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Abstract: We develop a fractional return-mapping framework for power-law visco-elasto-plasticity.
In our approach, the fractional viscoelasticity is accounted for through canonical combinations of
Scott-Blair elements to construct a series of well-known fractional linear viscoelastic models, such as
Kelvin–Voigt, Maxwell, Kelvin–Zener, and Poynting–Thomson. We also consider a fractional quasi-
linear version of Fung’s model to account for stress/strain nonlinearity. The fractional viscoelastic
models are combined with a fractional visco-plastic device, coupled with fractional viscoelastic
models involving serial combinations of Scott-Blair elements. We then develop a general return-
mapping procedure, which is fully implicit for linear viscoelastic models, and semi-implicit for the
quasi-linear case. We find that, in the correction phase, the discrete stress projection and plastic
slip have the same form for all the considered models, although with different property and time-
step-dependent projection terms. A series of numerical experiments is carried out with analytical
and reference solutions to demonstrate the convergence and computational cost of the proposed
framework, which is shown to be at least first-order accurate for general loading conditions. Our
numerical results demonstrate that the developed framework is more flexible and preserves the
numerical accuracy of existing approaches while being more computationally tractable in the visco-
plastic range due to a reduction of 50% in CPU time. Our formulation is especially suited for emerging
applications of fractional calculus in bio-tissues that present the hallmark of multiple viscoelastic
power-laws coupled with visco-plasticity.

Keywords: power-law visco-elasto-plasticity; time-fractional integration; fractional quasi-linear
viscoelasticity

1. Introduction

Power-law behavior has been observed in living cells [1,2] and bio-tissues [3–5]. This
stems from the ubiquitous self-similar and scale-free nature of the tissue/cell microstructure,
which can be physically and mathematically scaled up to continuum level, manifesting
in the power-law behavior in the lumped sense. Such power-law relationships have been
seen in auditory hair cells, positioned in the sensory organ of hearing, cochlea [6], vocal
fold tissues [7], and bladder tissues [5]. Experimental evidence suggests that complex
material behavior may possess more than a single power-law scaling in the viscoelastic
regime, particularly in multi-fractal structures, such as in cells [8] and biological tissues [9],
due to their complex, hierarchical, and heterogeneous microstructures. For such cases,
a single fractional rheological element is not sufficient to capture the observed behavior
even if the data suggest a linear viscoelastic behavior. Stamenović et al. [8] measured
the complex shear modulus of cultured human airway smooth muscle and observed two
distinct power-law regimes, separated by an intermediate plateau. Kapnistos et al. [10]
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found an unexpected tempered power-law relaxation response of entangled polystyrene
ring polymers compared with the usual relaxation plateau of linear chain polymers. Such
behavior was interpreted through self-similar conformations of double-folded loops in the
ring polymer, instead of the repetition observed in linear chains.

In addition to multiple viscoelastic power-law behaviors, there also exists evidence
of bio-plasticity in soft media [11,12]. The creep behavior of human embryonic stem
cells under differentiation was studied by Pajerowski et al. [11] through micro-aspiration
experiments at different pressures. The cell nucleus demonstrated distinguished visco-
elasto-plastic power-law scalings, with α = 0.2 for the plastic regime, independent of the
applied pressure. It is discussed that such low power-law exponent arises due to the fractal
arrangement of chromatin inside the cell nucleus. Studies on force-induced mechanical
plasticity of mouse embryonic fibroblasts were performed by Bonadkar et al. [12]. They
found that the viscoelastic relaxation and the permanent deformations followed a stochastic,
normally distributed, power-law scaling β(ω) with values ranging from β ≈ 0 to β ≈ 0.6.
The microstructural mechanism of plastic deformation in the cytoskeleton is due to the
combination of permanent stretching and buckling of actin fibers.

Regarding existing modeling approaches of anomalous plasticity, several works em-
ployed fractional calculus to account for the visco-plastic regimes of different classes of
materials [13]. Three of the main approaches include: time-fractional, space-fractional,
and stress-fractional modeling. The time-fractional approaches focus on introducing mem-
ory effects into non-equilibrium viscous variables [14,15] and consequently modeling
power-laws in both viscoelastic and visco-plastic regimes, which is applied for polymers,
cells, and tissues. Suzuki et al. [14] developed a fractional visco-elasto-plastic model that
provides a constitutive interpolation between rate-independent plasticity and Perzyna’s
visco-plasticity by introducing a Scott-Blair (SB) model acting the plastic regime. This
model utilizes a rate-dependent-yield function, which was later proved to be thermo-
dynamically consistent in a further extension of the model to account for continuum
damage mechanics [16]. A three-dimensional space-fractional approach to elasto-plasticity
was also developed by Sumelka [17] in order to consider the spatial nonlocalities. The
model is based on rate-independent elasto-plasticity, and nonlocal effects are modeled
using a fractional continuum mechanics approach, where the strains are defined through a
space-fractional Riesz–Caputo derivative of the displacements. Finally, the stress-fractional
models for plasticity have been found to be applicable for modeling the soil mechanics and
geomaterials that follow a non-associated plastic flow [18,19], i.e.,in which the yield surface
expansion in the stress space does not follow the usual normality rule and may be non-
convex. Sumelka [18] proposed a three-dimensional fractional visco-plastic model, where
a fractional flow-rule with the order 0 < α < 1 in the stress domain naturally modeled
the non-associative plasticity. This model recovers the classical Perzyna visco-plasticity
as α → 1, and the effect of the fractional flow rule can be a compact descriptor of micro-
structure anisotropy. Later on, Sun and Sumelka [19] developed a similar stress-fractional
model, which was successfully applied for soils under compression. We refer the reader to
the Sun et al. review work on fractional calculus applications in plasticity [20].

In this work, we develop a generalized fractional visco-elasto-plastic model, where
the visco-plastic device can be coupled with several existing fractional linear/nonlinear
viscoelastic representations. More specifically, we utilize a fractional visco-plastic device
developed in [14,16], which is then coupled with a series of linear fractional models, such
as Scott-Blair (SB), Kelvin–Voigt (FKV), Maxwell (FM), Kelvin–Zener (FKZ), Poynting–
Thomson (FPT); also a fractional quasi-linear viscoelastic (FQLV) model for large strains
Figure 1. Then, a generalized fractional return-mapping algorithm is proposed, which over-
comes existing difficulties in previous developments by first fully discretizing all fractional
operators and then performing the predictor–corrector procedure. More specifically, the
existing approaches are built on the notion of employing the predictor–corrector approach
before the full discretization of fractional operators while treating trial states for stress and
internal variables as continuous functions of time. This prevents models with serial combi-
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nations of SB elements to be incorporated in associated yield functions in a straightforward
fashion. The main features of the proposed framework are:

• We perform a full discretization of fractional viscoelastic models prior to the definition
of trial states, which allows a linear decomposition between final and trial stresses
regardless of the employed models.

• The fractional return-mapping algorithm is fully implicit for linear viscoelastic rheol-
ogy and semi-implicit for quasi-linear viscoelasticity.

• Due to the full-discretization before the return-mapping procedure, the operations
involving the plastic-slip are memoryless, which resembles return-mapping steps
from the classical elasto-plasticity.

