeared in [3] to characterize an approximation for surface long
waves in nonlinear dispersive media. Equation (2) can also be employed to describe
acoustic-gravity waves’ incompressible fluids, acoustic waves in a harmonic crystal, and
hydromagnetic waves in a cold plasma [36,37]. Notice that Equation (1) provides a good
description for all phenomena descried by Equation (2) because the multiplicative noise
implies a statistical characteristic that can not be ignored. Equation (2) has been studied
in several works. A modified simple method has been applied to construct a traveling
wave solution for Equation (2) [38]. A modified exp-function method has been utilized
to construct some analytical solutions for Equation (2) [39]. Ref. [40] contains some wave
solutions for Equation (2) with time-fractional by employing the extended sub-equation
method. In [41], the author constructed a topological soliton solution for Equation (2).
The G′/G method was applied to formulate wave solutions for Equation (2) in [42,43].
Elbrolosy and Elmandouh [44] used the enhanced modified simple equation of Equation (2),
and they obtained some solitary wave solutions. Alharbi et al. [45] used the adaptive
moving mesh PDEs method to solve Equation (2) numerically. In [46], the authors applied
semianalytical and numerical simulations for Equation (2). In [47], Wang constructed an
abundant wave solution for Equation (2) by applying two effective methods: the variational
direct method and He’s frequency formulation method. Shakeel et al. [48] presented some
hyperbolic, trigonometric, and rational function solutions for Equation (2) by utilizing a new
generalization of the exp-function method. The modified auxiliary equation method was
used to announce some new solutions for Equation (2) [49]. Tian et al., in [50], employed the
simplest equation method to find some wave solutions for Equation (2). In [51], Seadawy
constructed traveling wave solutions for Equation (2) by employing the generalized direct
algebraic, modified F-expansion, and improved simple equation methods.

This work is organized as follows: Section 2 contains the qualitative analysis for the
dynamical system corresponding to the fractional stochastic Equation (1). Section 3 includes
some new fractional stochastic solutions for Equation (1), and we study the degeneracy of
the solution based on the variation of the initial conditions. Section 4 clarifies the effects
of the strength of the noise σ, the fractional order α, and their combined effect. Section 5
summarizes the results.
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2. Mathematical Analysis

We consider the transformation

V(x, t) = R(ξ)e
σ
2 β(t)− σ2

4 t, ξ =
k
α

xα −ωt, (3)

which has been applied in several works, such as [52]. After some calculations, we have

dV = e
1
2 σβ(t)− 1

4 σ2t[−ωR′ +
1
2

σRdβ(t)],

Dα
xV = kR′e

1
2 σβ(t)− 1

4 σ2t, Dα
xxV = kR′′e

1
2 σβ(t)− 1

4 σ2t, Dα
xxxV = k3R′′′e

1
2 σβ(t)− 1

4 σ2t,
(4)

where ′ indicates the derivative with respect to ξ. Inserting the expressions (4) into (1), we obtain

−ωk2R′′′ + (k−ω)R′ − γkR2R′eσβ(t)e−
1
2 σ2t = 0. (5)

Based on our assumption that β(t) is normally distributed, E(eσβ(t)) = e
1
2 σ2t. Consequently,

the expectation of both sides of Equation (5) implies

R′′′ +
γ

ωk
R2R′ − k−ω

ωk2 R′ = 0. (6)

Integrating the last equation with respect to ξ, we obtain

R′′ +
γ

3kω
R3 − k−ω

ωk2 R = 0, (7)

where the integration constant is ignored. Let z = R′; then, Equation (7) is written down as
a dynamic system in the form

R′ = z, z′ = − γ

3kω
R3 +

k−ω

ωk2 R. (8)

System (8) is a conservative system because div(R′, z′) = ∂R′
∂R + ∂z′

∂z = 0. It is also a
Hamiltonian system since it can be derived from the Hamilton canonical equation using a
Hamiltonian function

H =
1
2

z2 +
γ

12kω
R4 − k−ω

2ωk2 R2. (9)

Based on ∂H
∂ξ = 0, the Hamiltonian function (9) is a first integral, i.e., it takes a constant

value along any trajectory of the system (8). Hence, we have

1
2

z2 +
γ

12kω
R4 − k−ω

2k2ω
R2 = E, (10)

where E is constant. Thus, the problem of finding a solution for Equation (1) is reduced to
finding the solution of the Hamiltonian system (8). Therefore, we insert the first equation in
system (8) into the first integral (10) and separate the variables; we obtain the 1-differential form

dR√
P4(R)

