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Abstract: The detection and characterization of electrode performance is a key problem of lithium-ion
batteries. The physical properties of the electrodes affect the charge density during the life of a battery.
The charge density is difficult to monitor because of the complexity of the charge distribution. In this
paper, a visualized fractional derivative order (FDO) is used to characterize the charge distribution
and to reveal variations in the charge density associated with the physical properties of the electrode.
Instantaneous discharge datasets collected at different aging stages of batteries are used to identify the
FDO in the fractional derivative model. The results show that the FDO has a strong correspondence
with the charge density. As the charge density decreases, the charge mobility gradually increases
due to changes in the charge distribution. Moreover, this paper finds that the capacity recovery
effect is closely related to the mutation of the charge density and uses the FDO to explain the charge
accumulation at the sharp edges of the electrodes. The analysis of the charge density variation caused
by the physical properties of the electrodes provides guidance for the detection of the electrode
performance and the design of the electrode microstructure.

Keywords: fractal distribution; fractional derivative model; charge density; electrode performance

1. Introduction

Lithium-ion batteries play a vital role in the functional integrity of entire systems and
the ability to properly perform operational tasks [1,2]. The performance of batteries is
closely related to the charge density on the electrodes [3–5]. The charge density changes
with the remaining useful life of the battery due to changes in the physical properties of
the electrodes [6,7]. Research on the charge density of electrodes can reveal the dynamic
behavior inside the battery during the whole life cycle [8,9]. If the mechanism governing
changes in the charge density can be monitored, the operating conditions of electric vehicles
can be adjusted according to their actual operation, and the degradation rate of batteries
can be effectively reduced. The study on the charge density variation of the electrodes can
be used to detect the performance of the electrodes and provide guidance for the design of
the electrode microstructure. In addition, the charge density of the electrodes affects the
state of charge (SOC), aging, and capacity of the lithium-ion battery. Studying the charge
density of the electrodes is of great significance to the SOC estimation, life estimation, and
capacity estimation of batteries.

The electrochemical test method is the main means to study the kinetics and interface
structure of electrodes [10–12]. The electrochemical model can reflect the internal dynamic
behavior of the battery by analyzing the relationship between the macroscopic data outside
the battery and the activity of the internal microscopic particles [13–15]. Cyclic voltammetry
is commonly used to analyze the nature, mechanism, and kinetic parameters of electrode
reactions [16–18]. Cyclic voltammetry clearly reveals the formation mechanism of the
solid electrolyte interface (SEI) film. Constant potential intermittent titration and constant
current intermittent titration are commonly used methods for determining the diffusion
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coefficient of electrode materials [19–25]. Electrochemical impedance spectroscopy (EIS)
is usually used to detect the influencing factors (ionic conductivity, ion diffusion, charge
transfer, charge absorption, passivation film, etc.) of electrode performance. This method
uses the measured impedance spectrum to study the electrode system, which can obtain
more kinetic and structure information of the electrode interface than other conventional
methods [26–30].

The equivalent circuit model is also frequently used to analyze the dynamic effects
of batteries because it is accurate and concise. With the rise of fractional calculus theory,
the fractional-order modeling method is introduced into the equivalent circuit model.
Compared with the integer-order model, the dynamic characteristics of the lithium-ion
battery described by the fractional-order model are more complete, and the state estimation
of the lithium-ion battery based on the fractional-order model is more accurate [31–34].
M. Yu et al. [35] built a fractional-order equivalent circuit model based on electrochemical
testing methods and used an iterative learning algorithm to optimize the parameters in
the model. Y. Jia et al. [36] established a fractional-order model considering the electrolyte-
phase diffusion of the battery and designed a new method to identify the system parameters.
L. Zhang et al. [37] proposed a multi-domain parameter identification method based on a
fractional-order model and applied an intelligent optimization algorithm to identify the
parameters of the model.

The charge distribution on the porous fractal electrodes is difficult to characterize
clearly. The charge on the porous electrode interacts with its adjacent charges. The conven-
tional test method for detecting the charge density interferes with the interaction between
charges, thereby disrupting the original charge distribution on the electrode. The charge
distribution on the electrodes is not visually evident and is difficult to monitor directly in
the process of dynamic charging and discharging.