• The correction (return-mapping) step has the same structure regardless of the em-
ployed viscoelastic models.

We carry out a number of numerical experiments involving fabricated and reference
solutions under monotone and general loading conditions and observe a global accuracy
ranging from O(∆t) to O(∆t2−β), according to the regularity induced by the associated
fractional differential equations (FDEs) and loading conditions.

This work is organized as follows. In Section 2, we present the mathematical definitions
employed in this work. In Section 3, we describe the considered linear/quasi-linear
fractional viscoelastic models, coupled with fractional visco-elasto-plasticity as explained
in Section 4. All corresponding models are discretized and posed in a unified fractional
return-mapping form in Section 5. Convergence analyses and computational performance
evaluation of presented models and return-mapping algorithms are performed in Section 6,
followed by the concluding remarks in Section 7.

Figure 1. Fractional linear viscoelastic models employed in this work, constructed from se-
rial/parallel combinations of “building block” SB elements. The SB building blocks naturally account
for an infinite fractal arrangement of Hookean/Newtonian elements. The employed fractional quasi-
linear model is not represented by a mechanical analogue although the time-dependent component
of the relaxation function has an SB-like representation.

2. Definitions of Fractional Calculus

We start with some preliminary definitions of fractional calculus [21]. The left-sided
Riemann–Liouville integral of order β ∈ (0, 1) is defined as

(RL
tL
Iβ

t f )(t) =
1

Γ(β)

∫ t

tL

f (s)
(t− s)1−β

ds, t > tL, (1)

where Γ represents the Euler gamma function, and tL denotes the lower integration limit.
The corresponding inverse operator, the left-sided fractional derivative of order β, is then
defined based on (1) as

(RL
tL
Dβ

t f )(t) =
d
dt
(RL

tL
I1−β

t f )(t) =
1

Γ(1− β)

d
dt

∫ t

tL

f (s)
(t− s)β

ds, t > tL. (2)
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The left-sided Caputo derivative of order β ∈ (0, 1) is obtained as

( C
tL
Dβ

t f )(t) = (RL
tL
I1−β

t
d f
dt

)(t) =
1

Γ(1− β)

∫ t

tL

f ′(s)
(t− s)β

ds, t > tL. (3)

The definitions of Riemann–Liouville and Caputo derivatives are linked by the follow-
ing relationship:

(RL
tL
Dβ

t f )(t) =
f (tL)

Γ(1− β)(t + tL)β
+ ( C

tL
Dβ

t f )(t), (4)

which can be obtained through integration by parts followed by the application of the
Leibniz rule on (2). We should note that the aforementioned derivatives coincide when
dealing with homogeneous Dirichlet initial/boundary conditions. Finally, we define the
two-parameter Mittag–Leffler function Ea,b(z) [22] as:

Ea,b(z) =
∞

∑
k=0

zk

Γ(ak + b)
, Re(a) > 0, b ∈ C, z ∈ C. (5)

3. Fractional Viscoelasticity

We present the linear and quasi-linear fractional viscoelastic models that we couple
with the visco-plastic return-mapping procedure.

3.1. Linear Viscoelasticity

Scott-Blair (SB) Model: The rheological building block for our framework is the fractional
SB viscoelastic element, which compactly represents an anomalous viscoelastic constitutive
law relating the stresses and strains:

σ(t) = E C
0D

β
t ε(t), t > 0, ε(0) = 0, (6)

with pseudo-constant E1 [Pa.sβ] ≥ 0, and constant fractional order 0 < β < 1, which
provides a material interpolation between the Hookean (β→ 0) and Newtonian (β→ 1)
elements. The pair (β,E) uniquely represents the SB constants, where the pseudo-constant
E [Pa.sβ] compactly describes textural properties, such as the firmness of the material [23,24].
In this sense, E is interpreted as a snapshot of a non-equilibrium dynamic process instead
of an equilibrium state. The corresponding rheological symbol for the SB model represents
a fractal-like arrangement of springs and dashpots [25,26], which we interpret as a compact,
upscaled representation of a fractal-like microstructure. Regarding the thermodynamic
admissibility, we refer the reader to Lion [27] for the SB model and Suzuki et al. [16] for
the combination of the SB element with more complex mechanisms of visco-plasticity
and damage. The relaxation function G(t) [Pa] for the SB model is given by the following
inverse power-law form:

GSB(t) :=
E

Γ(1− α)
t−β, (7)

which is the convolution kernel of the differ-integral form in (6).

Fractional Kelvin–Voigt (FKV) Model: Through a parallel combination of SB elements,
we obtain the following stressd–strain relationship [25]:

σ(t) = E1
C
0D

β1
t ε(t) +E2

C
0D

β2
t ε(t), t > 0, ε(0) = 0, (8)

with fractional orders 0 < β1, β2 < 1, and associated pseudo-constants E1 [Pa.sβ1 ] ≥ 0, and
E2 [Pa.sβ2 ] ≥ 0. The corresponding relaxation modulus G(t) [Pa] is also an additive form
of two SB elements:

GFKV(t) :=
E1

Γ(1− β1)
t−β1 +

E2

Γ(1− β2)
t−β2 , (9)
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which has a response characterized by two power-law regimes with a transition from faster
to slower relaxation. Assuming β2 > β1, the asymptotic responses for small and large
time-scales are given by GFKV ∼ t−β2 as t→ 0 and GFKV ∼ t−β1 as t→ ∞.

Fractional Maxwell (FM) Model: Through a serial combination of SB elements, we obtain
the fractional Maxwell (FM) model [24], given by:

σ(t) +
E2

E1

C
0D

β2−β1
t σ(t) = E2

C
0D

β2
t ε(t), t > 0, (10)

with pseudo-constants E1 [Pa.sβ1 ] > 0 and E2[Pa.sβ1 ] ≥ 0, fractional orders 0 < β1 <
β2 < 1 with ,0 < β2 − β1 < 1 and two sets of initial conditions for strains ε(0) = 0 and
stresses σ(0) = 0. We should note that in the case of non-homogeneous initial conditions,
there needs to be a compatibility condition [22] between stresses and strains at t = 0. The
corresponding relaxation function for this building block model assumes a more complex
Miller–Ross form [24]:

GFM(t) := E1t−β1 Eβ2−β1,1−β1

(
−E1

E2
tβ2−β1

)
. (11)

The presence of a Mittag–Leffler function in (11) leads to a stretched exponential relaxation
for smaller times and a power-law behavior for longer times. We also observe that the limit
cases are given by GFM ∼ t−β1 as t → 0 and GFM ∼ t−β2 as t → ∞, indicating that the
FM model provides a behavior transitioning from slower-to-faster relaxation. We refer the
reader to [5,24,28] for a number of applications of the aforementioned models. We should
notice that both FKV and FM models are able to recover the SB element with a convenient
set of pseudo-constants and β1 = β2.