= dξ, (11)

where P4(R) is a quartic polynomial given by

P4(R) =
−γ

6kω

(
R4 − 6(k−ω)

kγ
R2 − 12ekω

γ

)
. (12)

The integration of both sides of Equation (11) demands the range of the parameters γ, k, ω,
and e. Thus, we apply the qualitative theory of the planar dynamic system [53] to obtain
this range. The equilibria for system (8) are the solution of R′ = 0 = z′. If γ(1− ω

k ) < 0,
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then it has a single fixed point at the origin O = (0, 0), while if γ(1− ω
k ) > 0, then it has

three equilibrium points O = (0, 0) and P1,2 =
(
±
√

3
γ (1−

ω
k ), 0

)
. The classification of

these points is investigated by evaluating the eigenvalues of the Jacobi matrix associated
with system (8) at these equilibria. The Jacobi matrix is

J :=

 0 1

k−ω−γkR2

kω 0

. (13)

The eigenvalues of the matrix (13) evaluated at the equilibrium points are

λ1,2(O) = ± 1
ω

√
ω

k
(1− ω

k
), λ1,2(P1,2) = ±

1
ω

√
−2ω

k
(1− ω

k
). (14)

Taking into account the existence conditions for these equilibrium points, we have the next
two cases:

Case 1. System (8) has a single equilibrium point O if (1− ω
k )γ < 0. It is saddle if ω

k ∈]0, 1[, γ < 0
and it is center when either ω

k ∈]−∞, 0[, γ < 0 or ω
k ∈]1, ∞[, γ > 0. The phase portrait for this

case is introduced by Figure 1.

Case 2. System (8) possesses three equilibrium points if (1 − ω
k )γ > 0. They are O, P1,2.

If ω
k < 0, γ > 0 or ω

k > 1, γ < 0, then O is the center and P1,2 are the saddle points, while
if ω

k ∈]0, 1[, γ > 0, the point O is the saddle and P1,2 are the center. The phase portrait for this case
is outlined by Figure 2.

(a) ω
k ∈]0, 1[, γ < 0 (b) ω

k < 0, γ < 0 and ω
k > 1, γ > 0.

Figure 1. Phase portrait for system (8) when (1− ω
k )γ < 0. The black solid circles indicate the

equilibrium points.
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(a) ω
k < 0, γ > 0 or ω

k > 1, γ < 0 (b) ω
k ∈]0, 1[, γ > 0

Figure 2. Phase portrait for system (8) when (1− ω
k )γ > 0. The black solid circles indicate the

equilibrium points.

Phase Portrait Description

This subsection aims to present a short description of the phase portrait of the sys-
tem (8). The values of the constant E at the equilibrium points are

E0 = H(O) = 0, E1 = H(P1,2) = −
3(k−ω)2

4γωk3 . (15)

The phase orbits are also the energy level curves, which are parameterized by the parameter
E, i.e.,

AE = {(R, z) ∈ R×R : z2 = P4(R)}. (16)

The description of the phase portrait is summarized as the following:

• If (1− ω
k )γ < 0, then the system (8) has a single equilibrium point. If ω

k ∈]0, 1[, γ < 0,
all phase orbits are unbounded for all values of the parameter E, see Figure 1a. If
either ω

k < 0, γ < 0 or ω
k > 1, γ > 0, and E > E1, all of the phase orbits are bounded

and consist of a family of periodic orbits around the center point O, see Figure 2b.
• System (8) has three equilibrium points O and P1,2 when (1 − ω

k )γ > 0. For
ω
k < 0, γ > 0 or ω

k > 1, γ < 0, the equilibrium point O is the center, while P1,2
are the saddle points. The phase plane, which is illustrated by Figure 2a, for this case,
consists of three different types of orbits based on the values of E. The family ofAE>E1

is unbounded orbits in green. The red orbit AE=E1 is a heteroclinic orbit or sometimes
is named a connecting orbit due to it connecting the two saddle points P1,2. The
family of orbits,A0<E<E1 , in blue, is composed of three separated subfamilies of orbits.
Two of them are unbounded and arise outside the heteroclinic orbit, while the inside
one is periodic around the center point O. In the case in which ω