The porous electrode exhibits self-similarity on the microscopic scale of the material,
which exhibits a fractal dimension in the spatial dimension [38]. The charges of the
same symbol on the electrode have a mutually exclusive effect, and the distribution of
charges needs to satisfy the principle of minimum potential energy. Therefore, the charge
distribution on the porous electrodes has fractal characteristics. A fractional derivative
order (FDO) in the fractional derivative model of batteries can characterize the fractal
distribution of the charges. Due to the change in the physical properties of electrodes
during battery aging, the charge density of the electrodes gradually changes throughout
the life cycle of the battery. The variation in the charge density causes a change in the fractal
distribution of the charges. Therefore, the FDO characterizing the fractal distribution of
charges changes with the remaining life of the battery.

The FDO is used in this paper to characterize the changes in the charge density.
A fractional-order differential equation is established to simulate the charge distribution of
the electrodes. Then, the instantaneous discharge datasets of batteries at different states of
charge (SOCs) and cycle numbers are collected. Based on the optimization method, the FDO
is identified using the collected current–voltage signal. The results show that there is a
correspondence between the FDO and the charge density. As the charge density decreases,
the charge mobility gradually increases due to changes in the physical properties of the
electrodes, and the corresponding FDO increases. The FDO can be used as an indicator of
the charge density and can be used to characterize the charge distribution, which cannot be
directly detected. Finally, the FDO is used to explain the capacity of recovery phenomenon
caused by the mutation of the charge density. The contribution of this paper is summarized
as follows:

• The monitoring method for the charge density is a non-destructive testing method.
The amount of data collected during the instantaneous discharge is small, and the
battery does not need to be fully discharged. The proposed method is a fast and
effective monitoring method, which is of great significance for battery performance
detection in actual operation.
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• The fractional derivative model is used to characterize the fractal distribution of the
charges, and the FDO is used to reveal changes in the charge density.

• This paper explains the capacity recovery phenomenon from the perspective of the
physical properties of electrodes.

• The study on the charge density variation of the electrode provides guidance for the
detection of electrode performance and the design of electrode microstructure.

The remainder of this paper is organized as follows: In Section 2, the charge distribu-
tion of electrodes is studied. In Section 3, the battery model is built. In Section 4, the battery
tests are performed. The FDO is identified in Section 5. Section 6 reveals the capacity
recovery of the batteries. The conclusion is given in Section 7.

2. Charge Distribution on the Porous Electrodes

When a battery in the stationary state is exposed to an initial instantaneous drawn
current, the lithium ions decomposed from the lithium–carbon interlayer compound disso-
ciate into the solid electrolyte. Subsequently, the lithium ions pass through the separator
to reach the surface of the cathode [39]. At the same time that lithium ions begin to move
freely, the electrons pass from the anode to the cathode as driven by the external load.
The movement of electrons causes charge to accumulate on the electrodes. The accumula-
tion of charge causes the potential of the electrode to deviate from the initial equilibrium
state [40–42]. On the other hand, the electrode reaction absorbs the charge accumulated on
the electrode, causing the potential of the electrode to return to equilibrium. The electrode
reaction includes the ion transport, ion diffusion at the interface of electrode, ion migration
in the solid electrolyte membrane of the electrode, electrochemical reactions, ion diffusion
in the solid phase, etc. [43,44].

Figure 1 shows the electric potential difference between the electrodes when the battery
is discharged by an initial instantaneous load current. The battery has been left to stand for
a while before the discharge test to stabilize the internal state. The current is loaded from
time T1 to time T2 in Figure 1. The duration of the instantaneous discharge of the battery is
short, and the complicated interfacial reaction between the electrode and the electrolyte
has a hysteresis effect. In the instantaneous discharge process of the battery, the dynamical
effects mainly depend on the charge accumulation at the electrodes, whereas the complex
reaction between the electrodes and electrolyte interface accounts for a small proportion.
This paper focuses on the accumulation phenomenon on the electrode and omits discussion
of the electrode reaction.

Figure 1. Potential difference between electrodes when the battery is loaded with an initial instanta-
neous current.

The porous electrode exhibits the property of self-similarity on the microscopic scale
of the material, which exhibits a fractal dimension in space. The charges are arranged in
a fractal morphology on the porous electrode. Therefore, the charge accumulation on the
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porous electrode cannot be appropriately characterized by an ideal pure capacitor showing
integer-order characteristics. A fractional capacitor can characterize the fractal distribution
of the charges on the porous electrode. The impedance expression of the fractional capacitor
can be expressed in the following form [45]:

Z(jw) =
1

C f (jw)α
(1)

where C f (C f ∈ R) is the coefficient of the fractional capacitor and α (0 < α < 1) is the
FDO. According to the characteristics of the fractional derivative definition, when the FDO
is equal to 0, the fractional capacitor represents a resistor. When the FDO is equal to 1,
the fractional capacitor represents an ideal pure capacitor [46–48].