Fractional Kelvin–Zener (FKZ) model: The fractional generalization of the standard linear
solid (SLS) model is given by an FM branch in parallel with a third SB element, given by
the following FDE:[

1 +
E2

E1

C
0D

β2−β1
t

]
σ(t) =

[
E2

C
0D

β2
t +E3

C
0D

β3
t +

E2E3

E1

C
0D

β2+β3−β1
t

]
ε(t), (12)

with fractional orders 0 < β1 < β2 < 1 and conditions 0 < β2 − β1 < 1 and 0 <
β2 + β3 − β1 < 1, pseudo-constants E1 [Pa.sβ1 ] > 0, E2 [Pa.sβ2 ] ≥ 0 and E3 [Pa.sβ3 ] ≥ 0,
and the same initial conditions as in the FM model. We should note that the FM model
is recovered when E3 = 0, and the FKV model is recovered when setting E1 = 0. The
relaxation function is obtained in a straightforward fashion as the summation of the
relaxation functions from the SB and FM models:

GFKZ(t) := E1t−β1 Eβ2−β1,1−β1

(
−E1

E2
tβ2−β1

)
+

E3

Γ(1− β3)
t−β3 , (13)

which leads to three inverse power-law regimes for short, intermediate, and long times
with particular relationships between β1, β2, β3 [29].

Fractional Poynting–Thomson (FPT) Model: Finally, we introduce our last fractional
linear viscoelastic model, given by the serial combination between an FKV model and an
SB element:[

1 +
E1

E3

C
0D

β1−β3
t +

E2

E3

C
0D

β2−β3
t

]
σ(t) =

[
E1

C
0D

β1
t +E2

C
0D

β2
t

]
ε(t), (14)

with 0 < β3 < β1 < 1 and 0 < β3 < β2 < 1, additional conditions 0 < β1 − β3 < 1 and
0 < β2− β3 < 1, and pseudo-constants E1 [Pa.sβ1 ] ≥ 0, E2 [Pa.sβ2 ] ≥ 0, and E3 [Pa.sβ3 ] > 0
and homogeneous initial conditions σ(0) = 0 and ε(0) = 0. Similar to the FKZ model, we
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recover the FM model when setting either E1 or E2 to zero; although the FKV model cannot
be recovered except for a trivial case when σ(t) = 0.

3.2. Quasi-Linear Fractional Viscoelasticity

Although fractional linear viscoelastic models provide suitable relaxation functions
that describe the anomalous viscoelastic dynamics of a number of soft materials, at times,
complex microstructural deformation mechanisms and large strains induce material non-
linearities; hence, the relaxation function itself depends on the applied strain levels. To
incorporate this additional effect, we also consider the following FQLV model [30,31]:

σ(t, ε) =
∫ t

0
G(t− s)

∂σe(ε)

∂ε
ε̇ ds, (15)

where the convolution kernel is given by a multiplicative decomposition of a reduced
relaxation function G(t) and an instantaneous nonlinear elastic tangent response with
stress σe. In the work by Craiem et al. [31], the reduced relaxation function has a fractional
Kelvin–Voigt-like form with one of the SB replaced with a Hookean element. Here, we
assume a simpler rheology and adopt an SB-like reduced relaxation in the form:

G(t) = Et−α/Γ(1− α) (16)

with the pseudo-constant E with units [sα]. We adopt the same two-parameter exponential
nonlinear elastic part as in [31]:

σe(ε) = A
(

eBε − 1
)

, (17)

with A having units of [Pa]. Plugging in (16) and (17) into (15), we obtain:

σ(t, ε) =
EAB

Γ(1− α)

∫ t

0

eBε(s) ε̇(s)
(t− s)α

ds, (18)

which differs slightly from the linear SB model (6) in the sense that an additional exponential
factor multiplies the function being convoluted.

4. Fractional Visco-Elasto-Plasticity

With all fractional viscoelastic models defined in Section 3, we can couple any of them,
subject to a viscoelastic strain εve(t), to the fractional visco-plastic device, illustrated in
Figure 2. The visco-plastic device is composed of a parallel combination of a Coulomb
element with initial yield stress σY [Pa], an SB element with pseudo-constant K [Pa.sβK ],
and fractional order βK, and a Hookean spring with constant H [Pa]. The entire visco-plastic
part is subject to a visco-plastic strain εvp(t) : R+ → R. In order to obtain the kinematic
equations for the internal variables, we start with an additive decomposition of the total
logarithmic strain ε(t) : R+ → R acting on the visco-elasto-plastic device:

ε(t) = εve(t) + εvp(t) (19)

The visco-plastic effects are accounted for through the definition of a memory- and
rate-dependent-yield function f (σ, α) : R×R+ → R− ∪ {0} in the following form [14]:

f (σ, α) := |σ| −
[
σY +K C

0D
βK
t (α) + Hα

]
. (20)

where α ∈ R+ represents the internal hardening variable, and the above form accounts for
the isotropic hardening. The set of admissible stresses lie in a closed convex space, where the
associated boundary respects the yield condition of classical plasticity (see [16], Lemma 4.1,
setting the damage as D = 0). From the defined yield function (20) and the principle of
maximum plastic dissipation [32], the following properties hold: (i) associativity of the flow
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rule, (ii) associativity in the hardening law, (iii) Kuhn–Tucker complimentary conditions,
and (iv) convexity. The set of evolution equations for the internal variables εvp and α is
obtained by:

ε̇vp =
∂ f
∂σ

γ̇, α̇ = − ∂ f
∂R

γ̇, (21)

where γ̇(t) : R+ → R+ denotes the plastic slip rate. Evaluating the above equations
using (20), we obtain the evolution for visco-plastic strains and hardening [14]:

ε̇vp = sign(τ)γ̇, (22)

α̇ = γ̇. (23)

Proposition 1. The closure for the plastic slip rate γ̇(t) ∈ R+ with an SB viscoelastic part of
constants (E, βE), (K, βK), and H (model M1 [14]) with homogeneous initial conditions for the
internal variables and their respective rates, i.e., εvp(0) = α(0) = γ(0) = 0, γ̇(0) = 0, and
ε̇vp(0) = α̇(0) = γ̇(0) = 0, is given by the following fractional Cauchy problem:

E C
0D

βE
t γ̇(t) +K C

0D
βK
t γ̇(t) + Hγ̇(t) = sign(σ)E

[
ε̇(0)t−βE

Γ(1− βE)
+ C

0D
βE
t ε̇(t)

]
(24)

Proof. See Appendix A.

Figure 2. Fractional visco-elasto-plastic model subject to a uniaxial stress σ. Here, any of the linear
and quasi-linear (not illustrated) fractional viscoelastic models under strains εve can be chosen and
then coupled with a fractional viscoplastic rheological device under strains εvp.

5. A Class of Return-Mapping Algorithms for Fractional Visco-Elasto-Plasticity

Given the presented viscoelastic and visco-plastic models, respectively, in Sections 3 and 4,
we now demonstrate how to solve each resulting system of nonlinear equations according
to the choice of viscoelastic models. The considered fractional return-mapping approach
in this work is fully discrete, i.e., we first discretize all fractional derivatives using a finite-
difference approach and then employ trial states for the internal variables in a predictor–
corrector scheme.