k ∈]0, 1[, γ > 0, the
equilibrium point O is saddle, while the others are centers. All the orbits are bounded
for all possible values of the parameter E. The family AE>0 is a super periodic family
of orbit. When E = E1, there are two ovals in the homoclinic orbit connecting the
saddle point O with itself. For E1 < E < E0, there are two families of periodic orbits
in green. Each of them appears in the left and right oval of the homoclinic orbit.
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It is worth mentioning that the phase orbits do not intersect with each other. Moreover,
each of them corresponds to a certain value of E as well as specific initial conditions. From
this point, we can study the transformation between the phase orbits for the distinct initial
conditions. Let us outline that in the following:

1. In Figure 1b, if E→ 0, the family of periodic orbits degenerates into the equilibrium
point O.

2. In Figure 2a, if E → 0, the periodic family of orbits in blue degenerates to the
equilibrium point, and the two unbounded orbits in blue turn into the extension parts
of the unbounded orbits in red. If E→ E1, the periodic orbits in blue degenerate to
the heteroclinic orbits in red, and the unbounded family of orbits in green is converted
to the heteroclinic orbit in red as E→ E1.

3. In Figure 2b, if E→ 0, the super periodic orbits in blue are converted to the homoclinic
orbit in red, and the two periodic families in green are transformed into the homoclinic
orbit as E → E1. Furthermore, the two periodic families of orbits in green will be
shrunk into the two equilibrium points P1,2 as E→ 0.

These items are significant as seen in the construction of the solutions.

3. Construction of the Solutions

Based on the bifurcation analysis in Section 2, we integrate both sides of the 1-
differential form (11) to obtain the required solutions taking into account only the integra-
tion along the bounded orbit and a possible interval of real propagation. This restriction
enables us to construct only real bounded solutions, which are desirable in real-world
applications. Thus, let us consider the following cases:

Case 3. If (ω
k , γ, E) ∈]1, ∞[×R+ ×R+∪]−∞, 0[×R− ×R+, the polynomial P4(R) has only

two real zeros, namely, ±r1, r1 > 0; hence, it reads P4(R) = |γ|
6kω (r2

1 − R2)(r2
2 + R2), where

r2
1,2 = 1

γk [±3(k− ω) +
√

9(k−ω)2 − 12γEωk3]. Assuming R(0) = −r1, the integration of
both sides of Equation (11) gives

∫ R

−r1

dR√
(r2

1 − R2)(r2
2 + R2)

=

√
|γ|

6kω

∫ ξ

0
dξ. (17)

Equation (17) implies

R(ξ) = −r1cn

√ |γ|(r2
1 + r2

2)

6kω
ξ,

r1√
r2

1 + r2
2

. (18)

Hence, the solution of Equation (1) admits the form

V(x, t) = −r1cn

√ |γ|(r2
1 + r2

2)

6kω
(

k
α

xα −ωt),
r1√

r2
1 + r2

2

e
σ
2 β(t)− σ2

4 t. (19)

Solution (19) is a new solution.

Case 4. If (ω
k , γ, E) ∈]1, ∞[×R−×]E1, 0[∪R− ×R+×]0, E1[, the polynomial P4(R) has four

real simple zeros, namely, ±r3,±r4, where 0 < r3 < r4; therefore, it reads P4(R) = |γ|
6|kω|

(R2 − r2
3)(R2 − r2

4), where r2
3,4 = 1

k2γ
[3(k−ω)∓

√
9(ω− k)2 + 12Ek3γω]. The interval of real
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propagation is ]−∞,−r4[∪]− r3 ∪ r3[∪]r4, ∞[. We select R ∈]− r3, r3[ because it corresponds
to a bound orbit. Assuming R(0) = 0, the integration of both sides along the chosen interval gives

R(ξ) = r3sn(r4

√
|γ|

6|kω| ξ,
r3

r4
). (20)

Hence, Equation (1) admits the solution

V(x, t) = r3sn(r4

√
|γ|

6|kω| (
k
α

xα −ωt),
r3

r4
)e

σ
2 β(t)− σ2

4 t. (21)

Solution (21) is a novel solution for Equation (1).

Case 5. If (ω
k , γ, E) ∈]1, ∞[×R− × {E1} ∪R− ×R+ × {e1}, the polynomial (12) has two real ze-

ros repeated twice, i.e., the zeros are not simple. Consequently, we haveP4(R) = |γ|
6|kω|

(
R2 − 3(k−ω)

γk

)2
.