In the life cycle of a battery, the fractal distribution of the charges on a porous electrode
can be divided into two forms from the perspective of physical properties: the charge
distributions at high density and those at low density. The fractal distribution of the
charges can be approximately simulated as shown in Figure 2. Figure 2a shows the charge
distribution at a high charge density, whereas Figure 2b shows the charge distribution at a
low charge density.

(a)

(b)

Figure 2. Fractal distribution of the charges on the porous electrodes: (a) high charge density; (b) low
charge density.

When the charge density on the porous electrode is large, charge carriers partially in-
trude into the interior of the porous electrode due to the mutual repulsion of the same−sign
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electric charges. The flow of charge intruding into the porous electrode is hindered by the
adjacent charge, and thus, the overall mobility of the charge at a high charge density is poor.
As a result, when the charge density is large, the electrode exhibit resistance characteristics,
and the fractional capacitor characterizing the fractal distribution of charges converts into
a resistor. More specifically, when the charge density is large, the FDO of the fractional
capacitor tends towards 0.

Conversely, when the charge density on the electrode is small, the charges are mainly
distributed on the surface of the electrodes. The flow resistance of the charges is reduced,
and the charges on the electrodes exhibit strong mobility. At this moment, the arrangement
of charges on the electrodes is similar to that of a pure capacitor. Therefore, when the
charge density of the electrode is very small, the resistance characteristics of the electrode
are weakened, and its capacitance characteristics are enhanced. As the charge density
decreases, the fractional capacitor characterizing the charge distribution converts into a
pure capacitor, and its corresponding FDO converges towards 1.

The charge distributions at high charge density and low charge density correspond
to two different physical properties of the electrode. During the life cycle of a battery,
the charge distribution changes between a high charge density state and a low charge
density state due to changes in the physical properties of the electrode. Variations in the
charge density change the fractal distribution of the charges, which in turn change the
FDO of the fractional capacitor. Therefore, the change in the charge distribution can be
characterized by the visualized FDO of the fractional capacitor, as shown in Equation (1).
The FDO can be used as an indicator of the charge distribution to detect variations in the
charge density. To reveal the specific changes in the charge density of the electrode over the
whole life cycle of the battery, it is necessary to identify the FDO over the different aging
stages of the batteries.

3. Battery Modeling

An equivalent circuit of the fractional derivative model of batteries can be used to
simulate the output voltage of batteries under an instantaneous load current, which is
shown in Figure 3. The equivalent circuit in Figure 3 is used to simulate the voltage response
between time T1 and time T2 in Figure 1. In Figure 3, R0 represents the ohmic impedance
caused mainly by current collectors, the separator, and solid electrolytes; R1 represents
the depolarization effect, which is a simplification of complex electrode reactions; the
fractional capacitor characterizes the charge accumulation phenomenon; I represents the
instantaneous load current; Uocv represents the open circuit voltage; U f represents the
voltage across the fractional capacitor; and Ut represents the output voltage. The continuous
state equation and output equation of the equivalent circuit of the fractional derivative
model of batteries can be written as [49–51]DαU f =

I
C f
−

U f

R1C f

Ut = Uocv − IR0 −U f

(2)

where D is the derivative operator.
Equation (2) can be converted to the form of state-space functions{

Dαx = Ax + BI

y = Cx + DI
(3)

where x = [U f ], y = [Ut −Uocv], A = [−1/R1C f ], B = [1/C f ], C = [−1], and D = [−R0].
Equation (3) can be further discretized into the following forms:{

Dαxk+1 = Axk + BIk

yk = Cxk + DIk
(4)
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where Ik ∈ R and yk ∈ R are the input and output of the system at time k, respectively.

Figure 3. Equivalent circuit of the fractional derivative model of a battery under an instantaneous
load current.