We discretize the fractional Caputo derivatives in (6)–(10) through an implicit L1
finite-difference scheme [33]. Extensions to account for fast time-stepping approaches [34]
are straightforward, since they mostly affect the history terms computation. Let Ω = (0, T]
be decomposed into a uniform time grid with N time steps of size ∆t, such that tn = n∆t,
with n = 0, 1, . . . , N. The time-fractional Caputo derivative of a real-valued function
u(t) ∈ C2(Ω) at time t = tn+1 is therefore discretized as [33]:

C
0D

β
t u(t)

∣∣
t=tn+1

=
1

∆tβΓ(2− β)
[un+1 − un +Hαu] +O(∆t2−β), (25)

with the history termHνu given by the following form:

Hβu =
n

∑
j=1

bβ
j
[
un+1−j − un−j

]
(26)
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with weights bβ
j := (j + 1)1−β − j1−β.

5.1. Time-Fractional Integration of Viscoelastic Models

In the following, we present the discretized forms for each considered fractional
viscoelastic model from Section 3, which are represented in a fully implicit fashion.

Scott-Blair Model: Evaluating both sides of (6) at t = tn+1, we obtain:

σn+1 = E1
C
0D

β1
t ε(t)

∣∣
t=tn+1

(27)

in which by applying (25), we directly obtain:

σn+1 = CSB
1

[
εn+1 − εn +Hβ1 ε

]
(28)

with the strain history Hβ1 ε and constant CSB
1 , shown in Appendix B for the SB and the

following model discretizations.

Fractional Kelvin–Voigt Model: Evaluating both sides of (8) at t = tn+1, we obtain:

σn+1 = E1
C
0D

β1
t ε(t)

∣∣
t=tn+1

+E2
C
0D

β2
t ε(t)

∣∣
t=tn+1

, (29)

which, applying (25) for the fractional derivatives of order β1 and β2, leads to:

σn+1 = CKV
1

[
εn+1 − εn +Hβ1 ε

]
+ CKV

2

[
εn+1 − εn +Hβ2 ε

]
. (30)

Fractional Maxwell Model: Evaluating both sides of (10) at t = tn+1, we obtain:

σn+1 +
E2

E1

C
0D

β2−β1
t σ(t)

∣∣
t=tn+1

= E2
C
0D

β2
t ε(t)

∣∣
t=tn+1

(31)

in which applying (25) for the fractional derivatives of strains and stresses leads to:

σn+1 =
CM

1
[
εn+1 − εn +Hβ2 ε

]
+ CM

2
[
σn −Hβ2−β1 σ

]
1 + CM

2
, (32)

with the emergence of a stress history termHβ2−β1 σ.

Fractional Kelvin–Zener Model: Evaluating both sides of (12) at t = tn+1, we obtain:

σn+1+
E2

E1

C
0D

β2−β1
t σ(t)

∣∣
t=tn+1

= E2
C
0D

β2
t ε(t)

∣∣
t=tn+1

+E3
C
0D

β3
t ε(t)

∣∣
t=tn+1

+
E2E3

E1

C
0D

β2+β3−β1
t ε(t)

∣∣
t=tn+1

,

which after applying (25) for the fractional derivatives of strains and stresses leads to:

σn+1 =(1 + CKZ
4 )−1

[
CKZ

1

(
∆εn+1 +Hβ2 ε

)
+ CKZ

2

(
∆εn+1 +Hβ3 ε

)
+CKZ

3

(
∆εn+1 +Hβ2+β3−β1 ε

)
+ CKZ

4

(
σn −Hβ2−β1 σ

)]
(33)

with ∆εn+1 = εn+1 − εn.

Fractional Poynting–Thomson Model: Finally, we evaluate both sides of (14) and obtain:

σn+1+
E1

E3

C
0D

β1−β3
t σ(t)

∣∣
t=tn+1

+
E2

E3

C
0D

β2−β3
t σ(t)

∣∣
t=tn+1

= E1
C
0D

β1
t ε(t)

∣∣
t=tn+1

+E2
C
0D

β2
t ε(t)

∣∣
t=tn+1

,
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which after applying (25) for the fractional derivatives of strains and stresses, leads to:

σn+1 =(1 + CPT
3 + CPT

4 )−1
[
C1

(
∆εn+1 +Hβ1 ε

)
+ CPT

2

(
∆εn+1 +Hβ2 ε

)
+CPT

3

(
σn+1 +Hβ1−β3 σ

)
+ CPT

4

(
σn −Hβ2−β3 σ

)]
. (34)

Fractional Quasi-Linear Viscoelastic Model: The discretization for the FQLV model (18)
has a slightly different development than the preceding models. It involves a slight
modification of the fully implicit L1 difference approach by a trapezoidal rule, taken on the
exponential factor. More specifically, we evaluate the FQLV operator as:

σn+1 =
EAB

Γ(1− β)

n

∑
k=0

∫ tk+1

tk

(tn+1 − s)−β exp(Bεk+ 1
2
)

(
εk+1 − εk

∆t

)
ds (35)

with εi+ 1
2
= (εi + εi+1)/2. Following similar steps as in [33], we obtain the following

discretized stresses at t = tn+1 for the FQLV model:

σn+1 = CQLV
1

[
exp(Bεn+ 1

2
)(εn+1 − εn) +Hα

(
ε,

∂σe

∂ε

)]
(36)

with constant CQLV
1 = EAB/(∆tαΓ(2− α)). The discretized history load in this case is

given by:

Hα

(
ε,

∂σe

∂ε

)
=

n

∑
k=1

exp(Bεn−k+ 1
2
)(εn−k+1 − εn−k)bk (37)

with weights bk = (k + 1)1−α − k1−α. Since the trapezoid approximation of the strains in
the exponential term are second-order accurate, the overall accuracy of the viscoelastic
models is still bounded by the native L1-difference approach and, therefore, should be of
O(∆t2−α).

Remark 1. We note that except for the FQLV model, any of the aforementioned discretizations
for the linear models can recover the existing classical counterparts by properly setting βi → 0 or
βi → 1. In these cases, to achieve a comparable performance to the integer-order models, history
terms can be selectively disregarded, and the corresponding discretization constants can be adjusted
to their integer-order counterparts.

5.2. Time-Fractional Integration of Visco-Plasticity

We start with the discretization of internal variables. Following [14], we assume a
strain-driven process with known total strains εn+1 at time tn+1. The strain decomposi-
tion becomes:

εn+1 = εve
n+1 + ε

vp
n+1. (38)

The flow rule (22) is discretized through a first-order backward-Euler approach,
which yields:

ε
vp
n+1 = ε

vp
n + sign(σn+1)∆γn+1 (39)

with ∆γn+1 = γn+1 − γn representing the plastic slip increment in the interval [tn, tn+1].
Similarly, the discretization of the hardening law (23) is given by

αn+1 = αn + ∆γn+1. (40)
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Evaluating the yield function (20) at tn+1 and employing discretization (25) for the
hardening variable, we obtain:

fn+1 = |σn+1| −
[
σY +K C

0D
βK
t (α)

∣∣
t=tn+1

+ Hαn+1

]
= |σn+1| −

[
σY +K∗

(
αn+1 − αn +HβK α

)
+ Hαn+1

]
(41)

with K∗ = K/(∆tβK Γ(2− βK)).
The next step is to define the trial states for the stress and yield functions, which

is the core idea to define the viscoelastic prediction phase, and the correction step after
solving the internal visco-plastic variables. Therefore, we freeze the internal variables for
the prediction step at tn+1. Accordingly, the trial visco-plastic strains and hardening are
given by:

ε
vptrial

n+1 = ε
vp
n , αtrial

n+1 = αn. (42)

In this token, the trial yield function is given by setting the above relationship for the
hardening variable into (41) to obtain:

f trial
n+1 = |σtrial

n+1 | −
[
σY +K∗

(
HβK α

)
+ Hαn

]
. (43)

In order to complete the return-mapping procedure, we need an explicit relationship
between the stresses σn+1 in terms of the known total strains εn+1. To achieve this, we
solve for the plastic slip ∆γ using a discrete consistency condition fn+1 = 0. We start
with the trial stresses for each presented fractional viscoelastic model by substituting the
visco-plastic trial strain (42) and (38) into (28)–(36), where we obtain the following for each
discretized model:

Scott-Blair:
σtrial

n+1 = CSB
1

[
εn+1 − εn +Hβ1(ε− εvp)

]
(44)

Fractional Kelvin–Voigt:

σtrial
n+1 = CKV

1

[
εn+1 − εn +Hβ1(ε− εvp)

]
+ CKV

2

[
εn+1 − εn +Hβ2(ε− εvp)

]
(45)

Fractional Maxwell:

σtrial
n+1 =

CM
1
[
εn+1 − εn +Hβ2(ε− εvp)

]
+ CM

2
[
σn −Hβ2−β1 σ

]
1 + CM

2
(46)

Fractional Kelvin–Zener:

σtrial
n+1 =(1 + CKZ

4 )−1
[
CKZ

1

(
∆εn+1 +Hβ2(ε− εvp)

)
+ CKZ

2

(
∆εn+1 +Hβ3(ε− εvp)

)
+CKZ

3

(
∆εn+1 +Hβ2+β3−β1(ε− εvp)

)
+ CKZ

4

(
σn −Hβ2−β1 σ

)]
(47)

Fractional Poynting–Thomson:

σtrial
n+1 =(1 + CPT

3 + CPT
4 )−1

[
CPT

1

(
∆εn+1 +Hβ1(ε− εvp)

)
+ CPT

2

(
∆εn+1 +Hβ2(ε− εvp)

)
+CPT

3

(
σn+1 +Hβ1−β3 σ

)
+ CPT

4

(
σn −Hβ2−β3 σ

)]
(48)

Fractional Quasi-Linear Viscoelastic Model:
For this model, we follow a similar procedure of substituting the viscoelastic strains

into (36), however, we evaluate the exponential term explicitly in time for all stages of the
return-mapping algorithm. Therefore, the corresponding trial state becomes:
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σtrial
n+1 = CQLV

1

[
exp(B(εn − ε

vp
n ))(εn+1 − εn) +Hα

(
ε− εvp,

∂σe

∂ε

)]
. (49)

5.3. Generalized Fractional Return-Mapping Algorithm (Algorithm 1)

From the aforementioned trial states, each discretized viscoelastic constitutive laws
(28)–(36) and recalling (39), one can show the following stress correction onto the yield surface:

σn+1 = σtrial
n+1 − sign(σtrial

n+1 )C
ve
RM(E, ∆t, ε)∆γn+1, (50)

where all discretized aforementioned viscoelastic models change the return-mapping
procedure by a scaling factor Cve

RM(C, εn, ε
vp
n ) ∈ R+ acting on the Lagrange multiplier ∆γ,

which is given by the following for each model:

Cve
RM =



CSB
1 (Scott-Blair)

CKV
1 + CKV

2 (FractionalKelvin–Voigt)

CM
1 /(1 + CM

2 ) (FractionalMaxwell)

(CKZ
1 +CKZ

2 +CKZ
3 )/(1+CKZ

4 ) (Fractional Kelvin–Zener)

(CPT
1 + CPT

2 )/(1 + CPT
3 + CPT

4 ) (FractionalPoynting–Thomson)

CQLV
1 exp(B(εn − ε

vp
n )) (FractionalQuasi-Linear-Viscoelastic)

(51)

We show the derivation of (50) for the fractional Kelvin–Zener model in Appendix C,
from which the Scott-Blair, fractional Maxwell, and fractional Kelvin–Voigt models can
be directly recovered; note that the derivation for the fractional Poynting–Thomson and
quasi-linear viscoelasticity follow similarly in a straightforward fashion. Substituting the
updated stresses (50) into the discrete yield function (41) and recalling (43), we obtain:

fn+1 = f trial
n+1 − (Cve

RM +K∗ + H)∆γ. (52)

Enforcing the discrete yield condition fn+1 = 0, we obtain the solution for the discrete
plastic slip:

∆γn+1 =
f trial
n+1

Cve
RM +K∗ + H

. (53)

Algorithm 1 Fractional return-mapping algorithm.

1: Database for ε, εvp, σ, α, and total strain εn+1.

2: ε
vptrial

n+1 = ε
vp
n , αtrial

n+1 = αn

3: Compute σtrial
n+1 from (28)–(36) according to the selected fractional viscoelastic model.

4: f trial
n+1 = |σtrial

n+1 | −
[
σY +K∗

(
HβK α

)
+ Hαn

]
5: if f trial

n+1 ≤ 0 then
6: ε

vp
n+1 = ε

vp
n , αn+1 = αn, σn+1 = σtrial

n+1 .
7: else
8: Return-Mapping:
9: Compute Cve

RM from (51) according to the selected fractional viscoelastic model.
10: ∆γn+1 = f trial

n+1 /(Cve
RM + K∗ + H)

11: σn+1 = σtrial
n+1 − sign(σtrial

n+1 )C
ve
RM∆γ

12: ε
vp
n+1 = ε

vp
n + sign(τn+1)∆γ

13: αn+1 = αn + ∆γ
14: end if
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Comparison of the Return-Mapping Algorithm to the Existing Approaches

In [14], trial states were defined prior to the discretization of fractional operators, and
the corresponding trial variables were taken as continuous functions of time, therefore
making the return-mapping procedure “semi-discrete." Let the quantities with bars, (·̄), be
the corresponding solutions for the procedure developed in [14]. For the SB viscoelastic
case, one has the following trial stresses at t = tn+1:

σ̄trial
n+1 = E C

0D
βE
t (ε− ε̄vptrial

)
∣∣
t=tn+1

(54)

in which, after employing the discretized plastic flow rule, the following relationship
between the corrected and trial stresses is obtained:

σ̄n+1 = σ̄trial
n+1 −E sign(σ̄n+1)

C
0D

βE
t (∆γ)

∣∣
t=tn+1

. (55)

This equation can be explicitly inserted into the discrete yield function to solve for the
plastic slip rate. While such a procedure is straightforward for SB and FKV viscoelastic
elements, it is non-trivial for the serial combinations such as the FM, FKZ, and FPT models.
For instance, if we follow the same procedure for the FM model, we obtain:

σ̄trial
n+1 +

E2

E1

C
0D

β2−β1
t (σ̄trial)

∣∣
t=tn+1

= E2
C
0D

β2
t (ε− ε̄vptrial

)
∣∣
t=tn+1

, (56)

which yields the following relationship between σ̄ and σ̄trial :(
σ̄n+1 − σ̄trial

n+1

)
+

E2

E1

C
0D

β2−β1
t (σ̄− σ̄trial)

∣∣
t=tn+1

= −E2
C
0D

β2
t (ε− ε̄vptrial

)
∣∣
t=tn+1

. (57)

Except for the SB case, a fractional viscoelastic model involving a serial combination
of SB elements cannot be incorporated into the yield function in a differential form un-
less a full discretization is performed at this stage. This happens since the discretized
yield function (41) requires a closed description of σn+1, needing an equivalent Boltz-
mann representation for such models, which is impractical due to complex forms of
relaxation kernels. Therefore, our approach in this work already carries the trial states with
fully discretized fractional operators, which closely and completely resembles classical
elasto-plastic approaches.