The interval of possible real propagation is R ∈] −
√

3
γ (1−

ω
k ),
√

3
γ (1−

ω
k )[. Postulating

R(0) = 0 and integrating both sides in the 1-differential form (11) along this interval, we obtain

R(ξ) =

√
3
γ
(1− ω

k
)tanh

(√
|γ|

6|kω| (1−
ω

k
)ξ

)
. (22)

Therefore, Equation (1) has a new solution in the form

V(x, t) =

√
3
γ
(1− ω

k
)tanh

(√
|γ|

6|kω| (1−
ω

k
)(

k
α

xα −ωt)

)
e

σ
2 β(t)− σ2

4 t. (23)

Case 6. If (ω
k , γ, E) ∈]0, 1[∪R+ × R+, the system (8) has a family of super periodic orbits in

blue, see Figure 2b. The polynomial P4(R) has two real zeros, namely, ±r5, while the others
are conjugate imaginary (say) ,±ir6; therefore, it is written as P4(R) = γ

6k (r
2
5 − R2)(r2

6 + R2),
where r2

5,6 = 1
γk2 [±3(k−ω) +

√
9(ω− k)2 + 12γωEk3. The interval of real wave propagation is

]− r5, r5[. Postulating R(0) = r5, the integration of both sides of the 1-differential form (11) implies

R(ξ) = r5cn

r5

√
γ

6kω
ξ,

r5√
r2

5 + r2
6

. (24)

Then, Equation (1) has a new solution in the form

V(x, t) = r5cn

r5

√
γ

6kω
(

k
α

xα −ωt),
r5√

r2
5 + r2

6

e
σ
2 β(t)− σ2

4 t. (25)

Case 7. If (ω
k , γ, E) ∈]0, 1[∪R+ × {0}, system (8) has a homoclinic orbit in red, see Figure 2b.

The polynomial P4(R) has two simple roots (say) ±
√

6
γ (1−

ω
k ), and one is double at the origin;

so, it has the form P4(R) = γ
6kω R2

(
6
γ (1−

ω
k )− R2

)
. The interval of real wave propagation is

R ∈]−
√

6
γ (1−

ω
k ),
√

6
γ (1−

ω
k )[. Let us assume R(0) =

√
6
γ (1−

ω
k ). The integration of both

sides along this interval gives

R(ξ) =

√
6
γ
(1− ω

k
)sech

(√
1

kω
(1− ω

k
)ξ

)
. (26)
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Hence, Equation (1) has a solution

V(x, t) =

√
6
γ
(1− ω

k
)sech

(√
1

kω
(1− ω

k
)(

k
α

xα −ωt)

)
e

σ
2 β(t)− σ2

4 t. (27)

Case 8. (ω
k , γ, E) ∈]0, 1[∪R+×]E1, 0[; there are two separated families of periodic orbits in

green, see Figure 2b. Therefore, the polynomial P4(R) has four real zeros (say) ±r7,±r8, where
0 < r7 < r8. It is expressed as P4(R) = γ

6kω (r2
7 − R2)(R2 − r2

8), where r2
7,8 = 1

kγ [3(k− ω)∓√
9(k−ω)2 + 12Ek3γω]. The interval of real propagation is R ∈]− r8,−r7[∪]r7, r8[. Assuming

R(0) = r7 and integrating both sides of Equation (11), we obtain

R(ξ) = r7dn

(√
γ

6kω
ξ,

√
1−

r2
7

r2
8

)
. (28)

Hence, Equation (1) has a novel solution in the form

V(x, t) = r7dn

(√
γ

6kω
(

k
α

xα −ωt),

√
1−

r2
7

r2
8

)
e

σ
2 β(t)− σ2

4 t. (29)

Degeneracy of the Solutions

We study the degeneracy of the Jacobi-elliptic solutions utilizing the transmission
between the phase orbits, or equivalently, we study the dependence of the solutions on the
initial conditions. Let us clarify this in the following:

1. The solution (19) corresponds to the family of periodic orbits in blue as shown in
Figure 1b. This family is degenerated into the origin if E→ 0, and consequently, the
solution (19) degenerates to V(x, t) = 0 because r1 → 0 as E→ 0.