In the development of fractional calculus theory, a variety of fractional calculus defini-
tions with different solutions have been presented [46,47,50,51]. The Grünwald–Letnikov
fractional-order derivative definition is the most direct and commonly used numerical
method for solving fractional calculus, and it is also applied to solve the solution of the
proposed fractional discrete state space function of the potential difference between the
electrodes. The Grünwald–Letnikov fractional derivative for state x at time step k is given
as follows:

Dαxk =
1

Tα
s

k

∑
j=0

(−1)j
(

α

j

)
xk−j

(
α

j

)
=


1 j = 0

α(α) . . . (α− (j− 1))
j!

j > 0

(5)

where Ts is the calculating step length, j is the distance, and k is the requested sam-
ple amount.

According to the Grünwald–Letnikov fractional-order derivative definition,
Equation (4) can be written as

Dαxk+1 =
1

Tα
s

k+1

∑
j=0

(−1)j
(

α

j

)
xk+1−j

=
1

Tα
s
(−1)0

(
α

0

)
xk+1−0 +

1
Tα

s

k+1

∑
j=1

(−1)j
(

α

j

)
xk+1−j

=
1

Tα
s
[xk+1 +

k+1

∑
j=1

(−1)j
(

α

j

)
xk+1−j].

(6)
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Equation (6) can be further converted into the following form:

xk+1 = Tα
s Dαxk+1 −

k+1

∑
j=1

(−1)j
(

α

j

)
xk+1−j

= Tα
s (Axk + BIk)−

k+1

∑
j=1

(−1)j
(

α

j

)
xk+1−j.

(7)

Finally, the output equation of the presented model can be discretized as

yk = Cxk + DIk (8)

Equations (7) and (8) constitute the fractional discrete output equation and state
equation of the battery model, respectively.

4. Experiment

To study the variation in the FDO in the life cycle of the batteries, a battery test
platform is established to collect a battery-related dataset. First, an SOC test of the battery
is performed, and the data of the instantaneous discharge are collected at different battery
SOCs. Then, a battery aging test is carried out to collect a dataset of the instantaneous
discharge properties at different cycle numbers of the batteries.

4.1. Test Platform

The battery test platform consists of a temperature chamber, a battery tester (Arbin
Instruments, College Station, TX, USA), a signal control and measurement unit, a conversion
unit, a computer, and lithium-ion (LiNixMnyCozO2) batteries. The Arbin BT2000 tester
collects the charge/discharge data of batteries at a fixed frequency and then stores the data
on the computer through the conversion unit. The Arbin BT2000 test system has special
monitoring software for the upper computer, which can realize complex programmable
load control, arbitrary load power control, current control, etc. The measured data and
calculated values can be displayed and stored dynamically in real time. The collected
data mainly include the discharge current, capacity, terminal voltage, time interval, and
temperature. The scheme of the test platform of lithium-ion batteries is shown in Figure 4.

Figure 4. The scheme of the test platform of lithium-ion batteries.

Part of the appearance specifications of the lithium-ion battery to be tested are shown
in Table 1.

Table 1. Part of the appearance specifications of the lithium-ion battery.

Battery Nominal
Capacity (Ah)

Discharge
Cut-Off

Voltage (V)

Charge Cut-Off
Voltage (V)

Operating
Temperature

(◦C)

LiNixMnyCozO2 10 2.2 4.2 25
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4.2. Battery SOC Test

To study the variation in the FDO for different SOCs, three lithium-ion batteries of the
same specification, labelled Nos. 001, 002, and 003, are tested at a constant temperature
(25 ◦C). The batteries are charged at a constant current (CC) of 0.5 C until the terminal
voltage reaches the charge cut-off voltage. Then, the batteries are continuously charged at a
constant-voltage (CV) mode until the charging current drops to 0.5 A, at which point the
charging process is ended. Finally, the batteries are allowed to stand for 1 h. During the
discharge process, the entire SOC of the battery is divided into 20 segments, and the
batteries are discharged with the instantaneous current for every 5% of the SOC. The specific
details of the discharge process of the SOC test are as follows:

1. The batteries are discharged with an initial instantaneous load current of 1 C for a
duration of 45 s. The current is loaded from time T1 (31st s) to time T2 (75th s).

2. The applied load is cut off, and the batteries are left to stand for 5 min.
3. The batteries are discharged by a constant current of 0.5 C until the battery SOC drops

by 5%.
4. The applied load is cut off, and the batteries are left to stand for 35 min.
5. Repeat steps 1, 2, 3, and 4 until the battery SOC is 0%, at which point the SOC test of

the batteries is ended.