Regarding the obtained discretizations in this work, we note that the plastic slip (53)
assumes a simple form similar to the rate-independent elasto-plasticity. As discussed above,
in the return-mapping procedure developed in [14], the trial states and plastic slip were
assumed to have memory in the discretization procedure; therefore, a fractional relaxation
equation in the following form was obtained:

∆γ̄n+1 =
E∗
(
∆γ̄n −HβE ∆γ̄

)
+K∗

(
∆γ̄n −HβK ∆γ̄

)
+ f̄ trial

n+1
E∗ +K∗ + H

. (58)

Furthermore, we observe that the obtained plastic slip discretization in this work has
two less history terms to be evaluated. Although this does not influence the computational
complexity of the original scheme, we show in the numerical examples that this fact still
leads to about 50% less CPU time. Regarding the difference in the stress solutions, let
t = tp be the time step of onset of plasticity for the first time. Therefore, we have the
following estimate:

|σp+1 − σ̄p+1| =
E∗

E∗ +K∗ + H

[
K∗
(
HβE ∆γ̄−HβK ∆γ̄

)
− H

(
∆γ̄p −HβE ∆γ̄

)]
, (59)
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which shows that at such stage both discretizations coincide when βE = βK and H = 0. In
the following Section, we verify such an estimate by obtaining an analytical solution with
the aid of Proposition 1.

6. Numerical Tests

We present three convergence examples with different loading conditions to verify
the employed fractional viscoelastic models, the validity of the new fractional visco-plastic
return-mapping algorithm, and the full visco-elasto-plastic response of the models. For
the convergence analyses, let u∗ and uδ be, respectively, the reference and approximate
solutions in Ω = (0, T], for a specific time-step size ∆t. We define the following relative
error measures:

errN(∆t) =
|u∗N−uδ

N |
|u∗N |

, err(∆t) =
||u∗−uδ||L2(Ω)

||u∗||L2(Ω)
, Order = log2

[
err(∆t)

err(∆t/2)

]
. (60)

We consider homogeneous initial conditions for all model variables in all cases. The
presented algorithms were implemented in MATLAB R2020b and were run in a system with
Intel Core i7-8850H CPU with 2.60 GHz, 32 GB RAM and MacOS 11.5 operating system.

Example 1 (Convergence of fractional viscoelastic algorithms). We perform a convergence
study of the fractional viscoelastic component of our framework under the stress relaxation and mono-
tone loading experiments. For this example, we set (E1,E2,E3) = (1, 1, 1) and (β1, β2, β3) =
(0.3, 0.7, 0.1) for fractional linear viscoelastic models, ensuring all fractional derivatives are taken
with an “equivalent order" β ∈ (0, 1), i.e., the sum of fractional orders arising in the fractional
derivatives of each linear viscoelastic model. For the FQLV model, we set E = 1, A = 1, and B = 1,
and varying fractional order β.

For the stress relaxation test, we impose a step strain ε(t) = H(t)ε0 with ε0 = 1 for
T = 1000 [s], where H(t) denotes the Heaviside step function. We compare the obtained solutions
at t = T for the SB, FKV, FM, and FKZ models to their corresponding relaxation functions
(7), (9), (11) and (13). The FPT and QLV models are not analyzed in this step since their time-
dependent stress relaxation functions are not readily available, and they are instead analyzed under
the monotone strains. The obtained results are illustrated in Figure 3a, where an expected linear
convergence behavior is obtained for all models when the error is evaluated at the end point, given
the non-smooth nature of the applied step strain in the stress relaxation solution.
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(a) Stress relaxation test.
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(b) Monotone strain test - FQLV.

Figure 3. Convergence analysis for the fractional viscoelastic models with known analyti-
cal solutions: (a) a stress relaxation test with non-smooth step-strains and material parameters
(E1,E2,E3) = (1, 1, 1) and (β1, β2, β3) = (0.3, 0.7, 0.1) yielding first-order convergence; (b) conver-
gence for the FQLV model with a fabricated solution of linearly increasing strains and material
properties (E, A, B) = (1, 1, 1) and varying β. The slopes of the error curves are q ≈ 2− β.
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For the monotone strain case, we set T = 1 and fabricate a solution for strains in the form
ε(t) = εT(t/T) with the total applied strain fixed at ε f = 1. Since analytical solutions for all
fractional viscoelastic models are difficult to obtain, we compute a reference solution for each model
with ∆t = 2−17 [s]. Particularly for the FQLV model, we utilize the fabricated strain function ε(t)
to obtain the following analytical stress solution:

σQLV∗(t) = EABβ exp(Bt)
[

1− Γ(1− β, Bt)
Γ(1− β)

]
, (61)

where Γ(·, ·) denotes the upper incomplete gamma function. The convergence results for all fractional
viscoelastic models with respect to the reference numerical solution are presented in Figure 4, while
the results for the FQLV model with the analytical solution are illustrated in Figure 3b. We observe
for both cases that the accuracy of the implemented and developed schemes is of orderO(∆t2−β). We
note that although we have employed a trapezoid rule for the exponential term in the FQLV model,
we do not obtain a second-order convergence, since the accuracy is limited by the L1 approach. The
difference in error slopes among models in Figure 4 is due to the highest fractional order assigned to
each model. For the SB and FQLV models, the fractional order is set as β = 0.3, and therefore, the
observed slope is q ≈ 1.7. For all remaining models and choice of fractional orders, the error slopes
are determined by the fractional derivative of the highest order, which is β2 = 0.7 in this example,
yielding q ≈ 1.3.
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Figure 4. Convergence analysis for all fractional viscoelastic models with (E1,E2,E3) = (1, 1, 1) and
(β1, β2, β3) = (0.3, 0.7, 0.1). A cubic strain function was employed with a reference solution using the
time step size ∆t = 2−17. A monotone loading test with the convergence rate of q ≈ 1.3 was applied
for all models.

Example 2 (Convergence of fractional visco-plastic algorithms). The purpose of this example
is to demonstrate the conditions where the presented plastic slip discretization (53), the form
(58) from [14] and their associated return-mapping algorithms are equivalent, and also provide a
numerical estimate for their difference when such conditions are not satisfied. For this purpose,
we test a monotone load where an analytical solution is available and a case with a cyclic load
under high strain rates. For both cases, we set an SB viscoelastic part with E = 50 [Pa.sβE ], and
K = 5 [Pa.sβK ].