2. The solution (21) corresponds to the blue family of orbit, which is transformed to
the heteroclinic orbit in red, as shown in Figure 2a, if E → E1. Thus, the elliptic
solution (21) reduces to the solution (23), due to r2

3 = r2
4 = 3

γ (1−
ω
k ).

3. The solution (25) relates to the super periodic blue orbit, which is transformed into a
homoclinic orbit in red, if E→ 0, see Figure 2b. Hence, the solution (25) degenerates

into the solution (27) as E→ 0, as a result of r5 =
√

6
γ (1−

ω
k ), r6 = 0.

4. The solution (29) relates to the periodic families of green orbits, which are turned into
the homoclinic red orbit as illustrated in Figure 2b, if E→ 0. Hence, the solution (29)

degenerates into the solution (27), because r7 = 0, r8 =
√

6
γ (1−

ω
k ) when e→ 0.

4. Physical Interpretation

This section aims to explain the effect of the noise, fractional-order derivatives, and
their combination on the obtained solutions.

The choice of the parameters k = 1, γ = 1, ω = 2, and E = 2 agrees with Case 3. The
solution (19) is reduced to

V(x, t) = 2.0508674 cn
(

1.817701287
xα

α
− 0.1817701287 t, 0.6514100276

)
. (30)

A study of the influence of noise, fractional order, and their combination is conducted.

(a) Influence of the noise:
Figure 3a illustrates how the noise influences the solution (19) at different values of σ.
The 2D representation of solution (19) illustrates how the noise impacts the blue curve,
which represents the deterministic case. Figure 3b illustrates how the deterministic
solution differs from the fractional stochastic solution.
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(b) Influence of the fractional order α:
Figure 4a describes the 2D representation of the solution (19) for different values of
the fractional order α in the absence of noise, i.e., σ = 0. The amplitude of the solution
is approximately fixed, while the width of the solution grows as the fractional order
derivative α increases. Figure 4b outlines the 3D representation of the solution in both
cases in which the order of the derivatives is fractional (yellow) and integer (orange).

(c) Combined effects:
As shown in Figure 5a, there are some changes in the amplitude due to the effect of
the noise, while the width increases as the value of the fractional order α increases,
and the noise causes a small change in width. The same conclusion can be stated for
Figure 5b.

σ=0.3 σ=0.1 σ=0.0

2 4 6 8 10
x

-4

-2

2

4

u

(a) (b)

Figure 3. The effect of the noise on the solution (19) when α→ 1.

α=0.7 α=0.4 α=1

2 4 6 8 10
x

-2

-1

1

2

u

(a) (b)

Figure 4. The effect of the fractional order α on the solution (19) when σ = 0.
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σ 0.3,α 0.7 σ 0.1,α 0.3, σ 0.0,α 1

2 4 6 8 10
x

-4

-2

2

4

u

(a) (b)

Figure 5. The combined effect of the noise and the fractional order α on the solution (19).

Let us choose k = 1, ω = 2, E = 0, and γ = 1. This choice of parameters leads to the
solution (27), which is a 1-soliton solution in the absence of the noise and the fractional order
α→ 1. We investigate the influence of the noise, fractional order, and their combination as
the following:

(a) Influence of the noise:
Figure 6a displays the 2D representation of the solution (27). The solution is perturbed
around the solution in the deterministic case with α→ 1, and this causes some small
changes in the width of the solution and large changes in the amplitude, as the
strength of the noise grows. Furthermore, the 3D representation in Figure 6b outlines
the same conclusion.

(b) Influence of the fractional order:
Figure 7a clarifies the 2D representation of the solution (27) for different values of the
fractional order α in the deterministic case, i.e., in the absence of the noise. As the
fractional order α increases, the width of the solution increases, while the amplitude
remains relatively unchanged. Figure 7b illustrates the 3D representation of the
solution (27) when α = 1, α = 0.7 without the presence of noise, i.e., σ = 0.

(c) Effect of the combination of the noise and the fractional order:
Figure 8a illustrates the 2D representation of the solution (27) for distinct values of
α and σ in addition to the classical case that is represented in blue. The existence of
both combines the two previous effects. The amplitude and the width of the solution
increase as σ and α grow. Figure 8b outlines the 3D representation of the solution (27),
and it gives the same conclusion.