4.3. Aging Test

To study the variation in the FDO at different aging stages of batteries, battery Nos.
001, 002, and 003 are tested at a constant temperature (25 ◦C). The instantaneous discharge
test is carried out at different charging/discharging cycles. The specific details of the aging
test are as follows:

1. The batteries are charged at a constant current of 0.5 C until the voltage reaches the
charge cut-off voltage. Then, the batteries are continuously charged in CV mode until
the charging current drops to 0.5 A. Subsequently, the batteries are allowed to stand
for 1 h. The charging capacity of the battery is recorded.

2. The batteries are discharged with an initial instantaneous current of 1 C for a duration
of 45 s. The current is loaded from time T1 (31st s) to time T2 (75th s).

3. The applied load is cut off, and the batteries are left to stand for 5 min.
4. The batteries are discharged with a constant current of 0.5 C until the SOC drops

to 0%.
5. The applied load is cut off, and the batteries are left to stand for 35 min.
6. Fifty charge/discharge cycles of batteries are performed in the constant current–

constant voltage (CC-CV) mode. The batteries are first charged to the charge cut-off
voltage by the CC-CV mode. Then, the batteries are discharged to the discharge
cut-off voltage by the CC mode of 0.5 C and continue to be discharged by the CV
mode until the current is less than 0.5 A.

7. Repeat all the above steps until the capacity drops by 30%, at which point the aging
test is ended.

Figure 5 shows the output voltage of instantaneous discharge of battery No. 001 at
different SOCs and different cycle numbers. The sampling frequency of the battery tester
is 10 Hz, and the curves shown in Figure 5 are interpolated. The instantaneous current is
loaded from time T1 to time T2 in Figure 5. The dataset acquired during the instantaneous
discharge at each SOC and cycle number is used to identify the FDO.

The voltage response at 0% SOC exhibits a high nonlinearity and is therefore excluded
from the research. In the battery aging test, the total number of charge/discharge cycles of
the batteries is 825.
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(a)

(b)

Figure 5. Output voltage of the instantaneous discharge of battery No. 001: (a) at different SOCs;
(b) at different cycle numbers.

5. Identification of the FDO

The FDO is identified using the least squares method. Subsequently, the variations in
the FDO at different SOCs and cycle numbers are analyzed.

5.1. Identification Method

The least squares method is a commonly used mathematical optimization method,
which can obtain the optimal matching of a function of the collected dataset by minimizing
the sum of squared errors [52,53]. The least squares method is suitable for static, dynamic,
linear, and nonlinear systems and is also adopted in this section. The battery in the
discharge state is considered a dynamic system. The instantaneous current is used as
the input of the system, and the estimated voltage is seen as the output of the system.
The error between the estimated voltage and the measured voltage is used as an indicator
for evaluating the accuracy of the model. The purpose of identification is to search for the
optimal variable FDO in the fractional-order differential equation. The optimization criteria
for the fractional-order differential equation can be expressed as [42,54]

Fit = min
{
∑T

k=T0
[yk − ŷk]

2
}

(9)

where ŷk is the estimated output voltage and yk is the measured output voltage at time k.
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The resistance R0 is calculated by the voltage drop at the initial time point of the
discharge test. Different from other parameters in the fractional derivative model, the varia-
tion in the FDO in the fractional-order differential equation characterizes different dynamic
behaviors of the electrodes. In the identification process of the fractional derivative model,
it is not appropriate to identify the FDO together with other parameters. Hence, the FDO
is individually identified by the least squares method. The coefficient C f of the fractional
capacitor is selected according to the characteristics of the tested battery and is used as a
constant. The basic operation steps of the least squares method are as follows:

• The boundary values of the FDO α and resistance R1 are set, and a series of random
FDOs and resistances are generated from the uniform distribution. The initial values
of α and R1 are selected at 0.5.

• The values of the coefficient C f and the ohmic resistance R0 are set.
• The current series (I = [Ik|k = 1, 2, . . . , n]) of the instantaneous discharge collected

by the experimental platform are substituted into the fractional-order differential
equation to calculate the estimated voltage (ŷ = [ŷk|k = 1, 2, . . . , n]).

• The measured voltage (y = [yk|k = 1, 2, . . . , n]) and estimated voltage between time
T1 and time T2 are fitted by the optimization algorithm.

• The objective function is calculated according to the error between the measured
voltage and the estimated voltage.

• The objective function is optimized iteratively to determine the optimal FDO α and
resistance R1 so that the fitting error reaches the minimum value.