For the monotone strain case, we start with a fabricated solution for strains in the form
ε(t) = At3 with A = εT/T3 [s−3]. Here, ε f denotes the total applied stress, and T represents
the final simulation time. Utilizing the result of Proposition 1 and setting βE = βK = 0 and
σY = H = 0, we obtain the following analytical solution for stresses:

σ∗(t) =
6 AEK
E+K

t3−βE

Γ(4− βE)
. (62)
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We should note that the proposed fabricated solution ensures no internal variable is a linear function
and, therefore, not computed exactly by the L1 discretization. We set εT = 1 and T = 1 [s],
and therefore, A = 1 [s−3]. Table 1 presents the obtained convergence results for the fabricated
solution (62) for both return-mapping algorithms and under the same fractional-orders βE and βK.
We observe that the errors coincide for this particular case, while the accuracy of order O(∆t2−β)
of the L1 approach is also achieved. The computational times are illustrated in Figure 5, where the
developed fractional return-mapping approach, when using an SB viscoelastic element, is about 50%
faster than the original return-mapping approach from [14] since about half of the history terms
need to be computed.

Table 1. Convergence behavior for the return-mapping Algorithm 1 obtained in this work and the
original approach from [14] for an FVEP device with an SB element.

βE = βK = 0.1 βE = βK = 0.5 βE = βK = 0.9

∆t err(∆t) Order err(∆t) Order err(∆t) Order

2−9 3.2426× 10−6 – 9.2971× 10−5 – 1.3246× 10−3 –
2−10 9.1853× 10−7 1.8197 3.3109× 10−5 1.4895 6.1875× 10−4 1.0981
2−11 2.5845× 10−7 1.8294 1.1763× 10−5 1.4929 2.8884× 10−4 1.0991
2−12 7.2323× 10−8 1.8374 4.1731× 10−6 1.4951 1.3479× 10−4 1.0995
2−13 2.0145× 10−8 1.8440 1.4788× 10−6 1.4966 6.2895× 10−5 1.0998
2−14 5.5891× 10−9 1.8497 5.2369× 10−7 1.4977 2.9344× 10−5 1.0999
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Figure 5. CPU times for the developed fractional return-mapping algorithm and the original one [14]
for an SB viscoelastic part. The black line has slope q = 2.

Similar results are obtained for the monotone loading condition; however, this is not the case
under general loadings. To demonstrate the difference between the visco-elasto-plastic discretization
σn+1 developed in this work and σ̄n+1 from [14], we take the latter as a reference solution with
∆t = 2−19 [s], and T = 1 [s]. We also consider σY = 10 [Pa], βE = 0.3, and βK = 0.7 with the
same pseudo-constants as in the previous test case. A constant rate loading/unloading cyclic strain
test of the following form is employed:

ε(t) =
2εA
π

arcsin(sin(2πωt)), (63)

where we consider a strain amplitude εA = 0.25 and two strain frequencies of ω = 1 [Hz], and
ω = 60 [Hz]. The difference between both approaches is illustrated in Figure 6. Here, higher
frequencies result in higher strain rates and consequently a significant plastic strain history even
after a number of hysteresis cycles. The obtained results confirm the estimates from (59), which is
already valid at the onset of plasticity. Furthermore, we observe that a tenfold increase in strain
rates approximately leads to a tenfold increase in the difference between both algorithms.
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(a) Reference solution.

10
-6

10
-5

10
-4

10
-3

t

10
-4

10
-3

10
-2

10
-1

e
rr

N
(

 t
)

1 cycle

60 cycles

(b) End point error between both approaches.

Figure 6. Comparison between the presented return-mapping algorithm and the reference approach
from [14] under low- and high-frequency loading.

Example 3 (Convergence of fractional visco-elasto-plasticity). Finally, we perform a verifica-
tion on the entire fractional visco-elasto-plastic framework under cyclic strain. Since no fabricated
solutions are available, we employ reference solutions with time step size ∆t = 2−18 [s]. Let
T = 1 [s] with the same applied strains (63) as in the previous example. The viscoelastic material
parameters are set to (E1,E2,E3) = (50, 50, 50), and (β1, β2, β3) = (0.3, 0.7, 0.1). In addition,
the visco-plastic parameters are taken as K = 5, βK = 0.7, H = 0, and σY = 1. Figures 7 and 8
illustrates the obtained convergence results, where all models except the FKV one showed a conver-
gence rate of order q ≈ 1.3, which is compatible with the employed L1 discretization scheme and
given β2 = βK = 0.7. The FKV model achieved linear asymptotic convergence for the considered
example, which is the expected worst case scenario from the backward-Euler discretization of internal
variables. We believe the difference in convergence behavior between the FKV model and the others
could be due to the sharper response of the FKV model because of the stiffer rheology combined
with the nonlinear loading/unloading response. This combination of effects could result in a lower
solution regularity and therefore, a lower convergence rate.
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Figure 7. Convergence analysis for the fractional visco-elasto-plastic models under cyclic loads. Due
to the particular choice of fractional orders (with β2 = βK = 0.7 being dominant), we observed the
convergence rate of q ≈ 1.3 for all models except for the FKV. In the latter case, we observed a linear
convergence to the reference solution.
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Figure 8. Visco-elasto-plastic reference solutions for the employed models for the first 30 loading
cycles. We noticed a similar behavior for most models under the choice of material parameters
except for the FPT and FKV models. The FKV particularly yielded a very stiff response due to the
combination of high fractional order values and high strain rates.

7. Conclusions

We proposed a general return-mapping procedure for multiple power-law, time-
fractional visco-elasto-plastic materials. The developed framework provided a flexible way
to integrate multiple known fractional viscoelastic models that are representative of soft ma-
terials rheology to power-law visco-plastic hardening and permanent strains. Furthermore,
a nonlinear viscoelasticity, suitable for bio-tissues, was considered through a fractional
quasi-linear Fung’s model, which allowed the possibility of plasticity onset after substantial
amounts of viscoelastic strains. The main features of the proposed framework are:

• The trial states were taken after full discretization of stress and internal variables,
which allowed a straightforward decomposition of the yield function into the final
and trial states.

• The developed return-mapping procedure is fully implicit for linear viscoelastic
models and semi-implicit for quasi-linear viscoelasticity. For simplicity, the chosen
numerical discretization for fractional derivatives was an L1 finite-difference approach.

• Our correction step for visco-plasticity had the same structure for all viscoelastic
models with the only difference being a scaling discretization constant.

• We carried out numerical experiments with analytical and reference solutions that
demonstrated the O(∆t2−β) global accuracy, surprisingly even in some instances with
general loading/unloading conditions.

• The developed return-mapping discretization was compared to an existing approach,
and the difference between discretizations relied on cases with extensive plastic history
and high strain rates.

Regarding the computational costs, the framework is computationally tractable since
it does not involve history calculations for the plastic slip and is therefore about 50% faster
than the existing fractional frameworks, regardless of the employed numerical discretiza-
tion for fractional derivatives. Extensions on fast numerical schemes of order O(N log N)
for the employed time-fractional derivatives would be straightforward to implement. We
also note that the thermodynamics of all models in the developed framework can be
analyzed through the approach developed in [16].