We can similarly examine the effect of the noise with strength σ and the fractional
order α on the other obtained solutions.
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Figure 6. The effect of the noise on the solution (27) when α→ 1.
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Figure 7. The effect of the fractional order α on the solution (27) when σ = 0.
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Figure 8. The combined effect of the noise and the fractional order α on the solution (27).
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5. Conclusions

We studied the influence of the space-fractional and multiplicative noise on the exact
solutions of the space-fractional stochastic dispersive modified Benjamin–Bona–Mahony
equation, driven in Ito’s sense by a multiplicative Wiener process. The bifurcation of the
fractional exact solutions for this equation was investigated. New fractional stochastic
solutions were provided. We focused on constructing only real solutions on certain intervals,
which are named intervals of real propagation. This type of solution is significant because it
is acceptable in real-world applications. On the another hand, the exact obtained solutions
acquired their significance from their ability to comprehend diverse crucial challenges
in the propagation of surface long waves in nonlinear dispersive media, as described
by the fractional stochastic Benjamin–Bona–Mahony equation. The dependence of the
gained analytical solutions on the initial conditions was clarified. Moreover, we linked the
solutions together by employing the degeneracy properties of the solutions. We illustrated
the influence of the strength of the noise and the fractional order on the solutions. We
considered two solutions to examine the impact of the noise alone, the fractional order
alone, and their combination on these solutions. These effects were seen through looking at
the amplitude and the width of the solutions, as the strength of the noise and the fractional
order grew. Figure 3 shows that the noise caused some disturbance to the solution (19) in
the deterministic case. Figure 4 illustrates the impact of the fractional order α on the width
and the amplitude of the solution (19) in the absence of the noise, while Figure 5 clarifies
the combined effects of the noise and the fractional order on the solution (19); i.e., the width
increased as the value of the fractional order α increased, while the noise caused a small
change in the width. Figure 6 shows that the noise caused small changes in the width and
large changes in the amplitude of the solution (27) as the intensity of the noise increased.
Figure 7 shows that the growth of the fractional order α increased the width, while the
amplitude remained unchanged. Figure 8 shows the combined effects of the noise and
fractional order on the solution (27). It also shows that the amplitude and the width of the
solutions increased as α, σ grew.

We will address our equation forced by additive noise in the future work. In addition,
some numerical studies will be considered.
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Appendix A. Conformable Derivatives

In engineering and physical science, fractional calculus provides a better selection
for describing real-world problems. Scholars have proposed novel fractional calculus
operators in recent decades, such as the Riemann–Liouville, Caputo, and conformable
fractional operators. The conformal fractional operator overcomes some of the limitations
of other fractional operators and provides basic properties of classical calculus, such as the
derivative of the quotient of two functions, the chain rule, the product of two functions,
the mean value theorem, and Rolle’s Theorem. The application of conformable derivatives
is simple and very efficient. Furthermore, it allows us better understand the behavior of
physical phenomena.
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Definition A1 ([54]). Let h :]0, ∞[→ R be a function; then, the conformable fractional derivative
of order ν is defined as

Dν(h)(t) = lim
ν→0

h(t + σt1−ν)− h(t)
σ

, (A1)

for all t > 0 and 0 < ν ≤ 1.

We display some conformable derivative properties that are significant in our work.
Let the two functions h1, h2 be ν− conformable differential for t > 0, and a, b are two
constants. Then, we have the following properties:

1. Dν(ah1 + bh2) = aDν(h1) + bDν(h2),
2. Dν(tρ) = ρtρ−ν, ρ ∈ R,
3. Dν(h1h2) = h1Dν(h2) + h2Dν(g1);

4. Dν

(
h1
h2

)
= h2Dν(h1)−h1Dν(h2)

h2
2

;

5. Dν(h)(t) = t1−ν dh
dt (t).

6. Let h and g be two functions, such that h :]0, ∞[→ R is ν− differentiable map, and g
is defined in the range of g; then, Dν(h ◦ g) = t1−νg′(t)h′(g(t)).

Appendix B. Wiener Process

In this appendix, we introduce the definition of the standard Wiener process [55].

Definition A2. A stochastic process {G(t)}t≥0 is named a standard Wiener process if

1. G(0) = 0,
2. G(t) is a continuous function for t ≥ 0,
3. For t3 < t2 < t1,G(t1)−G(t2), G(t2)−G(t3) are independent,
4. G(t2)−G(t1) has a normal distribution with mean zero and variance t2 − t1.

are verified.
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