The instantaneous discharge datasets at different SOCs and charge/discharge cycles
are used to identify the corresponding FDO.

5.2. Identification Results

The fitting result of the output voltage under the instantaneous current is shown in
Figure 6. Because the amount of collected data during the instantaneous discharge process
is small and the fractional derivative model is simplified, the entire identification process
consumes only a short time and requires minimal computation.

Figure 6. Fitting result of the output voltage of instantaneous discharge at the first cycle number
(battery No. 001).

Table 2 shows the resistance R0 and R1 at different SOCs, and Table 3 shows the
resistance R0 and R1 at different cycle numbers.
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Table 2. Resistance R0 and resistance R1 at different SOCs.

SOC/% 10 20 30 40 50 60 70 80 90 100

R0 (mΩ) 16.39 16.10 15.94 15.68 15.49 15.33 15.13 15.00 14.75 14.32
R1 (mΩ) 1.38 1.37 1.37 1.37 1.35 1.35 1.34 1.32 1.32 1.31

Table 3. Resistance R0 and resistance R1 at different cycle numbers (100% SOC).

Cycle 0 100 200 300 400 500 600 700 800

R0 (mΩ) 14.68 14.87 14.94 15.26 15.39 15.59 15.84 16.04 16.27
R1 (mΩ) 1.31 1.33 1.33 1.34 1.35 1.35 1.35 1.37 1.37

The FDOs identified at different SOCs and at different cycle numbers are shown in
Figure 7. Figure 7a shows the FDOs identified at different SOCs, and Figure 7b shows the
FDOs identified at different cycle numbers. The coefficient C f of the fractional capacitor is
set to 1000.

(a)

(b)

Figure 7. Identified FDO of the proposed battery model (C f = 1000): (a) at different SOCs; (b) at
different cycle numbers.
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As seen in Figure 7a, the FDO of the battery model increases monotonically as the SOC
decreases. The variation in the FDO characterizes the process of the electrode changing
from resistive behavior to capacitive behavior and the process of changing from a high
charge density state to a low charge density state. When the battery SOC is high, the charge
density of the electrode is large, and the amount of charge entering the inside of the
electrode is large. Therefore, the electrode exhibits resistive behavior, and its corresponding
FDO tends towards 0. As the SOC drops from 100% to 15%, the FDO increases slowly. This
phenomenon indicates that the resistive behavior component of the electrode is slowly
decreasing, and the amount of the same-sign electric charge intruding into the electrode
is gradually reduced. When the value of SOC is less than 15%, the slope of the SOC-FDO
curve increases significantly. At this stage, the capacitive behavior of the electrode increases
rapidly. At the end of the SOC test, the charge density of the electrode is small, and the
charges are mainly distributed on the surface of the electrodes. Therefore, when the SOC is
low, the FDO corresponding to the charge density on the electrode tends towards 1.

Figure 7b shows the variation in the FDO at different charge/discharge cycles of the
tested batteries. It can be seen from Figure 7b that the FDO is also monotonically increasing
with increasing cycle number, indicating the tendency for the electrode characteristics to
change from resistive to capacitive over the whole life cycle.

At the beginning of the life cycle of batteries, the charge density of batteries is large,
and the porous structure of electrodes is intact, which shows the strong fractal property.
A part of the charge invades the inside of the electrode, and the flow resistance of this
part of the charge is enhanced. The fresh battery exhibits resistive characteristics, and its
corresponding FDO tends towards 0.

As the battery ages, the fractal structure of the electrode changes due to the variation
in the dynamic behavior of the battery, and the charge on the porous electrodes rearranges
at the next cycling time. Some areas of the electrode active materials are damaged and can
no longer accept the insertion of active lithium ions as the battery ages [55–58]. The vol-
ume variation of each active particle is affected by adjacent active particles and inactive
components. In the charge and discharge process, the process of lithium intercalation leads
to the internal strain of particles, and some side reactions also cause strain in the particles,
resulting in deformation of the electrode structure. Moreover, heat is generated when
lithium ions are inserted into active materials, resulting in volume expansion of the active
particles. The fracture of these particles reduces the particle size and hinders electrolyte
deposition on the electrode surface [59]. All these aging phenomena result in variations in
the porosity of the electrode, leading to variations in the fractal distribution of charges on
the electrode.