The modeling framework developed here could be applied to simulate the self-similar
structures and memory-dependent behavior in human bio-tissues [3,35,36]. The visco-
elasto-plastic characteristics can be observed in different bio-tissues in the human body,
specifically due to the process of aging. Aging results in the oxidation or loss of elastin,
which leads to the loss of tissue elasticity such as in the vocal fold tissues [37,38]. Further-
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more, in terms of multi-scale modeling, the lumped plastic behavior introduced here could
potentially be coupled with existing discrete dislocation dynamics (DDD) models [39,40].
The models developed in this work uniquely qualify for simulating such characteristics,
which will be undertaken in our future work.
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Appendix A. Proof of Proposition 1

Proof. Similar to the derivation of the tangent elasto-plastic modulus in classical plas-
ticity [32], we start by taking the time derivative of the yield function to enforce the
persistency condition:

ḟ (σ, α) =
d
dt

{
|σ(t)| −

[
σY +K C

0D
βK
t α(t) + Hα(t)

]}
(A1)

= sign(σ)σ̇(t)−
[
K d

dt
C
0D

βK
t α(t) + Hα̇(t)

]
.

Using the SB stressd–strain relationship (6), we obtain:

ḟ (σ, α) = sign(σ)E
[

d
dt

C
0D

βE
t ε(t)− d

dt
C
0D

βE
t εvp(t)

]
−
[
K d

dt
C
0D

βK
t α(t)+Hα̇(t)

]
. (A2)

Employing definition (3) for the Caputo derivative, performing integration by parts and
employing the Leibniz integral rule, we obtain:

d
dt

C
0D

β
t u(t) =

1
Γ(1− β)

d
dt

∫ t

0

u̇(s)
(t− s)β

ds (from(3))

=
1

Γ(1− β)

d
dt

[
u̇(s)

(t− s)1−β

1− β

∣∣0
t +

∫ t

0

(t− s)1−βü(s)
1− β

ds
]

=
u̇(0)t−β

Γ(1− β)
+

1
Γ(1− β)

∫ t

0

ü(s)
(t− s)β

ds

=
u̇(0)t−β

Γ(1− β)
+ C

0D
β
t u̇(t). (A3)

Substituting (A3) into (A2), setting γ̇(0) = 0, and therefore α̇(0) = 0 from (23) and
ε̇vp(0) = 0 from (22), we obtain:

ḟ (σ, α) = sign(σ)E
[

ε̇(0)t−βE

Γ(1− βE)
+ C

0D
βE
t ε̇(t)− C

0D
βE
t ε̇vp(t)

]
−KC

0D
βK
t α̇(t)− Hα̇(t). (A4)
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Finally, substituting (23) and (22) into (A4), and enforcing the persistency condition
ḟ (σ, α) = 0, we obtain:

E C
0D

βE
t γ̇(t) +K C

0D
βK
t γ̇(t) + Hγ̇(t) = sign(σ)E

[
ε̇(0)t−βE

Γ(1− βE)
+ C

0D
βE
t ε̇(t)

]
. (A5)

Appendix B. Discretization Constants and Terms for Fractional Viscoelastic Models

Scott-Blair:
CSB

1 =
E

∆tβ1 Γ(2− β1)
(A6)

Fractional Kelvin–Voigt:

CKV
1 =

E1

∆tβ1 Γ(2− β1)
, CKV

2 =
E2

∆tβ2 Γ(2− β2)
(A7)

Fractional Maxwell:

CM
1 =

E2

∆tβ2 Γ(2− β2)
, CM

2 =
E2/E1

∆tβ2−β1 Γ(2− β2 + β1)
(A8)

Fractional Kelvin–Zener:

CKZ
1 =

E2

∆tβ2 Γ(2− β2)
, CKZ

2 =
E3

∆tβ3 Γ(2− β3)
(A9)

CKZ
3 =

E2E3/E1

∆tβ2+β3−β1 Γ(2− β1 − β3 + β2)
, CKZ

4 =
E2/E1

∆tβ2−β1 Γ(2− β2 + β1)
(A10)

Fractional Poynting–Thomson:

CPT
1 =

E1

∆tβ1 Γ(2− β1)
, CPT

2 =
E2

∆tβ2 Γ(2− β2)
(A11)

CPT
3 =

E1/E3

∆tβ1−β3 Γ(2− β1 + β3)
, CPT

4 =
E2/E3

∆tβ2−β3 Γ(2− β2 + β3)
(A12)

Fractional Quasi-Linear viscoelastic:

CQLV
1 =

EAB
∆tβΓ(2− β)

(A13)

Appendix C. Return-Mapping Derivation for the Fractional Kelvin–Zener Model

Recalling the discretized FKV model (33) employed as the viscoelastic part of the
visco-elasto-plastic model:

σn+1 = (1 + CKZ
4 )−1

[
CKZ

1

(
∆εve

n+1 +Hβ2 ε
)
+ CKZ

2

(
∆εve

n+1 +Hβ3 εve
)

+CKZ
3

(
∆εve

n+1 +Hβ2+β3−β1 εve
)
+ CKZ

4

(
σn −Hβ2−β1 σ

)]
, (A14)

where with the kinematic relationship (38) and the viscoplastic strain evolution (39), we
note that ∆εve

n+1 = ∆εn+1 − ∆γn+1 sign(σn+1). Therefore, (A14) becomes:
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σn+1 =(1 + CKZ
4 )−1

[
CKZ

1

(
∆εn+1 +Hβ2 ε

)
+ CKZ

2

(
∆εn+1 +Hβ3 εve

)
+CKZ

3

(
∆εn+1 +Hβ2+β3−β1 εve

)
+ CKZ

4

(
σn −Hβ2−β1 σ

)
−
(

CKZ
1 + CKZ

2 + CKZ
3

)
∆γn+1 sign(σn+1)

]
. (A15)

Recalling the trial state for the FKZ model:

σtrial
n+1 =(1 + CKZ

4 )−1
[
CKZ

1

(
∆εn+1 +Hβ2(ε− εvp)

)
+ CKZ

2

(
∆εn+1 +Hβ3(ε− εvp)

)
+CKZ

3

(
∆εn+1 +Hβ2+β3−β1(ε− εvp)

)
+ CKZ

4

(
σn −Hβ2−β1 σ

)]
(A16)

which, by combining the above two equations, we find:

σn+1 = σtrial
n+1 − sign(σn+1)

(
CKZ

1 + CKZ
2 + CKZ

3

1 + CKZ
4

)
∆γn+1. (A17)

Finally, we obtain the loading/unloading sign consistency by following standard
plasticity procedures:

sign(σn+1)|σn+1| = sign(σtrial
n+1 )|σtrial

n+1 | − sign(σn+1)

(
CKZ

1 + CKZ
2 + CKZ

3

1 + CKZ
4

)
∆γn+1, (A18)

therefore,

sign(σn+1)

[
|σn+1|+

(
CKZ

1 + CKZ
2 + CKZ

3

1 + CKZ
4

)
∆γn+1

]
= sign(σtrial

n+1 )|σtrial
n+1 |, (A19)

since both terms multiplying the sign functions on the left and right sides of the above equa-
tion are positive, we therefore conclude that sign(σn+1) = sign(σtrial

n+1 ), and hence (A17) be-
comes:

σn+1 = σtrial
n+1 − sign(σtrial

n+1 )

(
CKZ

1 + CKZ
2 + CKZ

3

1 + CKZ
4

)
∆γn+1, (A20)

which completes the derivation.
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