In the cyclic aging test of batteries, there is a process from quantitative changes to
qualitative changes for the electrode characteristics. When the battery ages to a certain
extent, the surface of the electrode is broken down by the charges. At the end of the battery
life cycle, the charge is mainly distributed on the surface of the electrode, and the mobility
of the charge increases. Therefore, the identified FDO tends towards 1, and the electrode
shows capacitive characteristics.

The FDO can be used to reveal the variation in the charge density on porous electrodes.
The current magnitude and temperature during the aging test affect the value of the
identified FDO. The effect of temperature and current on the identified FDO has been
discussed in detail in our previous studies [42]. When the coefficient C f of the fractional
capacitor is set at different values, the correspondence between the FDO and the cycle
number is shown in Table 4.

It is worth noting that the battery is continuously charged and discharged in the aging
test, and the collection interval of the discharge test is relatively long. Therefore, the capacity
recovery effect of the battery in this section is not obvious, and the corresponding FDO has
no obvious fluctuation.
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Table 4. Correspondence between the FDO and the cycle number (battery No. 001).

C f 1500 1400 1300 1200 1100 1000 900 800 700 600 500 400

Cycle1 0.555 0.535 0.514 0.493 0.470 0.456 0.431 0.414 0.394 0.372 0.356 0.333
Cycle51 0.578 0.559 0.538 0.516 0.493 0.479 0.454 0.437 0.418 0.395 0.379 0.357
Cycle101 0.598 0.579 0.555 0.532 0.518 0.492 0.475 0.456 0.435 0.410 0.391 0.375
Cycle151 0.608 0.587 0.565 0.542 0.528 0.502 0.485 0.467 0.445 0.420 0.401 0.386
Cycle201 0.625 0.604 0.582 0.569 0.545 0.520 0.503 0.484 0.462 0.447 0.428 0.403
Cycle251 0.631 0.610 0.598 0.575 0.551 0.536 0.519 0.490 0.479 0.454 0.435 0.419
Cycle301 0.650 0.639 0.617 0.594 0.570 0.555 0.538 0.519 0.497 0.473 0.453 0.438
Cycle351 0.687 0.666 0.644 0.621 0.607 0.582 0.565 0.546 0.525 0.500 0.481 0.465
Cycle401 0.702 0.681 0.669 0.646 0.622 0.607 0.580 0.561 0.549 0.525 0.501 0.480
Cycle451 0.724 0.703 0.681 0.668 0.644 0.629 0.602 0.583 0.561 0.547 0.527 0.502
Cycle501 0.731 0.710 0.698 0.675 0.651 0.636 0.619 0.590 0.579 0.554 0.535 0.519
Cycle551 0.754 0.733 0.711 0.698 0.674 0.659 0.632 0.613 0.591 0.577 0.558 0.532
Cycle601 0.775 0.753 0.731 0.718 0.694 0.679 0.652 0.633 0.612 0.597 0.578 0.552
Cycle651 0.782 0.760 0.748 0.725 0.701 0.686 0.669 0.640 0.629 0.604 0.584 0.569
Cycle701 0.817 0.792 0.776 0.754 0.732 0.718 0.692 0.675 0.656 0.634 0.617 0.595
Cycle751 0.839 0.818 0.796 0.773 0.759 0.733 0.717 0.698 0.676 0.651 0.632 0.617
Cycle801 0.847 0.824 0.806 0.785 0.762 0.748 0.723 0.706 0.686 0.664 0.648 0.625
Cycle825 0.854 0.834 0.812 0.790 0.776 0.757 0.738 0.719 0.692 0.678 0.655 0.634

6. Mutation of the Charge Density on the Electrodes

During the aging process of batteries, their capacity decreases gradually with increas-
ing cycle time. However, in actual operation, the capacity recovers several times during the
battery life cycle. The specific performance is that the capacity measured one cycle after
storage is significantly higher than the capacity measured in the last cycle. The capacity
recovery phenomenon is more obvious in the early stage of battery degradation and can
even be higher than the initially measured capacity of the battery.

The capacity recovery of batteries is closely related to the mutation of the charge
density, and this mutation is mainly caused by changes in the physical properties of the
electrode. During the degradation of a battery, the porous electrode fractures under the
aging mechanism and fatigue induced by thermal stress, and this process splits the electrode
into a large number of small fragments with sharp edges. Under the action of electric power,
these small, sharp edges of the electrodes attract a large amount of residual charge in a
short time. As a result, the charge density of the electrode rises instantaneously, and the
battery capacity recovers at these moments.

Datasets of cyclic aging tests of lithium-ion batteries from the National Aeronautics
and Space Administration (NASA) Ames Prognostics Center of Excellence are used to
analyse the capacity recovery phenomenon of batteries [60]. That laboratory performed
life degradation experiments on several groups of lithium-ion batteries under different
conditions and obtained a large amount of high-quality experimental data. In this paper,
a set of battery data (battery numbers 0005, 0006, and 0007) is selected to identify the
corresponding FDO at different cycle numbers. The rated capacity of the NASA batteries is
2 Ah. Part of the test procedures for the NASA batteries is shown in Table 5.

Table 5. Partial test procedure of the NASA batteries.

Battery
Number

Charge
Current (A)

Discharge
Current (A)

Temperature
(◦C)

Charge
Cut-Off

Voltage (V)

Discharge
Cut-Off

Voltage (V)

No. 0005 1.5 2.0 24 4.2 2.7
No. 0006 1.5 2.0 24 4.2 2.5
No. 0007 1.5 2.0 24 4.2 2.2
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The lithium-ion batteries are fully charged in constant-current, constant-voltage mode,
and then the batteries are discharged in constant-current mode until the batteries reach
the cut-off voltage. The batteries are cyclically charged and discharged until the capacity
reaches the fault threshold. The total number of charge/discharge cycles of the batteries is
168. The output voltage of constant discharge of the NASA lithium-ion battery is shown in
Figure 8. The data of the initial instantaneous discharge of the NASA battery are used for
the identification of the fractional derivative model, which is shown from time T1 to time
T2 in Figure 8. Because the sampling frequency of the NASA batteries is relatively low, this
paper obtains the intercept of the long discharge duration to obtain sufficient data, thus
ensuring the effectiveness of the identification process.

Figure 8. Output voltage of constant discharge of NASA battery No. 0005 at different cycle numbers.

Figure 9 shows the identified FDO and the capacity degradation curve of the NASA
batteries. It is obvious from Figure 9 that the corresponding FDO suddenly drops at
the moment of capacity recovery. The variation in the FDO indicates that the electrode
exhibits resistive behavior at the point of capacity recovery. Due to the appearance of small,
sharp edges, the charge density on the electrodes increases in a short time. The FDO as
an indicator of the charge density change can well reflect the battery capacity recovery
effect. Because the FDO is identified from the initial instantaneous discharge data of the
battery, the FDO can be used to predict the possible capacity recovery effect. Furthermore,
because the acquisition time of battery data is short and the identification of the least
squares method is fast, the prediction method of this paper is easy to implement to monitor
the electrode performance in real time.

In the instantaneous discharge process of the battery, the dynamical behavior mainly
depends on the charge accumulation at the electrodes. The change in the charge density
is primarily dependent on changes in the physical properties of the electrode. The FDO
can be used to characterize the variations in the charge density, which cannot be directly
detected. The method presented in this paper is a supplement to the conventional methods
for monitoring the performance of electrodes. In the process of electrode manufacturing,
if appropriate technologies (electrical discharge machining, laser processing, etc.) are used
to create some artificial fractal cracks on the electrode, the charge density of the electrode
can be improved and the damage caused by thermal stress can be reduced.
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(a)

(b)

(c)

Figure 9. Identified FDO and the capacity degradation curve of the NASA18650 commercial lithium
batteries: (a) battery 0005; (b) battery 0006; (c) battery 0007.

7. Conclusions

Because of the interaction of charge distribution on the electrodes, it is difficult to
detect the changes in the charge density directly. In this paper, the FDO is used to char-
acterize the fractal distribution of charge and to detect variations in the charge density.
The Grünwald–Letnikov fractional order derivative definition is used to spatially discretize
the fractional-order differential equation. The optimization method is used to identify the
FDO at different SOCs and different aging stages. Changes in the FDO indicate that the
charge mobility gradually increases as the charge density decreases. Finally, the FDO is
used to explain the capacity recovery effect. The FDO can reveal changes in the charge
density from the perspective of the physical properties of the electrode. This paper es-
tablishes a mathematical connection between the internal mechanism of the battery and
the external measurable data. Monitoring the charge density with the FDO is a rapid and
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non-destructive technique, which is easy to apply to dynamically monitor the performance
of electrodes during the battery life cycle.
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